JPS6152902B2 - - Google Patents

Info

Publication number
JPS6152902B2
JPS6152902B2 JP8577680A JP8577680A JPS6152902B2 JP S6152902 B2 JPS6152902 B2 JP S6152902B2 JP 8577680 A JP8577680 A JP 8577680A JP 8577680 A JP8577680 A JP 8577680A JP S6152902 B2 JPS6152902 B2 JP S6152902B2
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
evaporator
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8577680A
Other languages
Japanese (ja)
Other versions
JPS5712262A (en
Inventor
Toshiaki Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8577680A priority Critical patent/JPS5712262A/en
Publication of JPS5712262A publication Critical patent/JPS5712262A/en
Publication of JPS6152902B2 publication Critical patent/JPS6152902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Description

【発明の詳細な説明】 <技術分野> 本発明は、コンプレツサ,凝縮器,蒸発器等を
備えた冷凍サイクルの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to an improvement of a refrigeration cycle equipped with a compressor, a condenser, an evaporator, and the like.

<従来技術> 第1図は蒸気圧縮式冷凍機の従来の冷凍サイク
ルの概略図であり、イは圧縮機、ロは凝縮器、ハ
は減圧装置、ニは蒸発器を示す。
<Prior Art> FIG. 1 is a schematic diagram of a conventional refrigeration cycle of a vapor compression refrigerator, in which A shows a compressor, B shows a condenser, C shows a pressure reducing device, and D shows an evaporator.

また、第2図は第1図に示した冷凍サイクルの
モリエル線図であり、記号a′,b′,c′,d′は第1
図の記号a,b,c,dに対応し冷凍サイクルの
それぞれの部分の状態を示す。
In addition, Fig. 2 is a Mollier diagram of the refrigeration cycle shown in Fig. 1, and symbols a', b', c', and d' are the first
Symbols a, b, c, and d in the figure correspond to the states of the respective parts of the refrigeration cycle.

上記冷凍サイクルにおいて、この方式では減圧
装置ハから出た冷媒液とフラツシユガスは一緒に
蒸発器ニに送られるが、一般にフラツシユガスは
比体積が著しく大きいので、蒸発器ニ内のスペー
スの大部分を占めることになり、冷媒液に接して
蒸発が行なわれる面積の割合が小さいものとなる
ため、能力が低下する欠点がある。また、フラツ
シユ蒸気のような気体の熱伝達は非常に小さいた
め、蒸発器ニの熱交換が悪くなり、さらに蒸発器
ニ及び蒸発器ニからコンプレツサへの配管内の圧
力損失はフラツシユガスのため大きくなるという
欠点があつた。
In the above refrigeration cycle, in this method, the refrigerant liquid and flash gas discharged from the pressure reducing device C are sent together to the evaporator D, but since the flash gas generally has a significantly large specific volume, it occupies most of the space inside the evaporator D. As a result, the ratio of the area in contact with the refrigerant liquid where evaporation occurs is small, resulting in a disadvantage that the performance is reduced. In addition, since the heat transfer of gases such as flash steam is very small, the heat exchange between evaporators 2 and 2 is poor, and the pressure loss in evaporator 2 and the piping from evaporator 2 to the compressor is large due to the flash gas. There was a drawback.

ここで、サイクル中に気液分離器に介装するこ
とによつて液状冷媒のみを蒸発器に導入するよう
にし、気相冷媒はコンプレツサの吸入側へ導入す
るようにしたものが提案されているが、このもの
においては蒸発器へ導入されるのは液状冷媒のみ
であるから上記フラツシユガスによる欠点は解消
できるものの、蒸発器へ導入される液状冷媒は飽
和域内の状態にあるため、蒸発器での空気から取
り得る蒸発潜熱はさほど大きくなかつた。
Here, a system has been proposed in which only liquid refrigerant is introduced into the evaporator by interposing a gas-liquid separator during the cycle, and gas-phase refrigerant is introduced into the suction side of the compressor. However, in this case, only liquid refrigerant is introduced into the evaporator, so the drawbacks caused by the flash gas mentioned above can be overcome, but since the liquid refrigerant introduced into the evaporator is within the saturated range, The latent heat of vaporization that could be taken from the air was not very large.

