JPS6152493B2 - - Google Patents

Info

Publication number
JPS6152493B2
JPS6152493B2 JP53020062A JP2006278A JPS6152493B2 JP S6152493 B2 JPS6152493 B2 JP S6152493B2 JP 53020062 A JP53020062 A JP 53020062A JP 2006278 A JP2006278 A JP 2006278A JP S6152493 B2 JPS6152493 B2 JP S6152493B2
Authority
JP
Japan
Prior art keywords
carry
input
output
calculation
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53020062A
Other languages
Japanese (ja)
Other versions
JPS54112134A (en
Inventor
Takashi Sakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006278A priority Critical patent/JPS54112134A/en
Publication of JPS54112134A publication Critical patent/JPS54112134A/en
Publication of JPS6152493B2 publication Critical patent/JPS6152493B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明はリツプルキヤリ方式の演算論理回路に
関するもので、論理和、論理積、及び排他的論理
和等の論理演算を実行する際、加算時に生ずるリ
ツプルキヤリを利用し、演算論理回路を簡単化す
ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ripple-carry type arithmetic logic circuit, in which when performing logical operations such as OR, logical product, and exclusive OR, the ripple carry generated during addition is used to The purpose is to simplify the circuit.

第1図は直並列演算回路に例をとり、その一般
的な構成ブロツク図を示したものである。各ユニ
ツトセル1は、演算入力A,B、演算出力、キ
ヤリ入力Ci、キヤリ出力C、及び演算モード
を指定する演算制御入力の各入出力を有する。こ
のユニツトセル1は一般的には、2進加算
(ADD)、論理積(AND)、論理和(R)、排他
的論理和(EXR)等の演算を実行する。
FIG. 1 shows a general configuration block diagram of a series-parallel arithmetic circuit as an example. Each unit cell 1 has inputs and outputs including calculation inputs A and B, a calculation output, a carry input Ci, a carry output C, and a calculation control input for specifying a calculation mode. This unit cell 1 generally performs operations such as binary addition (ADD), logical product (AND), logical sum (R), and exclusive logical sum (EXR).

第2図は、ADDとANDを実行するユニツトセ
ル1の従来例を示し、同aは構成図、同bは動作
を示す真理値表である。AND機能の際は、ユニ
ツトセルのキヤリ入力は、0あるいは1でもかま
わない。但し、演算入出力は全て正論理としてい
る。
FIG. 2 shows a conventional example of a unit cell 1 that performs ADD and AND. FIG. 2A is a configuration diagram and FIG. 2B is a truth table showing the operation. When using the AND function, the unit cell's carry input may be 0 or 1. However, all calculation inputs and outputs are positive logic.

演算制御入力CANDが“0”の時、演算出力0
は加算結果11が出力され、CANDが“1”の時
演算出力0は、AND結果12が出力される。ま
たキヤリ出力0は、AND結果12が出力され
る。またキヤリ出力Cは、演算入力A,B及び
キヤリ入力Ciの加算結果、キヤリが生ずる場合
“1”が出力される。
When the calculation control input CAND is “0”, the calculation output is 0.
, the addition result 11 is output, and when CAND is "1", the calculation output is 0, and the AND result 12 is output. Furthermore, if the carry output is 0, the AND result 12 is output. Further, as a carry output C, "1" is output when a carry occurs as a result of addition of calculation inputs A and B and carry input Ci.

本発明は論理演算時にもリツプルキヤリを利用
することにより、従来に比べて大幅に回路構成を
簡単にすることを可能としたもので、以下にその
一実施例を図面に基いて説明する。
The present invention makes it possible to greatly simplify the circuit configuration compared to the conventional one by utilizing ripple carry even during logical operations.One embodiment of the present invention will be described below with reference to the drawings.

