JPH0713036B2 - Purified solvent recovery method - Google Patents

Purified solvent recovery method

Info

Publication number
JPH0713036B2
JPH0713036B2 JP60136874A JP13687485A JPH0713036B2 JP H0713036 B2 JPH0713036 B2 JP H0713036B2 JP 60136874 A JP60136874 A JP 60136874A JP 13687485 A JP13687485 A JP 13687485A JP H0713036 B2 JPH0713036 B2 JP H0713036B2
Authority
JP
Japan
Prior art keywords
solvent
acetic acid
aqueous solution
acid ester
potassium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60136874A
Other languages
Japanese (ja)
Other versions
JPS62443A (en
Inventor
雅樹 峯元
茂和 畑野
雅士 平尾
早実 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60136874A priority Critical patent/JPH0713036B2/en
Publication of JPS62443A publication Critical patent/JPS62443A/en
Publication of JPH0713036B2 publication Critical patent/JPH0713036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性炭吸着法により捕集された酢酸エステルを
含有する回収溶剤を精製された状態で回収する方法に関
する。
TECHNICAL FIELD The present invention relates to a method for recovering a recovery solvent containing an acetate ester collected by an activated carbon adsorption method in a purified state.

〔従来の技術〕[Conventional technology]

活性炭吸着法を用いた排ガス中炭化水素溶剤の回収技術
はすでに一般化されており、ほぼ解決しているが、エス
テル、ケトン系炭化水素などについてはまだ多くの問題
が残されている。その一つとして、酢酸エステルを活性
炭により吸着捕集し、水蒸気脱着を行うと酢酸エステル
は活性炭での触媒作用により一部酢酸とアルコールに加
水分解される。
The technology for recovering hydrocarbon solvent in exhaust gas using the activated carbon adsorption method has already been generalized and almost solved, but many problems still remain for ester and ketone hydrocarbons. As one of them, when acetic acid ester is adsorbed and collected by activated carbon and steam desorption is performed, the acetic acid ester is partially hydrolyzed into acetic acid and alcohol by the catalytic action of activated carbon.

例えば、酢酸エチルは極く一部が下記式(1)のように
分解し、生成した酢酸が回収酢酸エチルのpHを下げ回収
溶剤の再使用を困難とさせる。
For example, a very small part of ethyl acetate is decomposed as shown in the following formula (1), and the acetic acid produced lowers the pH of the recovered ethyl acetate and makes it difficult to reuse the recovered solvent.

このため回収した酢酸エステルはなんらかの方法により
脱酸処理した後、中性の溶剤として再使用する必要があ
る。
Therefore, the recovered acetic acid ester must be deoxidized by some method and then reused as a neutral solvent.

第2図は従来の酢酸エステル回収プロセスを示すフロー
図である。
FIG. 2 is a flow chart showing a conventional acetate recovery process.

先ず、酢酸エステルを含む原ガスをフイルタ等の前処理
装置1を経て、ブロア2を介して活性炭3−1を充填し
た吸着槽3に送り、溶剤を吸着捕集した後、蒸気ライン
Eから導入した水蒸気により脱着し、コンデンサ4にて
凝縮液化させる。
First, the raw gas containing acetic acid ester is sent through a pretreatment device 1 such as a filter to a adsorption tank 3 filled with activated carbon 3-1 via a blower 2 to adsorb and collect a solvent, and then introduced from a vapor line E. It is desorbed by the generated steam and condensed and liquefied by the condenser 4.