<目 的> 本発明は上記の点に鑑み成されたものであつて
蒸発器に導入される冷媒を過冷却状態にすること
によつて冷凍能力の増大を計ることを目的とす
る。
<Purpose> The present invention has been made in view of the above points, and an object of the present invention is to increase the refrigerating capacity by bringing the refrigerant introduced into the evaporator into a supercooled state.

<実施例> 以下、本発明の実施例を第3図乃至第5図に基
いて詳細に説明する。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 3 to 5.

第3図は本発明に係る冷凍サイクルの概略図、
第4図は同冷凍サイクルに備えられる噴流装置の
詳細図、第5図は第3図に示した冷凍サイクルの
モリエル線図である。
FIG. 3 is a schematic diagram of a refrigeration cycle according to the present invention,
FIG. 4 is a detailed view of the jet device provided in the refrigeration cycle, and FIG. 5 is a Mollier diagram of the refrigeration cycle shown in FIG. 3.

この第3図において、1はコンプレツサ、2は
このコンプレツサの吐出側に設けられた凝縮器、
15はこの凝縮器の吐出側に設けられた蒸発器で
ある。Aはこの凝縮器の吐出側に接続された気液
分離過冷却回路であつて、該回路Aは、流入側に
凝縮器2に接続されたエジエクタ3と、このエジ
エクタ3の吐出側に接続されエジエクタ3の吐出
した気液二相の冷媒を気相冷媒と液相冷媒とに分
離する気液分離器9と、この気液分離器9で分離
した気相冷媒のみを上記コンプレツサ1の流入側
に導入するために分離器9上部に接続されたガス
吐出路12と、気液分離器9内の液状冷媒のみを
コンプレツサ1の吸引力によつて蒸発器15に導
入するために気液分離器9底部11と蒸発器15
との間に設けられた液吐出路12と、上記液分離
器9内の液状冷媒の一部を導出すべく分離器9側
部に設けられた導出路14と、この導出路14の
吐出側に接続されたキヤピラリチユーブ等の減圧
機構13と、この減圧機構13の吐出側に接続さ
れこの減圧機構13から吐出された冷媒と気液分
離器9内の液状冷媒とを熱交換するように気液分
離器7に内装された熱交換器7とこの熱交換器7
から吐出された冷媒を上記エジエクタ3の低圧部
分に戻す帰還路16とから成る。
In this FIG. 3, 1 is a compressor, 2 is a condenser provided on the discharge side of this compressor,
15 is an evaporator provided on the discharge side of this condenser. A is a gas-liquid separation supercooling circuit connected to the discharge side of this condenser, and this circuit A is connected to an ejector 3 connected to the condenser 2 on the inflow side and to the discharge side of this ejector 3. A gas-liquid separator 9 separates the gas-liquid two-phase refrigerant discharged from the ejector 3 into gas-phase refrigerant and liquid-phase refrigerant; a gas discharge passage 12 connected to the upper part of the separator 9 to introduce the refrigerant into the evaporator 15; 9 bottom 11 and evaporator 15
a liquid discharge passage 12 provided between the liquid refrigerant, a discharge passage 14 provided on the side of the separator 9 to derive a part of the liquid refrigerant in the liquid separator 9, and a discharge side of this discharge passage 14. A pressure reducing mechanism 13 such as a capillary tube connected to the refrigerant connected to the discharge side of the pressure reducing mechanism 13 and discharged from the pressure reducing mechanism 13 and the liquid refrigerant in the gas-liquid separator 9 exchange heat. Heat exchanger 7 installed in gas-liquid separator 7 and this heat exchanger 7
and a return path 16 for returning the refrigerant discharged from the ejector to the low pressure portion of the ejector 3.