第3図aはADDおよびAND演算を行なうユニ
ツトセルの構成例で、同図bはこのユニツトセル
の真理値表である。このユニツトセルの動作は、 (1) ADD演算時 演算制御入力CANDを“0”にする。その結果
演算出力は、演算入力A,B及びキヤリ入力
Ciの加算結果が出力され、キヤリ出力Cは、
A,B,Ciの加算キヤリが出力されることは明
らかである。
FIG. 3a shows an example of the configuration of a unit cell that performs ADD and AND operations, and FIG. 3b shows a truth table of this unit cell. The operation of this unit cell is as follows: (1) During ADD calculation Set the calculation control input CAND to “0”. As a result, the calculation output is the calculation input A, B and the carry input.
The addition result of Ci is output, and the carry output C is
It is clear that the added carries of A, B, and Ci are output.

(2) AND演算 演算制御入力CANDを“1”にする。かつ第1
図における最下位演算ユニツトセルに“1”を入
力する。よつて第3図において、演算出力は演
算入力A,BのANDが、かつ、キヤリ出力C
には“1”が出力される。
(2) AND operation Set the operation control input CAND to “1”. and the first
Input "1" to the lowest calculation unit cell in the figure. Therefore, in Fig. 3, the calculation output is the AND of calculation inputs A and B, and the carry output C
“1” is output.

以上の状態は第3図bの真理値表に示される。
即ち、第3図aのADD及びANDを実現する回路
例においては、半加算器のNRゲート入力を3
入力のゲート21とし、演算制御入力を接続すれ
ばよい。
The above conditions are shown in the truth table of FIG. 3b.
That is, in the example circuit for realizing ADD and AND shown in FIG. 3a, the NR gate input of the half adder is
It is sufficient to use the input gate 21 and connect the arithmetic control input.

次に、ADD,AND,R,EXRを実行する
本発明に係る演算ユニツトセルの一構成例を第4
図aに示し、同図bにはこのユニツトセルの真理
値表を示す。
Next, a fourth example of the configuration of an arithmetic unit cell according to the present invention that executes ADD, AND, R, and EXR will be described.
Figure a shows the truth table of this unit cell, and figure b shows the truth table of this unit cell.

第4図のユニツトセルにおいて、演算制御は、
CAND,,CEXRの3本の制御入力によ
つて行う。
In the unit cell shown in Fig. 4, the calculation control is as follows:
This is done using three control inputs: CAND, and CEXR.

(1) ADD,AND演算時 演算制御入力,CEXRをそれぞれ、
“1”,“0”にする。このとき上記第3図の回路
と全く同じになり、ADD,ANDがCAND制御入
力によつて実行できることは明らかである。
(1) During ADD and AND operations, the operation control input and CEXR are
Set to “1” and “0”. At this time, the circuit becomes exactly the same as the circuit shown in FIG. 3 above, and it is clear that ADD and AND can be executed by the CAND control input.

(2) R時 演算制御入力CAND,,CEXRを全て
“0”にし、かつ、キヤリ入力Ciを“0”とす
る。
(2) At R time Set all calculation control inputs CAND, , CEXR to "0" and set the carry input Ci to "0".

演算出力が演算入力A,BのRとなること
は明らかであり、又キヤリ出力Cも“0”とな
つて、次段のユニツトセルのキヤリ入力Ciを
“0”とする。
It is clear that the calculation output becomes R of the calculation inputs A and B, and the carry output C also becomes "0", making the carry input Ci of the next stage unit cell "0".

(3) EXR時 演算制御入力CAND,,CEXRをそれ
ぞれ“0”,“1”,“1”にし、キヤリ入力Ciを
“0”とすれば、演算出力には、演算入力A,
Bの排他的論理和(EXR)が出力され、かつ
キヤリ出力Cは、“0”となり、次段のユニツ
トセルのキヤリ入力Ciを“0”とする。
(3) At EXR If the calculation control inputs CAND, , and CEXR are set to “0”, “1”, and “1”, and the carry input Ci is set to “0”, the calculation output includes calculation inputs A,
The exclusive OR (EXR) of B is output, and the carry output C becomes "0", setting the carry input Ci of the next stage unit cell to "0".

