JPS5913571Y2 - air conditioner - Google Patents

air conditioner

Info

Publication number
JPS5913571Y2
JPS5913571Y2 JP10761078U JP10761078U JPS5913571Y2 JP S5913571 Y2 JPS5913571 Y2 JP S5913571Y2 JP 10761078 U JP10761078 U JP 10761078U JP 10761078 U JP10761078 U JP 10761078U JP S5913571 Y2 JPS5913571 Y2 JP S5913571Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
ejector
refrigerant
gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10761078U
Other languages
Japanese (ja)
Other versions
JPS5526275U (en
Inventor
正毅 池内
恒雄 弓倉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP10761078U priority Critical patent/JPS5913571Y2/en
Publication of JPS5526275U publication Critical patent/JPS5526275U/ja
Application granted granted Critical
Publication of JPS5913571Y2 publication Critical patent/JPS5913571Y2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0015Ejectors not being used as compression device using two or more ejectors

Description

【考案の詳細な説明】 この考案はエゼクタを使用する高効率の空気調和装置に
関するものである。
[Detailed Description of the Invention] This invention relates to a highly efficient air conditioner using an ejector.

第1図は従来の空気調和装置を示す冷媒回路図で、1は
圧縮機、2は第1熱交換器(図では冷媒の凝縮器として
用いられている)、3はエゼクタ、4は第2熱交換器、
5は気液分離器であり、これらは環状に接続されて冷凍
サイクルを構成している。
Figure 1 is a refrigerant circuit diagram showing a conventional air conditioner, where 1 is a compressor, 2 is a first heat exchanger (used as a refrigerant condenser in the figure), 3 is an ejector, and 4 is a second heat exchanger. Heat exchanger,
5 is a gas-liquid separator, which are connected in a ring to form a refrigeration cycle.

また上記気液分離器5で分離された冷媒液は、第1減圧
装置6(例えば毛細管)を経由して第3熱交換器7を通
り、上記エゼクタ3の吸引側に吸い込まれる配管となっ
ている。
Further, the refrigerant liquid separated by the gas-liquid separator 5 passes through a first pressure reducing device 6 (for example, a capillary tube), passes through a third heat exchanger 7, and becomes a pipe to be sucked into the suction side of the ejector 3. There is.

第2図は第1図における冷凍サイクルの動作点をモリエ
ル線図上に描いたもので、第1図の冷凍サイクル上のa
−gの冷媒の状態が第2図のモリエル線図上のa−gに
対応するものである。
Figure 2 shows the operating points of the refrigeration cycle in Figure 1 drawn on a Mollier diagram.
The state of the refrigerant at -g corresponds to a-g on the Mollier diagram in FIG.

以上のような構成を有する従来装置においては、圧縮機
1で圧縮され高温、高圧となった冷媒ガス(状態点b)
は第1熱交換器2で冷却され凝縮液化された後(状態点
C)、エゼクタ3に入る。
In the conventional device having the above configuration, the refrigerant gas (state point b) compressed by the compressor 1 and becomes high temperature and high pressure.
After being cooled and condensed and liquefied in the first heat exchanger 2 (state point C), it enters the ejector 3.

ここで減圧され低圧圧力psとなり、第1熱交換器2か
ら来た冷媒は状態点Cからd//に移るが、このときエ
ゼクタ3の吸引側から第3熱交換器7で蒸発しガスとな
った状態点d′のガス冷媒を吸引するため、状態点d′
とd//及び第1熱交換器2からの冷媒流量と第3熱交
換器7からの冷媒流量により決まってくる状態点dに至
り、この後第2熱交換器4で蒸発し状態点eに至る。
Here, the pressure is reduced to a low pressure ps, and the refrigerant coming from the first heat exchanger 2 moves from state point C to d//, but at this time, it evaporates from the suction side of the ejector 3 in the third heat exchanger 7 and becomes gas. In order to suck the gas refrigerant at the state point d', the state point d'
and d // and reaches a state point d determined by the refrigerant flow rate from the first heat exchanger 2 and the refrigerant flow rate from the third heat exchanger 7, after which it evaporates in the second heat exchanger 4 and reaches a state point e. leading to.

