JPS6152223B2 - - Google Patents

Info

Publication number
JPS6152223B2
JPS6152223B2 JP54101054A JP10105479A JPS6152223B2 JP S6152223 B2 JPS6152223 B2 JP S6152223B2 JP 54101054 A JP54101054 A JP 54101054A JP 10105479 A JP10105479 A JP 10105479A JP S6152223 B2 JPS6152223 B2 JP S6152223B2
Authority
JP
Japan
Prior art keywords
hydrogen
heat
alloy
metal
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54101054A
Other languages
Japanese (ja)
Other versions
JPS5626701A (en
Inventor
Takashi Sakai
Naojiro Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10105479A priority Critical patent/JPS5626701A/en
Publication of JPS5626701A publication Critical patent/JPS5626701A/en
Publication of JPS6152223B2 publication Critical patent/JPS6152223B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、新規な3元系合金からなる水素貯
蔵材に関し、さらに詳しくは式Mg9Mm1-XLax
(但し、x<1)で表わされ、特にxの数値が0.5
x<1の範囲にある合金を提供するものであ
る。 近年、熱エネルギーの蓄熱方法として、金属も
しくは合金またはそれらの水素化物を水素貯蔵材
として用いる蓄熱方法(例えば、小野修一郎、化
学の領域、Vol.31,No.1,第39〜47頁、1977年参
照)が提案された。この蓄熱方法は、水素化と脱
水素化反応を可逆的に行い得る金属もしくは合金
またはその水素化物を用い、下記の式によつて示
される反応により蓄熱およびエネルギーの取り出
しを行うものである。 MHX→M+HX(吸熱反応:蓄熱過程) M+HX→MHX(発熱反応:放熱過程) 但し、Mは金属もしくは合金、Hは水素原子お
よびxは水素原子数を示す。 この蓄熱方法は、長期蓄熱の画期的な方法とし
て期待されるものであり、鋭意研究が進められて
いる。 上記蓄熱方法に用いられる水素貯蔵材として
は、マグネシウム、ランタン等の希土類元素また
はチタンをそれぞれベースとする合金が知られて
いる。これらの合金は、加圧水素を接触させるこ
とにより水素原子を固体の金属中に結合させるこ
とができ、更に金属と結合した水素は任意に温度
を上下させることにより金属から放出させること
が可能で水素貯蔵材として注目されている。 しかしながら、これらの合金類中、マグネシウ
ム系合金は一般に水素の吸収解離温度が高いこ
と、またランタン系合金およびチタン系合金はい
ずれもコストが高いことが実用化への障害となつ
ている。一方、一般的には水素の吸収解離温度が
高いマグネシウム系合金の中で、マグネシウム
ミツシユメタル(Mg9Mm,Mm;ミツシユメタ
ル)〔デイビルド・エイ・マシス“ハイドロヂエ
ン・テクノロジー・フオー・エナジー”第113頁
(1976年)、ノイエス データ コーポレーシヨン
USA記載〕は室温付近で水素の吸収解離を起
すことが知られている。このマグネシウム、ミツ
シユ メタル(Mg9Mm)は室温における吸収水
素量が4.1重量%(Mg9MmH14.7)であり、充分
な水素吸蔵能力を有している反面、第1図に示し
た水素吸収量(H/Mg9Mm1-XLax−水素ガス圧
力図より明らかなように常温における水素ガス圧
力が約20Kg/cm2であり、実用上取扱いにくい高圧
であるという欠点を有している。 本発明の水素貯蔵材は、前記マグネシウム ミ
ツシユメタル(Mg9Mm)の常温における水素ガ
ス圧力を低下させ実用上取扱いやすくした合金で
ある。本発明の合金に特徴は、マグネシウム ミ
ツシユメタル(Mg9Mm)のMmの一部を他の金
属で代替したことであり、具体的にはMmの一部
をランタンで代替した式Mg9Mm1-xLax(X<
1)で表わされる組成を有し、特にxの数値が
0.5x<1の3元系合金の水素貯蔵材である。 以下、本発明の合金について詳細に説明する。 本発明の合金は、99%純度以上のマグネシウム
粉末、ミツシユメタル チツプおよびランタンチ
ツプを下記第1表の組成比に混合し(作製総量は
各々10g)、アルゴン雰囲気下で通常のアークメ
ルト法で合金化して作製した。なお生成物につい
てX線回折によつて合金化の有無の判定と定性分
析を行ない、また生成した合金を無機酸に溶解し
原子吸光分析法によつて定量分析して、その組成
が混合組成と同一であることを確認した。
The present invention relates to a hydrogen storage material made of a novel ternary alloy, more specifically, it has the formula Mg 9 Mm 1-X Lax
(However, x < 1), especially when the value of x is 0.5
The present invention provides an alloy in which x<1. In recent years, thermal energy storage methods using metals, alloys, or their hydrides as hydrogen storage materials have become popular (for example, Shuichiro Ono, Chemistry Region, Vol. 31, No. 1, pp. 39-47, 1977). ) was proposed. This heat storage method uses a metal, an alloy, or a hydride thereof that can undergo hydrogenation and dehydrogenation reactions reversibly, and stores heat and extracts energy through a reaction represented