上記エジエクタ3は、第3図に示すように、吸
入口4より流入した高圧冷媒を低圧に減圧すべく
噴出するノズル5と、このノズル5より冷媒を噴
出する空間である低圧部17とから成り、この低
圧部17上部に上記帰還路16を接続する接続口
8が設けられている。
As shown in FIG. 3, the ejector 3 is comprised of a nozzle 5 that ejects high-pressure refrigerant that has flowed in from the suction port 4 to reduce the pressure to a low pressure, and a low-pressure section 17 that is a space from which the refrigerant is ejected from the nozzle 5. A connection port 8 for connecting the return path 16 is provided above the low pressure section 17.

さて、上記の如く構成された冷凍サイクルにお
ける動作について、第5図のp―i線図と共に説
明する。
Now, the operation of the refrigeration cycle configured as described above will be explained with reference to the pi diagram shown in FIG.

先ずコンプレツサ1から吐出された高温高圧ガ
ス(a→b)は凝縮器2で凝縮され液となる(b
→c)。この状態で冷媒は中温で気液混合状態と
なる。次にこの気液混合状の冷媒はエジエクタ3
の吸入口4を通つてノズル5より噴出して上記高
圧冷媒を減圧(c―d)するが、このdの状態で
の冷媒はエジエクタ3の吸引効果(高圧冷媒が減
圧されることで生じる圧力低下エネルギに基く吸
引効果)によつて接続口8より吸引されるeの状
態の冷媒(後述)に混合してfの状態となり、低
圧部17を通過する間にgとなるべく若干圧力上
昇した状態となり、気液分離器9に導入される。
この気液分離器9内に導入されるgの状態の冷媒
は気相冷媒aと液相冷媒hとに分離されて、気相
冷媒aはガス吐出路12よりコンプツサ1の吸入
側に導出され、液相冷媒hのほとんどは液吐出路
11より吐出され、一部は上記エジエクタ3の吸
引効果によつて導出口14より導出される。この
導出口14から導出された冷媒は減圧機構13を
通過することによつてhの状態からjの状態とな
り、減圧されると同時に減圧による温度低下を生
じ、気液分離器9の液状冷媒より低温低圧の冷媒
となる。この低温低圧となつた冷媒は熱交換器7
に導入されて、ここで気液分離器7内のhの状態
にある液状冷媒と熱交換して、その結果熱交換器
7を通過した冷媒は一部が熱交換によつて気化し
てeの状態となり他は液状のまま昇温してhとな
り、気相eと液状hとが混在する形で再度エジエ
クタ3に導入されることになる。又、一方気液分
離器9内の液状冷媒hは冷却されることによつ
て、hの状態からiの状態へと過冷却されること
になり、従つて液吐出路11より吐出される液状
冷媒はこの過冷却されたiの状態で吐出され、こ
の過冷却された液状冷媒のみが蒸発器15に導入
されることになる。このiの状態で蒸発器15に
導入された液相冷媒は、冷媒1Kgに対して(ia
―ii)kalだけ熱を奪つて蒸発して気相冷媒aと
なり、再度コンプレツサ1に導入される。以下同
様な動作を繰り返す。
First, high-temperature, high-pressure gas (a → b) discharged from the compressor 1 is condensed in the condenser 2 and becomes a liquid (b
→c). In this state, the refrigerant is in a gas-liquid mixed state at medium temperature. Next, this gas-liquid mixed refrigerant is transferred to the ejector 3.
The high-pressure refrigerant is ejected from the nozzle 5 through the suction port 4 to reduce the pressure (c-d), but in this state d, the refrigerant is affected by the suction effect of the ejector 3 (the pressure generated when the high-pressure refrigerant is reduced in pressure). The refrigerant in the state e (described later) is mixed with the refrigerant in the state e (described later), which is sucked through the connection port 8 by the suction effect based on the reduced energy (suction effect based on the reduced energy), and becomes the state f, and while passing through the low pressure section 17, the pressure increases slightly to become g. and is introduced into the gas-liquid separator 9.
The refrigerant in the state g introduced into the gas-liquid separator 9 is separated into a gas-phase refrigerant a and a liquid-phase refrigerant h, and the gas-phase refrigerant a is led out to the suction side of the compressor 1 through the gas discharge passage 12. Most of the liquid phase refrigerant h is discharged from the liquid discharge passage 11, and a portion is led out from the outlet 14 by the suction effect of the ejector 3. The refrigerant led out from this outlet 14 changes from the state h to the state j by passing through the pressure reducing mechanism 13, and at the same time as the pressure is reduced, the temperature decreases due to the pressure reduction, and the liquid refrigerant in the gas-liquid separator 9 It becomes a low-temperature, low-pressure refrigerant. This low-temperature, low-pressure refrigerant is transferred to the heat exchanger 7.
Here, it exchanges heat with the liquid refrigerant in the state h in the gas-liquid separator 7, and as a result, a part of the refrigerant passing through the heat exchanger 7 is vaporized by the heat exchange and becomes e. The temperature rises to h, while the others remain in the liquid state, and the vapor phase e and liquid phase h are introduced into the ejector 3 again in a mixed form. On the other hand, by being cooled, the liquid refrigerant h in the gas-liquid separator 9 is supercooled from the state h to the state i, and therefore the liquid refrigerant h discharged from the liquid discharge passage 11 is The refrigerant is discharged in this supercooled state i, and only this supercooled liquid refrigerant is introduced into the evaporator 15. The liquid phase refrigerant introduced into the evaporator 15 in this state of i is (i a
-i i ) It absorbs heat by kal and evaporates to become a gas phase refrigerant a, which is introduced into the compressor 1 again. The same operation is repeated below.