以上の説明によつて、第4図の回路でADD,
AND,R,EXRの演算が実行可能であるこ
とがわかる。
With the above explanation, ADD,
It can be seen that AND, R, and EXR operations are executable.

上記の実施例では説明を簡単にするため、演算
入出力とも全て正論理としたが、本発明は入出力
の論理状態には何ら限定されるものではない。例
えば、演算入力が負論理で演算出力が正論理の場
合のADD,AND,R,EXRを演算する演算
回路は、第5図aの如くなり、その真理値表は、
第5図bのようになる。
In the above embodiment, in order to simplify the explanation, all calculation inputs and outputs are assumed to be positive logic, but the present invention is not limited to the logic states of the inputs and outputs. For example, the arithmetic circuit that calculates ADD, AND, R, and EXR when the arithmetic input is negative logic and the arithmetic output is positive logic is as shown in Figure 5a, and its truth table is:
The result will be as shown in Figure 5b.

以上のように本発明は、論理演算回路における
フルアダーへのキヤリ入力を論理演算動作に利用
して回路の簡素化を図るとともに、キヤリ入力と
キヤリ出力が論理演算動作に同じ値になるように
構成されているので、本発明のフルアダーを複数
段接続して構成したカウンタにおいて、各フルア
ダーで論理演算を行わせる場合に、すべてのフル
アダーのキヤリ入力が自動的に同じ値となるの
で、各フルアダーに論理演算を行なわせるための
制御信号を加えるだけで論理演算と加算器の機能
を切換えるための回路を不要にできる。したがつ
て、リツプルキヤリ方式の演算回路において、論
理演算実行時にもキヤリ入力を巧みに利用するこ
とによつて、演算回路の大幅な簡素化が可能であ
り、特にマイクロプロセツサ等の演算回路に利用
すれば、信頼性の向上や演算回路部分のチツプ面
積の減少が可能になる等多大の利点を有するもの
である。
As described above, the present invention utilizes the carry input to the full adder in the logic operation circuit to simplify the circuit, and is configured so that the carry input and the carry output have the same value for the logic operation. Therefore, in a counter configured by connecting multiple stages of full adders according to the present invention, when each full adder performs a logical operation, the carry inputs of all full adders automatically become the same value. By simply adding a control signal for performing logical operations, a circuit for switching between logical operations and the functions of the adder can be eliminated. Therefore, in a ripple-carry type arithmetic circuit, it is possible to greatly simplify the arithmetic circuit by skillfully using the carry input even when executing logical operations, and it is especially useful for arithmetic circuits such as microprocessors. This has many advantages, such as improving reliability and reducing the chip area of the arithmetic circuit portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリツプルキヤリ方式の直並列演算回路
を示すブロツク図、第2図は加算、論理積を実行
する演算ユニツトセルの従来例を示す構成図と動
作状態図、第3図は本発明による加算、論理積を
実行する演算ユニツトセルの一実施例を示す構成
図と動作状態図、第4図は本発明による加算・論
理積、論理和、排他的論理和を実行する演算ユニ
ツトセルの一実施例を示す構成図と動作状態図、
第5図は本発明の他の実施例の構成図と動作状態
図である。
Fig. 1 is a block diagram showing a ripple-carry type serial/parallel arithmetic circuit, Fig. 2 is a block diagram and operational state diagram showing a conventional example of an arithmetic unit cell that performs addition and logical product, and Fig. 3 shows an addition system according to the present invention. A configuration diagram and an operation state diagram showing an embodiment of an arithmetic unit cell that performs AND operations. FIG. Configuration diagram and operating state diagram,
FIG. 5 is a block diagram and an operation state diagram of another embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 2つの入力A,Bに対しAB+(または
AB+)の論理機能を有するハーフアダーを
2段縦続接続してフルアダーを構成し、さらに前
段の前記ハーフアダーは、論理演算動作を指示す
る制御信号の入力端子を有するとともに、前記制
御信号により前記論理機能の一部が選択されるよ
うに構成され、後段の前記ハーフアダーは、キヤ
リ入力の端子を有するとともに、前記キヤリ入力
により体前記前段のハーフアダーの出力を非反転
(または反転)するように構成され、さらに、前
記制御信号が前記前段のハーフアダーに入力され
たときに前記キヤリ入力と同一値のキヤリ出力を
出力する桁上げ手段を有したことを特徴とする演
算論理回路。
1 AB+ (or
A full adder is constructed by cascading two stages of half adders having a logic function of AB+), and the half adder in the previous stage has an input terminal for a control signal that instructs a logic operation, and the control signal controls the logic function. The rear half adder is configured to have a terminal for a carry input, and is configured to non-invert (or invert) the output of the front half adder by the carry input; . An arithmetic logic circuit comprising a carry means for outputting a carry output having the same value as the carry input when the control signal is input to the half adder at the previous stage.
JP2006278A 1978-02-22 1978-02-22 Logical operation circuit Granted JPS54112134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278A JPS54112134A (en) 1978-02-22 1978-02-22 Logical operation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278A JPS54112134A (en) 1978-02-22 1978-02-22 Logical operation circuit