by the following formula. MH X →M+H X (endothermic reaction: heat storage process ) M+H X MH This heat storage method is expected to be an innovative method for long-term heat storage, and intensive research is underway. As the hydrogen storage material used in the above heat storage method, alloys based on rare earth elements such as magnesium and lanthanum, or titanium are known. In these alloys, hydrogen atoms can be bonded into the solid metal by contacting them with pressurized hydrogen, and furthermore, the hydrogen bonded to the metal can be released from the metal by arbitrarily raising or lowering the temperature. It is attracting attention as a storage material. However, among these alloys, magnesium-based alloys generally have a high hydrogen absorption and dissociation temperature, and both lanthanum-based alloys and titanium-based alloys are expensive, which are obstacles to their practical use. On the other hand, among magnesium-based alloys that generally have a high hydrogen absorption and dissociation temperature, magnesium
Mitsushi Metal (Mg 9 Mm, Mm; Mitsushi Metal) [Daybild A. Mathis “Hydrogen Technology for Energy” p. 113 (1976), Noyes Data Corporation
USA] is known to cause absorption and dissociation of hydrogen near room temperature. This magnesium, Mitsushi Metal (Mg 9 Mm), has an absorbed hydrogen amount of 4.1% by weight (Mg 9 MmH 14.7 ) at room temperature, and has sufficient hydrogen storage capacity. Absorption amount (H/Mg 9 Mm 1-X Lax - Hydrogen gas pressure As is clear from the diagram, the hydrogen gas pressure at room temperature is approximately 20 Kg/cm 2 , which has the disadvantage of being a high pressure that is difficult to handle in practice. The hydrogen storage material of the present invention is an alloy that lowers the hydrogen gas pressure at room temperature of the magnesium Mitsushi metal (Mg 9 Mm), making it easier to handle in practice.The alloy of the present invention is characterized by magnesium Mitsushi metal (Mg 9 Mm). This means that part of Mm is replaced with another metal. Specifically, part of Mm is replaced with lanthanum in the formula Mg 9 Mm 1-x Lax (X<
1), and especially the value of x is
It is a ternary alloy hydrogen storage material with 0.5x<1. The alloy of the present invention will be explained in detail below. The alloy of the present invention is produced by mixing magnesium powder with a purity of 99% or higher, Mitsushi Metal chips, and lanthanum chips in the composition ratio shown in Table 1 below (total amount of each 10 g), and alloying the mixture using the normal arc melting method in an argon atmosphere. It was made by The presence or absence of alloying was determined and qualitatively analyzed using X-ray diffraction, and the resulting alloy was dissolved in an inorganic acid and quantitatively analyzed using atomic absorption spectrometry to confirm that the composition was a mixed composition. I confirmed that they are the same.