従つて上記構成のサイクルであれば、凝縮器2
から導出された気液混合の冷媒はエジエクタ3で
減圧された後気液分離器9にて気相冷媒と液相冷
媒とに分離されて、このうち液相冷媒のみが蒸発
器15に導入されるから、蒸発器15での気相熱
媒による熱交換弊害がなく、蒸発器15における
熱交換率を飛躍的に向上させることができる。し
かもこの蒸発器15に導入される液状冷媒は、気
液分離器9から導出される一部の冷媒を利用して
過冷却されるので、蒸発器15に導入される冷媒
がia―iiのエンタルピを持つことになり、蒸発
器15での熱交換に際して従来の過冷却されない
冷媒を導入する蒸発器に比べて、より多くの熱
(冷媒1Kg当り(ia―ii)kalの熱を奪うことが
できるものであり(ia―ii)>(ia′―id′)で
ある。〔第2図及び第5図参照〕)を奪うことがで
き、結果として冷凍能力が増すことになる。更
に、この気液分離器15を冷却する冷媒は凝縮器
より吐出された高圧冷媒が低圧に減圧される際の
エネルギを利用する、即ち冷媒の高圧エネルギを
利用して冷媒の導出が行われる(エジエクタ効
果)ので、コンプレツサ1にこの冷却のために余
分な負担をかけることはなく、わざわざ能力の大
きいコンプレツサを利用する必要はない。更に、
蒸発器15に導入される過冷却された循環冷媒量
は、気液分離器9内において、気相冷媒がガス吐
出路12より吐出され、液状冷媒の一部は導出路
14から減圧機構13、熱交換器7へと導出され
て再びエジエクタ3に供給されるから、過冷却回
路Aを設けていない従来のものに比べて、、循環
量が減少することになる。従つて、液吐出路11
での流量に比例する配管抵抗を減少させることが
できるので、気液分離器9から蒸発器15に導出
される冷媒の液吐出路11での圧力損失を減少さ
せることができ、蒸発能力が向上して成績係数が
向上する。故に、この実施例のサイクルを、例え
ばセパレートエアコン等のように蒸発器15のみ
が室内ユニツトとして室内に置き、この他は室外
ユニツトとして室外に置いてその間を比較的長い
液吐出路11で連結するものにおいては、室内外
ユニツト間の圧力損失の減少に大きく貢献させる
ことができる。
Therefore, if the cycle has the above configuration, the condenser 2
The gas-liquid mixed refrigerant drawn out from the refrigerant is depressurized in the ejector 3 and then separated into a gas-phase refrigerant and a liquid-phase refrigerant in the gas-liquid separator 9, of which only the liquid-phase refrigerant is introduced into the evaporator 15. Therefore, there is no adverse effect of heat exchange due to the gas phase heat medium in the evaporator 15, and the heat exchange rate in the evaporator 15 can be dramatically improved. Moreover, the liquid refrigerant introduced into the evaporator 15 is supercooled using a part of the refrigerant drawn out from the gas-liquid separator 9, so that the refrigerant introduced into the evaporator 15 is i a - i i During heat exchange in the evaporator 15, more heat ((i a −i (i a − i i ) > (i a ′ − i d ′) [see Figures 2 and 5]), and as a result, the refrigeration capacity increases. It turns out. Furthermore, the refrigerant that cools the gas-liquid separator 15 uses the energy when the high-pressure refrigerant discharged from the condenser is reduced to a low pressure, that is, the refrigerant is extracted using the high-pressure energy of the refrigerant ( (ejector effect), no extra burden is placed on the compressor 1 for this cooling, and there is no need to take the trouble to use a compressor with a large capacity. Furthermore,
The amount of supercooled circulating refrigerant introduced into the evaporator 15 is determined by the gas-phase refrigerant being discharged from the gas discharge passage 12 in the gas-liquid separator 9, and a portion of the liquid refrigerant being discharged from the depressurization mechanism 13 through the discharge passage 14. Since it is led out to the heat exchanger 7 and supplied to the ejector 3 again, the amount of circulation is reduced compared to the conventional system in which the subcooling circuit A is not provided. Therefore, the liquid discharge path 11
Since the piping resistance proportional to the flow rate can be reduced, the pressure loss in the liquid discharge path 11 of the refrigerant led from the gas-liquid separator 9 to the evaporator 15 can be reduced, and the evaporation capacity can be improved. and improve the coefficient of performance. Therefore, in the cycle of this embodiment, for example, as in a separate air conditioner, only the evaporator 15 is placed indoors as an indoor unit, and the rest are placed outdoors as an outdoor unit, and they are connected by a relatively long liquid discharge path 11. This can greatly contribute to reducing pressure loss between indoor and outdoor units.