冷媒は第2熱交換器4を出た後、気液分離器5で状態点
fの液冷媒と状態点eのガス冷媒と分離され、エゼクタ
3の吸引効果により流れる状態点fの液冷媒は、第1減
圧装置6を通り減圧されて状態点gとなり、第3熱交換
器7へ行く。
After the refrigerant leaves the second heat exchanger 4, it is separated into the liquid refrigerant at the state point f and the gas refrigerant at the state point e in the gas-liquid separator 5, and the liquid refrigerant at the state point f flowing due to the suction effect of the ejector 3 is , passes through the first pressure reducing device 6, is depressurized to state point g, and goes to the third heat exchanger 7.

ここで第2熱交換器4あるいは圧縮機1の吸い込み圧力
psより低い圧力ps/で蒸発し、状態点d′で示され
る飽和ガスとなってエゼクタ3に吸引される。
Here, it is evaporated at a pressure ps/ lower than the suction pressure ps of the second heat exchanger 4 or the compressor 1, and is sucked into the ejector 3 as a saturated gas indicated by state point d'.

このような冷凍サイクルでは例えばヒートポンプとして
使用するときは、第3熱交換器7の蒸発圧力pS′を圧
縮機1の吸い込み圧力psより低くすることができ、低
い熱源温度(例えば外気)からも熱を汲み上げることが
できる。
In such a refrigeration cycle, when used as a heat pump, for example, the evaporation pressure pS' of the third heat exchanger 7 can be lower than the suction pressure ps of the compressor 1, and heat can be extracted even from a low heat source temperature (for example, outside air). can be pumped up.

また冷房用として用いるときにも、第3熱交換器7でよ
り低い蒸発圧力pS′で蒸発させることができるため、
例えば水、空気などと冷媒温度差を大きくとることがで
き、第2熱交換器4と第3熱交換器7とを合わせた蒸発
器としては小さくできるなどの効果をねらったものであ
った。
Also, when used for cooling, the third heat exchanger 7 can evaporate at a lower evaporation pressure pS'.
For example, the objective was to have the effect that a large temperature difference between the refrigerant and water, air, etc. can be achieved, and that the evaporator, which is a combination of the second heat exchanger 4 and the third heat exchanger 7, can be made smaller.

しかるに上記のような構成においては、冷房のみか若し
くは暖房のみにしか適用できないという欠点があった。
However, the above configuration has the disadvantage that it can only be used for cooling or heating.

この考案は、このような点に鑑みてなされたもので、冷
暖房運転時ともに効率のよい空気調和装置を提供しよう
とするものである。
This invention was made in view of these points, and aims to provide an air conditioner that is efficient in both cooling and heating operations.

第3図はこの考案の一実施例を示すもので、1゜2.4
〜7は上記第1図に示す従来装置と全く同一のものであ
る。
Fig. 3 shows an example of this invention.
7 to 7 are exactly the same as the conventional device shown in FIG. 1 above.

3a、3bは夫々第1及び第2のエゼクタ、8は冷暖房
運転切換えのための四方切換弁、9a、9bは第1及び
第2の逆止弁で、エゼクタ3 a 、3 bのノズル入
口配管部に取り付けられている。
3a and 3b are first and second ejectors, 8 is a four-way switching valve for switching between cooling and heating operations, 9a and 9b are first and second check valves, and nozzle inlet piping of ejectors 3a and 3b. attached to the section.

10.11は冷媒の流れの方向を切換えるための第1及
び第2の開閉弁、12は第1熱交換器2と一対をなす第
4熱交換器である。
Reference numerals 10 and 11 designate first and second on-off valves for switching the flow direction of the refrigerant, and 12 represents a fourth heat exchanger paired with the first heat exchanger 2.