液化した酢酸エステル及び水をセパレータ5で分離し、
水相はコンデンサ7を接続した排水蒸留塔6で溶剤分を
回収しセパレータ5に戻す。溶剤相はコンデンサ9を接
続した脱水蒸着塔8により脱水後、製品回収タンク10へ
送つている。
The liquefied acetate ester and water are separated by the separator 5,
The aqueous phase recovers the solvent content in the waste water distillation column 6 to which the condenser 7 is connected and returns it to the separator 5. The solvent phase is dehydrated by a dehydration vapor deposition tower 8 to which a condenser 9 is connected, and then sent to a product recovery tank 10.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが第2図に示すような従来の方法によつて回収し
た酢酸エチルは100〜1000ppmの酢酸を含んでおり、酸性
を示すため再利用における製品品質上の不具合、装置の
腐食、酢酸臭による作業環境の悪化等を来す。特に磁気
テープ、合成フイルム紙などの利用分野では含有酢酸量
約10ppm以下で使用する必要があり、脱酸処理なしで再
使用することは不可能である。
However, the ethyl acetate recovered by the conventional method as shown in Fig. 2 contains 100 to 1000 ppm of acetic acid, and since it shows acidity, it causes problems in product quality during reuse, equipment corrosion, and work due to acetic acid odor. The environment deteriorates. Especially in the application fields of magnetic tape, synthetic film paper, etc., it is necessary to use the acetic acid content of about 10 ppm or less, and it is impossible to reuse it without deoxidation treatment.

通常、この種の有機酸対策として、吸着時における酢酸
エステルの分解抑制だけでは困難であり回収後の脱酸処
理が必要となる。
Usually, as a measure against this type of organic acid, it is difficult to suppress decomposition of the acetic acid ester at the time of adsorption, and deoxidation treatment after recovery is required.

一般には脱酸処理の方法として、 (1)エタノールアミン等のアルカリ性溶剤を加えて中
和する方法 (2)カ性ソーダ等の無機アルカリ物質で脱酸する方法 (3)蒸留精製する方法 などが知られているが、(1)の方法は、純度低下、
(2)の方法は、酢酸エステルの分解が促進され酢酸エ
ステルの回収効率が低下、(3)の方法は酢酸濃度10pp
m以下までに精製することが困難であり、また他の溶剤
を含んでいる場合、非常に複雑な蒸留操作が必要となり
実用的ではない。
Generally, the deoxidizing method includes (1) a method of neutralizing by adding an alkaline solvent such as ethanolamine (2) a method of deoxidizing with an inorganic alkaline substance such as caustic soda (3) a method of distilling and refining As is known, the method (1) reduces the purity,
The method (2) reduces the efficiency of acetic ester recovery by promoting the decomposition of acetic acid ester, and the method (3) reduces the acetic acid concentration to 10 pp.
It is difficult to purify to m or less, and when other solvents are included, a very complicated distillation operation is required, which is not practical.

このように酢酸エステルに含まれた有機酸を効果的に効
率よく脱酸、または分離する方法が見い出されておら
ず、このままでは回収溶剤の利用価値が小さく、回収装
置は大気公害防止のみの機能となり、本来の再利用の意
図は半減する。
Thus, a method for effectively deoxidizing or separating the organic acid contained in the acetate ester has not been found, and the utility value of the recovery solvent is small as it is, and the recovery device functions only to prevent atmospheric pollution. Therefore, the original intention of reuse is halved.

本発明はこれらの問題を解決しようとするもので、酢酸
エステルを含有する溶剤ガス処理方法において、捕集さ
れた溶剤相から有機酸を効率よく除去し、優れた酢酸エ
ステル回収方法を提供することを目的としており、酢酸
エステルを含んだ溶剤回収装置での回収溶剤の精製に応
用できるものである。
The present invention is intended to solve these problems, in a solvent gas treatment method containing acetic acid ester, to efficiently remove the organic acid from the collected solvent phase, to provide an excellent acetic acid ester recovery method. The present invention is applicable to the purification of a recovered solvent in a solvent recovery device containing acetic ester.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明の酢酸エステル回収方法は、酢酸エステ
ルを含有する原ガスを吸着槽に送り、溶剤を捕集した
後、脱着手段で脱着し、凝縮手段と、分離手段で溶剤相
と水相に分離し、分離手段の後流側で溶剤相を炭酸カリ
ウム水溶液(または炭酸ナトリウム水溶液)と接触させ
て脱酸し、その後脱水手段および精製手段で精製し、精
製された酢酸エステルを回収することを特徴としてい
る。
Therefore, the acetic ester recovery method of the present invention, the raw gas containing acetic ester is sent to the adsorption tank, after collecting the solvent, desorption by the desorption means, the condensation means, and the solvent phase and the aqueous phase by the separation means. After separation, the solvent phase on the downstream side of the separation means is brought into contact with an aqueous solution of potassium carbonate (or an aqueous solution of sodium carbonate) for deoxidation, and then purified by a dehydration means and a purification means to recover the purified acetate ester. It has a feature.