<効 果> 以上本発明によれば、コンプレツサ,凝縮器,
蒸発器を順次接続して成る冷凍サイクルにおいて
凝縮器と蒸発器との間に、流入側に凝縮器が接続
されたエジエクタと、このエジエクタの吐出側に
接続された気液分離器と、この気液分離器内の気
相冷媒をコンプレツサ流入側に導入するガス吐出
路と、上記気液分離器内の液状冷媒を上記蒸発器
に導入する液吐出路と、上記気液分離器内の液状
冷媒の一部を導出する導出路と、この導出路の吐
出側に接続された減圧機構と、この減圧機構の吐
出側に接続され気液分離器内の液状冷媒と熱交換
すべく該分離器内に配設された熱交換器と、この
熱交換器から吐出された冷媒を上記エジエクタに
再導入する帰還路と、から成る気液分離過冷却回
路を設けたので、凝縮器から吐出される冷媒を減
圧すると共に気液分離して液状冷媒のみを過冷却
した状態で蒸発器の導入することができる。
<Effects> According to the present invention, the compressor, condenser,
In a refrigeration cycle in which evaporators are connected in sequence, an ejector with a condenser connected to the inflow side, a gas-liquid separator connected to the discharge side of this ejector, and a gas-liquid separator connected to the discharge side of this ejector are installed between the condenser and the evaporator. a gas discharge passage for introducing the gas phase refrigerant in the liquid separator to the compressor inlet side; a liquid discharge passage for introducing the liquid refrigerant in the gas-liquid separator to the evaporator; and a liquid refrigerant in the gas-liquid separator. a depressurization mechanism connected to the discharge side of the depressurization mechanism, and a depressurization mechanism connected to the discharge side of the depressurization mechanism to conduct heat exchange with the liquid refrigerant in the gas-liquid separator. A gas-liquid separation supercooling circuit is provided, which consists of a heat exchanger disposed in the heat exchanger and a return path for reintroducing the refrigerant discharged from the heat exchanger to the ejector, so that the refrigerant discharged from the condenser is By reducing the pressure of the refrigerant and separating the refrigerant into gas and liquid, only the liquid refrigerant can be introduced into the evaporator in a supercooled state.