これらの構成機器において、気液分離器5の液部から出
た冷媒は、第1減圧装置6を通った後2方向に分かれ、
一方は開閉弁11を出た後第4熱交換器12に行く冷媒
と逆止弁9bを経て第2エゼクタ3bのノズル入口とに
行く冷媒となり、他方は開閉弁10を出た後第3熱交換
器7に行く冷媒と逆止弁9aを経て第1エゼクタ3aの
ノズル入口に行く冷媒となるように回路が構成されてい
る。
In these components, the refrigerant coming out of the liquid part of the gas-liquid separator 5 is divided into two directions after passing through the first pressure reducing device 6.
One is the refrigerant that goes to the fourth heat exchanger 12 after exiting the on-off valve 11, and the refrigerant that goes to the nozzle inlet of the second ejector 3b via the check valve 9b, and the other becomes the third heat exchanger after exiting the on-off valve 10. The circuit is configured such that the refrigerant goes to the exchanger 7 and the refrigerant goes to the nozzle inlet of the first ejector 3a via the check valve 9a.

また第1エゼクタ3aの吐出口は第1熱交換器2と、吸
引口は第4熱交換器12と夫々配管で結ばれており、第
2エゼクタ3bの吐出口は第2熱交換器4と、吸引口は
第3熱交換器7と夫々配管で結ばれている。
The discharge port of the first ejector 3a is connected to the first heat exchanger 2, the suction port is connected to the fourth heat exchanger 12, respectively, and the discharge port of the second ejector 3b is connected to the second heat exchanger 4. , the suction ports are connected to the third heat exchanger 7 through piping, respectively.

以上のように構成された空気調和装置においては、例え
ば一対をなしている第1熱交換器2と第4熱交換器12
を室内側熱交換器とし、第2熱交換器4と第3熱交換器
7とを室外側熱交換器として使用するときは、暖房運転
時は第3図に示す冷媒回路となり、開閉弁10は開、開
閉弁11は閉となっている。
In the air conditioner configured as described above, for example, a pair of first heat exchanger 2 and fourth heat exchanger 12 are used.
When used as an indoor heat exchanger and the second heat exchanger 4 and the third heat exchanger 7 as outdoor heat exchangers, the refrigerant circuit becomes as shown in FIG. 3 during heating operation, and the on-off valve 10 is open, and the on-off valve 11 is closed.

このとき、圧縮機1で圧縮され、高温、高圧となった冷
媒ガスは、第1熱交換器2に行き、ここで放熱し一部凝
縮した後、第1エゼクタ3aの吐出口から吸引口に流れ
、第4熱交換器12に行き、ここでさらに放熱して凝縮
し、液化した後で逆止弁9bを通り第2エゼクタ3bの
ノズル部に入り、ここで噴出し減圧されて第2熱交換器
4に行く。
At this time, the refrigerant gas that has been compressed by the compressor 1 and has become high temperature and high pressure goes to the first heat exchanger 2, where it radiates heat and is partially condensed, and then flows from the discharge port of the first ejector 3a to the suction port. The flow goes to the fourth heat exchanger 12, where it further radiates heat and condenses, and after being liquefied, it passes through the check valve 9b and enters the nozzle part of the second ejector 3b, where it is ejected and depressurized to produce the second heat. Go to exchange 4.

このときに噴出された気液混合の冷媒は第3熱交換器7
で蒸発したガスを第2エゼクタ3bの吸引口から吸引し
、−緒に第2熱交換器4に行き、ここで一部蒸発し、一
部は液のままで明方切換弁8を通り気液分離器5に行く
The gas-liquid mixed refrigerant ejected at this time is transferred to the third heat exchanger 7.
The evaporated gas is sucked from the suction port of the second ejector 3b and goes to the second heat exchanger 4, where it is partially evaporated, and the remaining part passes through the light switching valve 8 as a liquid and is aired. Go to liquid separator 5.