本発明の回収溶剤である酢酸エステルから酢酸を脱酸す
る機構は下記の反応式(2)、(3)による。
The mechanism of deoxidizing acetic acid from acetic acid ester which is the recovery solvent of the present invention is based on the following reaction formulas (2) and (3).

使用する炭酸カリウム水溶液の上限濃度は25wt%、炭酸
ナトリウムは6wt%である。前者の濃度の上限は酢酸エ
チルの分解率が25wt%以上になると急激に増加するから
であり、後者の濃度の上限は水に対する溶解度によつて
決定されるものである。下限濃度は回収溶剤中の酢酸濃
度によつて決まるが、通常1wt%程度である。
The upper limit concentration of the aqueous potassium carbonate solution used is 25 wt% and sodium carbonate is 6 wt%. This is because the upper limit of the concentration of the former rapidly increases when the decomposition rate of ethyl acetate becomes 25 wt% or more, and the upper limit of the concentration of the latter is determined by the solubility in water. The lower limit concentration is determined by the concentration of acetic acid in the recovery solvent, but is usually about 1 wt%.

例えば酢酸エチルの分解率は炭酸カリウム水溶液濃度に
より変化し、濃度が高くなる程大きくなるが、炭酸カリ
ウム濃度5wt%水溶液を用いると酢酸エチルは約0.02%
程度分解する。この程度の分解率であると、もともとの
酢酸エチル中にはエチルアルコールが相当量含まれてい
るので、この程度分解により増加してもその影響は極め
て小さいものである。
For example, the decomposition rate of ethyl acetate changes depending on the potassium carbonate aqueous solution concentration, and increases as the concentration increases, but when using a potassium carbonate concentration 5 wt% aqueous solution, ethyl acetate is about 0.02%.
Decompose to some extent. At such a decomposition rate, since the original ethyl acetate contains a considerable amount of ethyl alcohol, even if the decomposition rate is increased to such an extent, its effect is extremely small.

〔実施例〕〔Example〕

以下、第1図に示すプロセス例のフロー図にもとづき本
発明の一実施例について説明する。
An embodiment of the present invention will be described below based on the flow chart of the process example shown in FIG.

図において、101は前処理装置、102はブロア、103は吸
着槽、103−1は活性炭層、104はコンデンサ、105はセ
パレータ、106は排水蒸留塔(以下、排水塔)、107はコ
ンデンサ、108は脱水蒸留塔(以下、脱水塔)、109はコ
ンデンサ、110は製品回収タンク、111は接触脱酸塔(以
下、脱酸塔)、112はポンプ、113は中間タンク、114は
精製塔、115はコンデンサ、116はドレンタンク、117は
タンクを示している。
In the figure, 101 is a pretreatment device, 102 is a blower, 103 is an adsorption tank, 103-1 is an activated carbon layer, 104 is a condenser, 105 is a separator, 106 is a drainage distillation tower (hereinafter, drainage tower), 107 is a condenser, and 108. Is a dehydration distillation column (hereinafter, dehydration column), 109 is a condenser, 110 is a product recovery tank, 111 is a catalytic deoxidization column (hereinafter, deoxidation column), 112 is a pump, 113 is an intermediate tank, 114 is a purification column, 115 Is a condenser, 116 is a drain tank, and 117 is a tank.

酢酸エステルを含有する原ガスは、フイルタ等の前処理
装置101、ブロア102を経て活性炭層103−1を具備した
吸着槽103に送られる。吸着槽103では活性炭層103−1
で溶剤が捕集され、清浄となつた排ガスは排出口Fより
大気に放出される。
The raw gas containing acetic acid ester is sent to a adsorption tank 103 having an activated carbon layer 103-1 through a pretreatment device 101 such as a filter and a blower 102. In the adsorption tank 103, the activated carbon layer 103-1
The solvent is collected by the exhaust gas, and the cleaned exhaust gas is discharged from the exhaust port F to the atmosphere.