従つて、蒸発器では全くフラツシユガスが存在
しないから、蒸発器での熱交換率が増すと共に、
蒸発器に導入される冷媒が過冷却されているから
過冷却されていない飽和領域内にある冷媒を蒸発
器に導入する従来のサイクルに比べてより多くの
熱を大気より奪うことができ、その結果上記熱交
換率の向上とも相俟つて蒸発器での冷凍能力を飛
躍的に向上させることができる。しかも、上記冷
媒の過冷却に際しては、冷媒の高圧エネルギを利
用して気液分離器内の冷媒が導出され、この導出
された冷媒が更に減圧されることによつてより低
温化して気液分離器9内の冷媒を過冷却するの
で、過冷却回路を回路中に介装してもコンプレツ
サーに余分な負担をかけることがない。
Therefore, since there is no flash gas in the evaporator, the heat exchange rate in the evaporator increases, and
Because the refrigerant introduced into the evaporator is supercooled, more heat can be taken from the atmosphere than in the conventional cycle in which refrigerant that is not supercooled and is in the saturated region is introduced into the evaporator. As a result, in conjunction with the improvement in the heat exchange rate described above, the refrigerating capacity of the evaporator can be dramatically improved. Moreover, when supercooling the refrigerant, the refrigerant in the gas-liquid separator is drawn out using the high-pressure energy of the refrigerant, and the drawn-out refrigerant is further reduced in pressure to lower its temperature and separated into gas and liquid. Since the refrigerant in the container 9 is subcooled, no extra burden is placed on the compressor even if a subcooling circuit is inserted in the circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気圧縮機の従来の冷凍サイクルの概
略図、第2図は第1図の冷凍サイクルのモルエ
ル、線図、第3図は本発明に係る冷凍サイクルの
概略図、第4図は同冷凍サイクルに備えられる噴
流装置の詳細図、第5図は第3図に示した冷凍サ
イクルのモリエル、線図である。 1:コンプレツサ、2:凝縮器、3:噴流装
置、4:吸入口、5:ノズル、6:吐出口、7:
熱交換器、9:気液分離器。
Fig. 1 is a schematic diagram of a conventional refrigeration cycle for a vapor compressor, Fig. 2 is a Moller diagram of the refrigeration cycle of Fig. 1, Fig. 3 is a schematic diagram of a refrigeration cycle according to the present invention, and Fig. 4 is a schematic diagram of a refrigeration cycle according to the present invention. FIG. 5 is a detailed view of the jet device provided in the refrigeration cycle, and is a Mollier diagram of the refrigeration cycle shown in FIG. 3. 1: Compressor, 2: Condenser, 3: Jet device, 4: Suction port, 5: Nozzle, 6: Discharge port, 7:
Heat exchanger, 9: gas-liquid separator.