この気液分離器5で冷媒ガス(即ち第2熱交換器4と第
3熱交換器7で蒸発した冷媒)と液に分離され、ガスは
圧縮機1に吸い込まれ、液は液出口配管から第1減圧装
置6を通り、第2エゼクタ3bで吸引される圧力まで減
圧された後、開閉弁10から第3熱交換器7に行き、こ
こで蒸発してガスとなり第2エゼクタ3bに吸引される
The gas-liquid separator 5 separates the refrigerant gas (that is, the refrigerant evaporated in the second heat exchanger 4 and the third heat exchanger 7) into a liquid, the gas is sucked into the compressor 1, and the liquid is passed from the liquid outlet pipe. After passing through the first pressure reducing device 6 and being reduced to the pressure that is sucked by the second ejector 3b, it passes through the on-off valve 10 to the third heat exchanger 7, where it evaporates and becomes gas, which is sucked into the second ejector 3b. Ru.

このときは第1エゼクタ3aは単なる冷媒通路を構成す
るのみであり、第1熱交換器2と第4熱交換器12との
放熱で室内が暖房され、室外側では第3熱交換器7で圧
縮機1の吸い込み圧より低い圧力で例えば外気から熱を
汲み上げることができ、効率のよい暖房運転を行なうこ
とができる。
At this time, the first ejector 3a merely constitutes a refrigerant passage, and the indoor space is heated by heat radiation from the first heat exchanger 2 and the fourth heat exchanger 12, and the third heat exchanger 7 heats the room outside. Heat can be pumped up from, for example, outside air at a pressure lower than the suction pressure of the compressor 1, and efficient heating operation can be performed.

一方冷房運転時は第4図に示す配管系統になっており、
開閉弁10は閉と、開閉弁11は開となっている。
On the other hand, during cooling operation, the piping system is as shown in Figure 4.
The on-off valve 10 is closed, and the on-off valve 11 is open.

このとき圧縮機1で圧縮され高温、高圧となった冷媒ガ
スは四方切換弁8を通り、室外側にある第2熱交換器4
に行き、ここで放熱し一部凝縮した後、さらに第2エゼ
クタ3bの吐出口から吸引口を経由して第3熱交換器7
に行き、さらに放熱して凝縮液化した後、逆止弁9aを
経由して第1エゼクタ3aに入り、ノズル口から噴出し
て低圧となる。
At this time, the refrigerant gas compressed by the compressor 1 to a high temperature and high pressure passes through the four-way switching valve 8 and passes through the second heat exchanger 4 located on the outdoor side.
After the heat is radiated and partially condensed, it is further transferred from the discharge port of the second ejector 3b to the third heat exchanger 7 via the suction port.
After further dissipating heat and condensing and liquefying, it enters the first ejector 3a via the check valve 9a, and is ejected from the nozzle opening to become low pressure.

このときノズル口から噴出した気液混合の冷媒は第4熱
交換器12で蒸発した冷媒ガスを第2エゼクタ3bで吸
引して室内側の第1熱交換器2に行き、一部蒸発して気
液混合のまま四方切換弁8から気液分離器5に行く。
At this time, the gas-liquid mixed refrigerant ejected from the nozzle port evaporates in the fourth heat exchanger 12, sucks the refrigerant gas in the second ejector 3b, goes to the first heat exchanger 2 on the indoor side, and partially evaporates. The mixture of gas and liquid goes from the four-way switching valve 8 to the gas-liquid separator 5.

ここで冷媒はガスと液とに分離され、ガス冷媒(第1熱
交換器2と第4熱交換器12とで蒸発した冷媒)は圧縮
機1に戻り、液冷媒は第1減圧装置6を通り、第2エゼ
クタ3bの吸引圧力まで減圧された後開閉弁11から第
4熱交換器12に行き、ここで蒸発しガスとなって第1
エゼクタ3aに吸引される。
Here, the refrigerant is separated into gas and liquid, the gas refrigerant (the refrigerant evaporated in the first heat exchanger 2 and the fourth heat exchanger 12) returns to the compressor 1, and the liquid refrigerant passes through the first pressure reducing device 6. After the pressure is reduced to the suction pressure of the second ejector 3b, it goes from the on-off valve 11 to the fourth heat exchanger 12, where it evaporates and becomes a gas.
It is sucked into the ejector 3a.