一方、捕集された溶剤は、蒸気ラインEから導入された
水蒸気により脱着され、溜出液はコンデンサ104で凝縮
液化されセパレータ105に送られる。
On the other hand, the collected solvent is desorbed by the steam introduced from the vapor line E, and the distillate is condensed and liquefied by the condenser 104 and sent to the separator 105.

セパレータ105では凝縮液が溶剤と水に分離され、水相
はコンデンサ107を接続した排水塔106で水相に含まれる
溶剤分が回収され再びセパレータ105に戻される。
In the separator 105, the condensate is separated into a solvent and water, and in the water phase, a drainage tower 106 connected to the condenser 107 collects the solvent component contained in the water phase and returns it to the separator 105 again.

一方、セパレータ105で分離された溶剤相は、脱酸塔111
で炭酸カリウム水溶液(または、炭酸ナトリウム水溶
液、以下炭酸カリウムのみを記載する)と向流で接触さ
れ、脱酸が行なわれて中間タンク113に貯められる。
On the other hand, the solvent phase separated by the separator 105 is the deoxidizing tower 111.
Is counter-currently contacted with an aqueous solution of potassium carbonate (or an aqueous solution of sodium carbonate, hereinafter only potassium carbonate will be described), deoxidized and stored in the intermediate tank 113.

脱酸塔111に供給される炭酸カリウム水溶液は、ポンプ1
12を具えた循環ラインJを介して供給され、循環ライン
JにはpHコントロールによりタンク117の高濃度炭酸カ
リウム水溶液が補給される。また、向流接触により酢酸
カリウムを多く含んだ循環液の一部はラインGより排液
として排出される。
The aqueous solution of potassium carbonate supplied to the deoxidizing tower 111 is supplied by the pump 1
It is supplied through a circulation line J including 12 and the circulation line J is replenished with the high-concentration potassium carbonate aqueous solution in the tank 117 by pH control. Further, due to the countercurrent contact, a part of the circulating liquid containing a large amount of potassium acetate is discharged from line G as waste liquid.

中間タンク113に貯められた脱酸後の溶剤はコンデンサ1
09を接続した脱水塔108で脱水され、その後、コンデン
サ115を接続した精製塔114に送られてカリウム塩(また
はナトリウム塩)が除去され、製品回収タンク110へ送
られる。
The deoxidized solvent stored in the intermediate tank 113 is the condenser 1
It is dehydrated in a dehydration tower 108 connected to 09, and then sent to a purification tower 114 connected to a condenser 115 to remove potassium salt (or sodium salt) and sent to a product recovery tank 110.

脱酸溶剤に微量含まれ精製塔114で除去された炭酸カリ
ウム、酢酸カリウム等のカリウム塩は再び脱水塔108の
塔底に送られて、同塔底で凝縮されドレンタンク116へ
抜き出し処理される。
The potassium salts such as potassium carbonate and potassium acetate contained in the deoxidizing solvent in a small amount and removed in the refining tower 114 are again sent to the bottom of the dehydration tower 108, condensed at the bottom of the tower, and extracted into the drain tank 116. .

上記したように本発明方法では溶剤相と炭酸カリウム水
溶液を接触させることにより脱酸を行い、その後精製を
行うことによつて酢酸エステルを回収するが炭酸カリウ
ムが酢酸を含んだ酢酸エステルの脱酸に適している理由
として苛性ソーダに比べ解離定数が比較的小さく、アル
カリ強度が適度に弱いことがあげられる。アルカリ強度
が強すぎた場合、酢酸の中和だけでなく酢酸エステルの
分解が促進され回収率の低下を招くことになる。
As described above, in the method of the present invention, deoxidation is carried out by bringing the solvent phase into contact with an aqueous solution of potassium carbonate, and then the acetic acid ester is recovered by performing purification, but potassium carbonate deoxidizes the acetic acid ester containing acetic acid. The reason for this is that the dissociation constant is relatively small compared to caustic soda and the alkali strength is moderately weak. If the alkaline strength is too strong, not only the neutralization of acetic acid but also the decomposition of acetic acid ester will be promoted, leading to a decrease in the recovery rate.