Publications (2)

Publication Number Publication Date
JPS54112134A JPS54112134A (en) 1979-09-01
JPS6152493B2 true JPS6152493B2 (en) 1986-11-13

Family

ID=12016589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278A Granted JPS54112134A (en) 1978-02-22 1978-02-22 Logical operation circuit

Country Status (1)

Country Link
JP (1) JPS54112134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196403A (en) * 1987-02-09 1988-08-15 Hakko Denki Seisakusho:Kk Braking device for roller conveyer
JPH05184130A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Eddy current type reduction gearing device
JPH08208011A (en) * 1995-11-14 1996-08-13 Hakko Denki Kk Brake roller of roller conveyer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349888A (en) * 1980-09-08 1982-09-14 Motorola, Inc. CMOS Static ALU

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196403A (en) * 1987-02-09 1988-08-15 Hakko Denki Seisakusho:Kk Braking device for roller conveyer
JPH05184130A (en) * 1991-12-27 1993-07-23 Isuzu Motors Ltd Eddy current type reduction gearing device
JPH08208011A (en) * 1995-11-14 1996-08-13 Hakko Denki Kk Brake roller of roller conveyer

Also Published As

Publication number Publication date
JPS54112134A (en) 1979-09-01

Similar Documents

Publication Publication Date Title
JPH0353652B2 (en)
JPS61204736A (en) Multi-bit adder
US3932734A (en) Binary parallel adder employing high speed gating circuitry
JP3345894B2 (en) Floating point multiplier
JPS595349A (en) Adder
GB1052400A (en)
JPS6152493B2 (en)
US5506800A (en) Self-checking complementary adder unit
JP3537378B2 (en) Adders and integrated circuits
JPS608933A (en) Arithmetic processing unit
US4254471A (en) Binary adder circuit
US6202078B1 (en) Arithmetic circuit using a booth algorithm
JPH06266536A (en) Multiplication/division device
US7444366B2 (en) Faster shift value calculation using modified carry-lookahead adder
JPS6036613B2 (en) adder
JPS62154029A (en) Multiplier circuit
JPS648858B2 (en)
JP2681968B2 (en) Arithmetic processing unit
KR0143710B1 (en) Propagation three inputs adder
SU496555A1 (en) Matrix computing device
JPS63100536A (en) Adding circuit
JPH04294420A (en) Divider
JPS62166424A (en) Wallace tree circuit
JPS6129018B2 (en)
JPS6158074A (en) Microcomputer