【表】 さらに第1表に示した3種の合金について、常
法により25℃における水素化特性(水素吸収量−
水素ガス圧力)を測定し、公知のMg9Mm合金の
水素化特性も併せて第1図に示した。第1図から
明らかなように、本発明の合金はいずれも25℃に
おいて充分な水素吸蔵能力を有していることが分
かる。更に実用上の取扱いやすさからみて25℃に
おける水素圧は10Kg/cm2以下が好ましいので、本
発明の水素貯蔵材としては、式Mg9Mm1-XLax
(x<1)で表わされる組成を有する合金であつ
て、中でもxの数値が0.5x<1である3元系
合金が特に好ましいことが分つた。 以上のように本発明の水素貯蔵材は、豊富に存
在するマグネシウム元素を主成分とした新規な3
元系合金からなる低廉な水素貯蔵材であつて、次
のような満足すべき特性を有している。即ち水素
と結合して固体状化合物を形成することができ、
特に加圧水素と接触させると水素原子を固体の金
属中に結合させることができ、またこの水素化反
応は室温で行なうことが可能であつて水素吸蔵能
力が大きい。またその水素化物は任意に温度を上
下させることによつて結合した水素を放出させる
ことが可能である。更に前記式Mg9Mm1-XLax
(x<1)で表わされる組成を有する本発明の合
金中、特にxの数値が0.5x<1の範囲にある
ものは水素圧が10Kg/cm2以下であるので取扱いが
簡単であり、水素貯蔵材として極めて有用であ
る。 次に本発明の水素貯蔵材を用いる蓄熱装置の代
表的な一例を挙げ、その作動方法を図面によつて
説明する。 即ち、第2図において、例えば太陽熱を集熱し
た熱媒体が熱媒体輸送管3によつて蓄熱槽5に導
びかれ、その熱によつて蓄熱槽5内の水素貯蔵材
7を構成する金属または合金の水素化物を加熱し
て脱水素化する。発生した水素ガスを弁2を開き
水素流通管4(但し、蓄熱槽内の部分はメツシユ
パイプ)を通じて水素貯蔵槽1に送り貯蔵する。
次いで熱を利用したい時は、弁2を開いて水素ガ
スを蓄熱槽5に導き、前記熱交換時に金属もしく
は合金の水素化物が脱水素化して金属または合金
に変換した水素貯蔵材7と水素とを反応させ、発
生した熱を熱媒体輸送管3中の熱媒体によつて集
熱し冷暖房および給湯用などに利用する。
[Table] Furthermore, the hydrogenation characteristics (hydrogen absorption amount -
Figure 1 also shows the hydrogenation characteristics of a known Mg 9 Mm alloy. As is clear from FIG. 1, all of the alloys of the present invention have sufficient hydrogen storage capacity at 25°C. Furthermore, from the viewpoint of practical ease of handling, the hydrogen pressure at 25°C is preferably 10 Kg/cm 2 or less, so the hydrogen storage material of the present invention has the formula Mg 9 Mm 1-X Lax.
It has been found that among alloys having a composition represented by (x<1), a ternary alloy in which the numerical value of x is 0.5x<1 is particularly preferable. As described above, the hydrogen storage material of the present invention is a novel hydrogen storage material containing the abundant magnesium element as a main component.
The present invention is an inexpensive hydrogen storage material made of an elementary alloy, and has the following satisfactory properties. That is, it can combine with hydrogen to form a solid compound,
In particular, when brought into contact with pressurized hydrogen, hydrogen atoms can be bonded into solid metals, and this hydrogenation reaction can be carried out at room temperature and has a large hydrogen storage capacity. Further, the hydride can release the bound hydrogen by arbitrarily raising or lowering the temperature. Furthermore, the above formula Mg 9 Mm 1-X Lax
Among the alloys of the present invention having a composition expressed by Extremely useful as a storage material. Next, a typical example of a heat storage device using the hydrogen storage material of the present invention will be given, and its operating method will be explained with reference to the drawings. That is, in FIG. 2, for example, a heat medium collecting solar heat is guided to the heat storage tank 5 by the heat medium transport pipe 3, and the metal constituting the hydrogen storage material 7 in the heat storage tank 5 is absorbed by the heat. Or heat the hydride of the alloy to dehydrogenate it. The generated hydrogen gas is sent to the hydrogen storage tank 1 through the hydrogen flow pipe 4 (however, the portion inside the heat storage tank is a mesh pipe) by opening the valve 2 and stored therein.
Next, when it is desired to utilize heat, the hydrogen gas is introduced into the heat storage tank 5 by opening the valve 2, and the hydrogen is mixed with the hydrogen storage material 7 in which the metal or alloy hydride is dehydrogenated and converted into metal or alloy during the heat exchange. The generated heat is collected by the heat medium in the heat medium transport pipe 3 and used for heating and cooling, hot water supply, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種合金の水素化特性図(解離圧特
性図)、第2図は金属もしくは合金またはそれら
の水素化物を水素貯蔵材として用いる代表的な蓄
熱装置の機能説明図である。 1……水素貯蔵槽、2……開閉弁、3……熱媒
体流通管、4……水素ガス流通管、5……蓄熱
槽、6……断熱材および7……水素貯蔵材。
FIG. 1 is a hydrogenation characteristic diagram (dissociation pressure characteristic diagram) of various alloys, and FIG. 2 is a functional explanatory diagram of a typical heat storage device using metals, alloys, or hydrides thereof as hydrogen storage materials. DESCRIPTION OF SYMBOLS 1...Hydrogen storage tank, 2...Opening/closing valve, 3...Heat medium distribution pipe, 4...Hydrogen gas distribution pipe, 5...Thermal storage tank, 6...Insulating material, and 7...Hydrogen storage material.