次に、炭酸カリウム水溶液に酢酸を含む酢酸エチルを次
の条件でバツチ方式により攪拌接触させた場合の試験結
果を下記に示す。
Next, the test results when ethyl acetate containing acetic acid is brought into contact with the aqueous solution of potassium carbonate by stirring by the batch method under the following conditions are shown below.

試験結果 条 件 炭酸カリウム水溶液 5wt% 混 合 比 1:1 接 触 温 度 25℃ 上記試験結果に示すように酢酸の除去率は99.9%以上で
あつた。又、酢酸エチルの加水分解時の分解率は約0.02
%であつた。又、酢酸エチル相分離後、別の貯槽で48時
間静置での分解率は0.01%であつた。このことは炭酸カ
リウムが酢酸を含んだ酢酸エステルの脱酸に適している
ことを証明している。又、蒸留により回収溶剤のpHは問
題なく、蒸留操作による分解生成物エタノールの増加も
認められなかつた。
Test results Condition Potassium carbonate aqueous solution 5 wt% Mixing ratio 1: 1 Contact temperature 25 ℃ As shown in the above test results, the acetic acid removal rate was 99.9% or more. The decomposition rate of ethyl acetate during hydrolysis is about 0.02.
It was in%. After the ethyl acetate phase separation, the decomposition rate was 0.01% when left standing in another storage tank for 48 hours. This proves that potassium carbonate is suitable for deoxidation of acetic acid-containing acetate. Further, the pH of the recovered solvent was not problematic by distillation, and no increase in the decomposition product ethanol by the distillation operation was observed.

〔効果〕〔effect〕

以上、詳述したように、本発明の酢酸エステル回収方法
によれば、酢酸エステルを含有する原ガスの溶剤成分を
活性炭吸着法により捕集した後、脱着手段で脱着し、凝
縮手段と分離手段で水相と溶剤相に分離し、溶剤相を分
離手段の後流側で炭酸カリウム水溶液と接触させること
により脱酸し、その後脱水および精製手段を経て精製さ
れた酢酸エステルを回収するようにしたので、酢酸エス
テルを効果的に効率よく回収でき、これにより従来必要
としていた溶剤回収後の脱酸処理をなくし、回収溶剤の
再利用価値を向上させることができると共に、作業環境
の悪化や装置の腐食等を防止することができる。
As described above in detail, according to the acetic acid ester recovery method of the present invention, after the solvent component of the raw gas containing acetic acid ester is collected by the activated carbon adsorption method, it is desorbed by the desorption means, and the condensation means and the separation means. To separate it into an aqueous phase and a solvent phase, and to deoxidize the solvent phase by bringing the solvent phase into contact with an aqueous solution of potassium carbonate on the downstream side of the separation means, and then to recover the purified acetic acid ester through dehydration and purification means. Therefore, the acetic acid ester can be effectively and efficiently recovered, which eliminates the conventionally required deoxidation treatment after solvent recovery and improves the reuse value of the recovered solvent, as well as the deterioration of the working environment and the equipment Corrosion can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すフロー図、第2図は従
来法のフロー図を示す。
FIG. 1 is a flow chart showing an embodiment of the present invention, and FIG. 2 is a flow chart of a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酢酸エステルを含有する原ガスから酢酸エ
ステルを回収する溶剤回収法において水相と溶剤相に分
離する分離手段の後流側で、溶剤相と炭酸カリウム水溶
液または炭酸ナトリウム水溶液を接触させて脱酸し、そ
の後脱水および精製手段を経て、精製された酢酸エステ
ルを回収することを特徴とする精製溶剤回収方法。
1. A solvent phase is contacted with a potassium carbonate aqueous solution or a sodium carbonate aqueous solution on the downstream side of a separating means for separating an aqueous phase and a solvent phase in a solvent recovery method for recovering an acetate from a raw gas containing an acetate. A method for recovering a purified solvent, characterized in that the purified acetic acid ester is recovered by means of dehydration and purification, followed by dehydration and purification.
JP60136874A 1985-06-25 1985-06-25 Purified solvent recovery method Expired - Lifetime JPH0713036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136874A JPH0713036B2 (en) 1985-06-25 1985-06-25 Purified solvent recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136874A JPH0713036B2 (en) 1985-06-25 1985-06-25 Purified solvent recovery method