(このとき開閉弁11と逆止弁9bの間は低圧となって
おり、逆止弁9bと第2エゼクタ3bの間は高圧となっ
ているため、冷媒は開閉弁11から逆止弁9bを通って
第2エゼクタ3bに流れることはない。
(At this time, the pressure between the on-off valve 11 and the check valve 9b is low, and the pressure between the check valve 9b and the second ejector 3b is high, so the refrigerant flows from the on-off valve 11 to the check valve 9b. It does not flow through to the second ejector 3b.

)このとき第2エゼクタ3bは単なる冷媒の流路を構成
するのみであり、第1及び第4の熱交換器2,12内で
冷媒の蒸発により室内が冷房されることになる。
) At this time, the second ejector 3b merely constitutes a flow path for the refrigerant, and the interior of the room is cooled by evaporation of the refrigerant within the first and fourth heat exchangers 2 and 12.

また第4熱交換器12では、圧縮機1の吸い込み圧力よ
り低い圧力で冷媒が蒸発することになり、例えばこの分
だけ逆に圧縮機1の吸い込み圧力を高く設定できるなど
、効率のよい運転を行なうことができる。
In addition, in the fourth heat exchanger 12, the refrigerant evaporates at a pressure lower than the suction pressure of the compressor 1. For example, the suction pressure of the compressor 1 can be set higher by this amount, which allows efficient operation. can be done.

なお上記実施例においては、第1.第2のエゼクタ3
a 、3 bの入口はいずれも過冷却された冷媒液であ
るが、各エゼクタの吸引側から吸引する冷媒ガス量を増
加させ効率上昇をはかるため、第1゜第2のエゼクタ3
a、3bと逆止弁9a、9bとの間に夫々減圧装置(例
えば毛細管)を入れ、各エゼクタ入口での冷媒の状態を
気液混合とすることも考えられる。
Note that in the above embodiment, the first. Second ejector 3
Both the inlets of a and 3b are supercooled refrigerant liquid, but in order to increase the amount of refrigerant gas sucked from the suction side of each ejector and improve efficiency,
It is also conceivable to insert a pressure reducing device (for example, a capillary tube) between each of the check valves 9a, 9b and the refrigerant at the inlet of each ejector to make the state of the refrigerant a gas-liquid mixture.

また第1熱交換器2と第4熱交換器12及び第2熱交換
器4と第3熱交換器7とは夫々一体形として組み込むこ
とも可能であり、このときこれらの熱交換器に第5図に
示す如く空気と熱交換を行なうプレートフィンチューブ
形の熱交換器13を用いれば、フィン14を共用するこ
とも考えられる。
Moreover, the first heat exchanger 2 and the fourth heat exchanger 12 and the second heat exchanger 4 and the third heat exchanger 7 can be integrated into each other, and in this case, the first heat exchanger 2 and the fourth heat exchanger 12 can be integrated into each other. If a plate-fin tube type heat exchanger 13 that exchanges heat with air is used as shown in FIG. 5, it is possible to share the fins 14.

さらにこのとき室外側におかれる第1熱交換器2と第4
熱交換器12においても、暖房時の場合と同様に、より
低い蒸発温度で冷媒が蒸発する第4熱交換器12を空気
出口側にもってくるのがよい。
Furthermore, at this time, the first heat exchanger 2 and the fourth heat exchanger placed on the outdoor side
Regarding the heat exchanger 12, it is preferable to place the fourth heat exchanger 12, in which the refrigerant evaporates at a lower evaporation temperature, on the air outlet side, as in the case of heating.

これらの配置関係については熱媒体が空気の場合の例を
上に述べたが、空気に限ることなく熱媒体として水など
を用いる場合についても、夫々第3、第4の熱交換器7
,12を第2.第1の熱交換器4゜2に対して熱媒体出
口側に設けるとよい。
Regarding these arrangement relationships, the example in which the heat medium is air has been described above, but the third and fourth heat exchangers 7,
, 12 as the second . It is preferable to provide it on the heat medium outlet side with respect to the first heat exchanger 4°2.