Claims (1)

【特許請求の範囲】 1 式Mg9Mm1-XLax(但し、x<1,Mm:ミ
ツシユメタル)で表わされる組成を有する3元系
合金からなる水素貯蔵材。 2 xの数値が0.5x<1の範囲にある特許請
求第1項記載の水素貯蔵材。
[Claims] 1. A hydrogen storage material made of a ternary alloy having a composition represented by the formula Mg 9 Mm 1-X Lax (where x<1, Mm: Mitsushi Metal). 2. The hydrogen storage material according to claim 1, wherein the value of x is in the range of 0.5x<1.
JP10105479A 1979-08-07 1979-08-07 Hydrogen storing material Granted JPS5626701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10105479A JPS5626701A (en) 1979-08-07 1979-08-07 Hydrogen storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10105479A JPS5626701A (en) 1979-08-07 1979-08-07 Hydrogen storing material

Publications (2)

Publication Number Publication Date
JPS5626701A JPS5626701A (en) 1981-03-14
JPS6152223B2 true JPS6152223B2 (en) 1986-11-12

Family

ID=14290395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10105479A Granted JPS5626701A (en) 1979-08-07 1979-08-07 Hydrogen storing material

Country Status (1)

Country Link
JP (1) JPS5626701A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404633A (en) * 2000-11-27 2003-03-19 皇家菲利浦电子有限公司 Metal hydride battery material with high storage capacity

Also Published As

Publication number Publication date
JPS5626701A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
Zaluska et al. Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage
JP2007525399A (en) Regeneration of hydrogen storage system materials and methods involving hydrides and hydroxides
JPH0135761B2 (en)
Chung et al. Effect of partial substitution of Mn and Ni for Fe in FeTi on hydriding kinetics
US4359396A (en) Hydride of beryllium-based intermetallic compound
JPS6152223B2 (en)
JPS6152222B2 (en)
US4358432A (en) Material for hydrogen absorption and desorption
WO2003072838A1 (en) Ca, Mg AND Ni CONTAINING ALLOYS, METHOD FOR PREPARING THE SAME AND USE THEREOF FOR GAS PHASE HYDROGEN STORAGE
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
JPS626739B2 (en)
JPS6160134B2 (en)
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
US4349527A (en) Iron-titanium-niobium alloy
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JPH0570693B2 (en)
JPS604256B2 (en) Alloy for hydrogen storage
JPS6048580B2 (en) Alloy for hydrogen storage
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy
JP2006256888A (en) Hydrogen storage material and its manufacturing method
JPS5939493B2 (en) Titanium-cobalt multi-component hydrogen storage alloy
JPS6141975B2 (en)
JPH0224764B2 (en)