Claims (1)

【特許請求の範囲】 1 コンプレツサ,凝縮器,蒸発器を順次接続し
て成る冷凍サイクルにおいて、 凝縮器と蒸発器との間に、 流入側に凝縮器が接続されたエジエクタと、こ
のエジエクタの吐出側に接続された気液分離器
と、この気液分離器内の気相冷媒をコンプレツサ
流入側に導入するガス吐出路と、上記気液分離器
内の液状冷媒を上記蒸発器に導入する液吐出路
と、上記気液分離器内の液状冷媒の一部を導出す
る導出路と、この導出路の吐出側に接続された減
圧機構と、この減圧機構の吐出側に接続され気液
分離器内の液状冷媒と熱交換すべく該分離器内に
配設された熱交換器と、この熱交換器から吐出さ
れた冷媒を上記エジエクタに再導入する帰還路
と、から成る気液分離過冷却回路を設け、 この気液分離過冷却回路によつて、凝縮器から
吐出される冷媒を減圧すると共に気液分離して液
状冷媒のみを過冷却した状態で蒸発器の導入する
ことを特徴とする冷凍サイクル。
[Scope of Claims] 1. In a refrigeration cycle in which a compressor, a condenser, and an evaporator are connected in sequence, an ejector having a condenser connected to the inflow side between the condenser and the evaporator, and a discharge of this ejector. a gas-liquid separator connected to the gas-liquid separator, a gas discharge passage for introducing the gas-phase refrigerant in the gas-liquid separator into the compressor inlet side, and a gas-liquid separator for introducing the liquid refrigerant in the gas-liquid separator into the evaporator. a discharge passage, a discharge passage for discharging a part of the liquid refrigerant in the gas-liquid separator, a pressure reduction mechanism connected to the discharge side of the discharge passage, and a gas-liquid separator connected to the discharge side of the pressure reduction mechanism. A gas-liquid separation supercooling system comprising a heat exchanger disposed within the separator to exchange heat with the liquid refrigerant inside the separator, and a return path for reintroducing the refrigerant discharged from the heat exchanger into the ejector. A circuit is provided, and this gas-liquid separation supercooling circuit reduces the pressure of the refrigerant discharged from the condenser and separates the refrigerant into gas and liquid, so that only the liquid refrigerant is introduced into the evaporator in a supercooled state. Refrigeration cycle.
JP8577680A 1980-06-23 1980-06-23 Refrigeration cycle Granted JPS5712262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8577680A JPS5712262A (en) 1980-06-23 1980-06-23 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8577680A JPS5712262A (en) 1980-06-23 1980-06-23 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5712262A JPS5712262A (en) 1982-01-22
JPS6152902B2 true JPS6152902B2 (en) 1986-11-15

Family

ID=13868276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8577680A Granted JPS5712262A (en) 1980-06-23 1980-06-23 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5712262A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138577A (en) * 2018-02-13 2019-08-22 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JPS5712262A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
EP2543941B1 (en) Chiller
JP2825432B2 (en) Cooling and heating air conditioner
JPH11304293A (en) Refrigerant condenser
CN1170860A (en) Dual inlet oil separator for chiller
WO2019134492A1 (en) Circulation system for air conditioner, air conditioner, and air conditioner control method
CN210980080U (en) Constant temperature and humidity air conditioning unit
US20130061628A1 (en) Chiller
KR101385194B1 (en) A Condenser
CN110779081A (en) Constant-temperature constant-humidity air conditioning unit with rapid dehumidification structure and working method thereof
JP2000304380A (en) Heat exchanger
JPS6152902B2 (en)
CN114152007A (en) Separation and purification device, refrigeration assembly, system, purification method and storage medium
JPS6022250B2 (en) vapor compression refrigeration equipment
JPS5913571Y2 (en) air conditioner
CA3105808A1 (en) Cooling system with flooded low side heat exchangers
JPH04324072A (en) Refrigeration circuit for non-azeotropic refrigerant
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
JPH09145167A (en) Air conditioner
JP2002364936A (en) Refrigeration unit
JP2004232986A (en) Refrigerator
JP3256856B2 (en) Refrigeration system
CN216790594U (en) Separation and purification device, refrigeration assembly and refrigeration system
JPS5913572Y2 (en) Air-cooled heat pump equipment
CN219415431U (en) Be used for industry CO 2 Cold source system of liquefying device