なお、第3図、第4図に示す冷凍サイクル中には、受液
器、アキュムレータ、ストレーナ、ドライヤ等は省略し
て描いているが、必要に応じこれらを含めた回路とする
こともできる。
Although the liquid receiver, accumulator, strainer, dryer, etc. are omitted in the refrigeration cycle shown in FIGS. 3 and 4, the circuit may include these if necessary.

以上のようにこの考案では、室内側、室外側ともに熱交
換器を2個に分け、また第1、第2のエゼクタを採用し
、これら熱交換器、エゼクタを弁を介して接続すること
により、冷暖房運転時共に効率のよい運転を行なうこと
ができるという効果がある。
As described above, in this invention, the heat exchanger is divided into two for both the indoor and outdoor sides, and the first and second ejectors are used, and these heat exchangers and ejectors are connected via a valve. This has the effect that efficient operation can be performed during both cooling and heating operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気調和装置の冷媒回路図、第2図は第
1図に示す冷凍サイクルの動作点をモリエル線図上に描
いた図、第3図はこの考案の一実施例を示す冷媒回路図
、第4図は第3図の冷暖を切換えたときの冷媒回路図、
第5図は室外側または室内側の熱交換器の一例を示す斜
視図である。 図中、1は圧縮機、2は第1の熱交換器、3 a 、3
bは第1、第2のエゼクタ、4は第2の熱交換器、5
は気液分離器、6は第1減圧装置、7は第3の熱交換器
、8は四方切換弁、9 a 、9 bは第1、第2の逆
止弁、10.11は第1、第2の開閉弁、12は第4の
熱交換器、14はフィンである。 なお図中同一符号は同一または相当する部分を示す。
Fig. 1 is a refrigerant circuit diagram of a conventional air conditioner, Fig. 2 is a drawing of the operating points of the refrigeration cycle shown in Fig. 1 on a Mollier diagram, and Fig. 3 shows an embodiment of this invention. Refrigerant circuit diagram, Figure 4 is a refrigerant circuit diagram when switching between cooling and heating in Figure 3,
FIG. 5 is a perspective view showing an example of an outdoor or indoor heat exchanger. In the figure, 1 is a compressor, 2 is a first heat exchanger, 3 a, 3
b is the first and second ejector, 4 is the second heat exchanger, 5
is a gas-liquid separator, 6 is a first pressure reducing device, 7 is a third heat exchanger, 8 is a four-way switching valve, 9 a and 9 b are first and second check valves, 10.11 is the first , a second on-off valve, 12 a fourth heat exchanger, and 14 a fin. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機と第1及び第2の熱交換器と気液分離器とを環状
に接続し、且つ四方切換弁により冷暖房切換え可能にし
た空気調和装置において、上記第2の熱交換器と一対に
構成される第3の熱交換器と、第1の熱交換器と一対に
構成される第4の熱交換器と、第1及び第2のエゼクタ
を備え、上記気液分離器の液出口部と第1の減圧装置(
例えば毛細管)の入口を結び、上記第1の減圧装置の出
口の一方は第1の開閉弁を経て、一つは第1の逆止弁か
ら第1のエゼクタのノズル入口と、今一つは上記第3の
熱交換器を経て第2のエゼクタの吸引部と結び、上記第
1の減圧装置の出口の他方は第2の開閉弁を経て、一つ
は第2の逆止弁から第2エゼクタのノズル入口と、今一
つは上記第4の熱交換器を経て、第1のエゼクタの吸引
部と結び、上記第1エゼクタの吐出口と第1の熱交換器
と、上記第2エゼクタの吐出口と第2の熱交換器とを夫
々結んだことを特徴とする空気調和装置。
An air conditioner in which a compressor, first and second heat exchangers, and a gas-liquid separator are connected in an annular manner, and in which cooling and heating can be switched by a four-way switching valve, configured as a pair with the second heat exchanger. a fourth heat exchanger configured as a pair with the first heat exchanger, and first and second ejectors, and a liquid outlet portion of the gas-liquid separator. The first pressure reducing device (
For example, the inlet of the first ejector is connected to the inlet of the first ejector, one of the outlets of the first pressure reducing device passes through the first on-off valve, one is connected to the nozzle inlet of the first ejector from the first check valve, and the other is connected to the nozzle inlet of the first ejector. The other outlet of the first pressure reducing device is connected to the suction part of the second ejector through the heat exchanger No. 3, and the other outlet of the first pressure reducing device is connected to the suction part of the second ejector through the second check valve. The nozzle inlet and the other are connected to the suction part of the first ejector via the fourth heat exchanger, and the discharge port of the first ejector, the first heat exchanger, and the discharge port of the second ejector. An air conditioner characterized in that the air conditioner is connected to a second heat exchanger.
JP10761078U 1978-08-05 1978-08-05 air conditioner Expired JPS5913571Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761078U JPS5913571Y2 (en) 1978-08-05 1978-08-05 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761078U JPS5913571Y2 (en) 1978-08-05 1978-08-05 air conditioner