Publications (2)

Publication Number Publication Date
JPS62443A JPS62443A (en) 1987-01-06
JPH0713036B2 true JPH0713036B2 (en) 1995-02-15

Family

ID=15185547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136874A Expired - Lifetime JPH0713036B2 (en) 1985-06-25 1985-06-25 Purified solvent recovery method

Country Status (1)

Country Link
JP (1) JPH0713036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085260A (en) * 2014-05-16 2015-11-25 上海星可高纯溶剂有限公司 Purification method of ethyl acetate for liquid chromatography-mass spectrometer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237989A (en) * 2007-03-26 2008-10-09 Toyobo Co Ltd Organic solvent treatment apparatus
JP2009066530A (en) * 2007-09-13 2009-04-02 Mitsubishi Chemical Engineering Corp Voc recovery apparatus
JP2009072698A (en) * 2007-09-20 2009-04-09 Toyo Ink Mfg Co Ltd Method for recovering organic solvent and method for re-utilizing recovered solvent
JP5056302B2 (en) * 2007-09-20 2012-10-24 東洋インキScホールディングス株式会社 Organic solvent recovery method
JP2010149040A (en) * 2008-12-25 2010-07-08 Toyobo Co Ltd Organic solvent-containing gas treating system
JP2011177695A (en) * 2010-03-04 2011-09-15 Toyobo Co Ltd Method for producing pervaporation membrane, pervaporation membrane and organic solvent recovery system
CN103768856A (en) * 2012-10-23 2014-05-07 北京日新达能技术有限公司 Device for treating polyphenylene sulfide production waste water by active carbon fibers
CN115193097A (en) * 2022-07-19 2022-10-18 厦门大学 Extraction separation method for removing trace acetic acid and water in mixed organic solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105085260A (en) * 2014-05-16 2015-11-25 上海星可高纯溶剂有限公司 Purification method of ethyl acetate for liquid chromatography-mass spectrometer

Also Published As

Publication number Publication date
JPS62443A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
JPH0713036B2 (en) Purified solvent recovery method
TWI784177B (en) Method for producing acetic acid
TW201827392A (en) Method for producing acetic acid
JP2646259B2 (en) Removal of volatile acids from NMP solvent vapor by sacrificial metal and ion exchange
JP4535543B2 (en) Isolation of glycol
US5965771A (en) Regeneration of carboxylic acid-laden basic sorbents by leaching with a volatile base in an organic solvent
CN112368257A (en) Process for producing acetic acid
JP3692497B2 (en) Method for recovering dimethyl sulfoxide
JPS61280450A (en) Device for purifying and recovering acetic ester
CN109809994B (en) Method for recovering n-propyl acetate-n-propanol solvent from waste liquid in printing industry
JP2004043434A (en) Method for refining high-purity dimethyl sulfoxide and mixture of dimethyl sulfoxide with amines
US11261149B2 (en) Method for producing acetic acid
JPS6153102B2 (en)
US2826615A (en) Process for producing alcohols by acid treating olefinic mineral oils
US5221773A (en) Process for purifying boric acid for hydrocarbon oxidation
US2244731A (en) Process for removal of acidic impurities from fuel gas
CN112961026B (en) Acetylene purification linkage control type trans-1, 2-dichloroethylene preparation system
JPS5929186B2 (en) How to recover dimethylformamide
SU715611A1 (en) Method of gasoline purification from sulfuric and acidic compounds
JPS6150693A (en) Treatment of waste water at time of preparation of purified coke oven gas
KR100496042B1 (en) Recovery method of oxidation catalyst material in terephthalic acid manufacturing process
RU2115693C1 (en) Method of removing petroleum acids from clear petroleum fractions
SU1109369A1 (en) Process for purifying hexane from lower carboxylic acids
CN113121344A (en) Washing process for crude 2,2, 4-trimethyl-1, 3-pentanediol monoisobutyrate
JPS6211887B2 (en)