Publications (2)

Publication Number Publication Date
JPS5526275U JPS5526275U (en) 1980-02-20
JPS5913571Y2 true JPS5913571Y2 (en) 1984-04-21

Family

ID=29051884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761078U Expired JPS5913571Y2 (en) 1978-08-05 1978-08-05 air conditioner

Country Status (1)

Country Link
JP (1) JPS5913571Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236959A3 (en) * 2001-03-01 2005-02-23 Denso Corporation Ejector cycle system
CN109579343A (en) * 2018-10-29 2019-04-05 青岛海尔(胶州)空调器有限公司 Air conditioner and its control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281338A (en) * 2004-02-18 2008-11-20 Denso Corp Ejector cycle
JP4609230B2 (en) * 2005-08-04 2011-01-12 株式会社デンソー Ejector type cycle
JP4522962B2 (en) * 2006-03-24 2010-08-11 三菱電機株式会社 Refrigeration cycle equipment
CN110748937B (en) * 2019-10-25 2021-02-02 河南理工大学 Compressor double-pressure working condition large-temperature-difference heat taking electric drive heat pump unit and working method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236959A3 (en) * 2001-03-01 2005-02-23 Denso Corporation Ejector cycle system
EP2348266A2 (en) 2001-03-01 2011-07-27 Denso Corporation Ejector cycle system
CN109579343A (en) * 2018-10-29 2019-04-05 青岛海尔(胶州)空调器有限公司 Air conditioner and its control method

Also Published As

Publication number Publication date
JPS5526275U (en) 1980-02-20

Similar Documents

Publication Publication Date Title
JP4604909B2 (en) Ejector type cycle
TW200921030A (en) Economized vapor compression circuit
US7448229B2 (en) Heat exchanger of air conditioner
JP4595654B2 (en) Refrigeration cycle equipment
US11649974B2 (en) Pre-cooling device dehumidifier
CN106885361B (en) Outdoor heat exchanger and air-conditioning device comprising the outdoor heat exchanger
WO2020098354A1 (en) Cascade air conditioner system
WO2022110898A1 (en) Fresh air conditioning system and heat recovery method thereof
JPS5913571Y2 (en) air conditioner
JP5641004B2 (en) Refrigeration cycle equipment
KR102039488B1 (en) Air conditioner
JP2010236707A (en) Heat exchanger
JPS5913570Y2 (en) air conditioner
JPH05240531A (en) Room cooling/heating hot water supplying apparatus
JP3114280B2 (en) Evaporator
CN210772889U (en) Heat exchanger system and water chilling unit
KR102136749B1 (en) An air conditioner
JPH02161263A (en) Air conditioner
JPH05157401A (en) Heat exchanger
JP5263222B2 (en) Refrigeration cycle equipment
KR100911789B1 (en) Air conditioner for dehumidification
KR101419827B1 (en) All In One Water Source Heat pump
KR20040063265A (en) Air-conditioner
JPS583011Y2 (en) heat pump equipment
JPS5842843Y2 (en) air conditioner