JPS615220A - Refractive index distribution type single lens - Google Patents

Refractive index distribution type single lens

Info

Publication number
JPS615220A
JPS615220A JP12574984A JP12574984A JPS615220A JP S615220 A JPS615220 A JP S615220A JP 12574984 A JP12574984 A JP 12574984A JP 12574984 A JP12574984 A JP 12574984A JP S615220 A JPS615220 A JP S615220A
Authority
JP
Japan
Prior art keywords
lens
single lens
refractive index
index distribution
spherical aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12574984A
Other languages
Japanese (ja)
Other versions
JPH0731305B2 (en
Inventor
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59125749A priority Critical patent/JPH0731305B2/en
Publication of JPS615220A publication Critical patent/JPS615220A/en
Priority to US07/070,602 priority patent/US4770506A/en
Publication of JPH0731305B2 publication Critical patent/JPH0731305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To lengthen the working distance of a refractive index distribution type single lens by concaving the face of the lens on which liminous flux is incident with respect to object space and by also concaving the face of the lens from whih luminous flux is emitted with respect to image space. CONSTITUTION:When a single lens having a refractive index distribution in a direction perpendicular to the optical axis is used on reduction ratio, the face of the lens on which luminous flux is incident is concaved with respect to object space, and the face of the lens from which luminous flux is emitted is also concaved with respect to image space. The working distance is thus lengthened, and the spherical aberration and sine condition are corrected.

Description

【発明の詳細な説明】 本発明は、半導体レーザのコリメータレンズや光ディス
クのピックアップ用対物レンズ等に好適な屈折率分布型
レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gradient index lens suitable for a collimator lens of a semiconductor laser, an objective lens for a pickup of an optical disk, and the like.

従来光軸と垂直な方向に屈折率分布を有するレンズ、い
わゆるラディアル・グラディエン)−インチ・ンクス拳
レンズとしては、セルフォ・ンクレンズ(商品名)が良
く知られており、正立等倍結像素子として複写機などに
使用されている。この様な、屈折率分布型レンズの長所
は。
Conventional lenses with a refractive index distribution in the direction perpendicular to the optical axis, so-called radial gradient lenses - The Selfo Lens (trade name) is well known as an inch lens, and is an erecting equal-magnification imaging element. It is used in copying machines, etc. What are the advantages of gradient index lenses like this?

両端面が平面の単レンズでありながら比較的性能が良く
、量産性に優れている点である。
Although it is a single lens with flat end surfaces, it has relatively good performance and is suitable for mass production.

この様な長所を活かして、半導体レーザのコリメータレ
ンズや光ピツクアップ用対物レンズとして屈折率分布型
レンズを用いる試みもなされている。
Taking advantage of these advantages, attempts have been made to use gradient index lenses as collimator lenses for semiconductor lasers and objective lenses for optical pickup.

斯様な用途に用いられるレンズは、作動距離(ワーキン
グ・ディスタンス)の長いレンズが望まれる0両面が平
面の単一の屈折率分布型しンズで作動距離か長いレンズ
を構成しようとすれば、光軸方向の長さdを短かくしな
ければならない。然しなから、長さdを短かくすると、
光軸と直交する方向の屈折率分布の勾配が急になり製作
上困難となるばかりでなく、収差を良好に補正すること
が出来なくなる。
For lenses used in such applications, a lens with a long working distance is desired. If a lens with a long working distance is constructed using a single gradient index lens with flat surfaces on both sides, The length d in the optical axis direction must be shortened. However, if the length d is shortened,
The gradient of the refractive index distribution in the direction perpendicular to the optical axis becomes steep, which not only makes manufacturing difficult, but also makes it impossible to satisfactorily correct aberrations.

又、この種のレンズへの応用に際しては、性能上、特に
球面収差と正弦条件が良好に補正される必要があるが、
ラディアル争グラディエンド単レンズを用いた場合、両
端面が平面では球面収差と正弦条件を同時に補正できな
い。
In addition, when applying this type of lens, it is necessary to correct spherical aberration and sine condition well in terms of performance.
When using a radial gradient single lens, if both end surfaces are flat, spherical aberration and sine conditions cannot be corrected at the same time.

本発明の目的は、作動距離の長い屈折率分布型単レンズ
を提供することにある。
An object of the present invention is to provide a gradient index single lens with a long working distance.

本発明の更なる目的は、球面収差と正弦条件とを共に良
好に補正した屈折率分布型単レンズを提供することにあ
る。
A further object of the present invention is to provide a gradient index single lens that satisfactorily corrects both spherical aberration and sinusoidal conditions.

本発明の更なる目的は、ペッツウ′アール和が小さく、
軸外特性の良好な屈折率分布型単レンズを提供すること
になる。
A further object of the present invention is that the Petz'R sum is small;
This provides a gradient index single lens with good off-axis characteristics.

本発明に係る屈折率分布型単レンズに於いては、該単レ
ンズを縮小倍率で使用する場合の光束入射側の面が物界
側に対して門なる面を、光束出射側の面が像界側に対し
て門なる面とすることにより上記目的を達成せんとする
ものである。尚、本願では縮小倍率で使用する場合の、
単レンズの光束入射側を物界側、同じく光束出射側を像
界側と規定するものである。以下、本発明に関して詳述
する。
In the gradient index single lens according to the present invention, when the single lens is used at a reduction magnification, the surface on the light beam incidence side is a gate to the object world side, and the surface on the light beam exit side is an image surface. The purpose is to achieve the above objective by making the surface a gate to the outside world. In addition, in this application, when used at reduced magnification,
The light flux incident side of the single lens is defined as the object world side, and the light flux exit side is defined as the image field side. The present invention will be explained in detail below.

本明細書においては、縮小倍率で使用する場合の物界側
の端面を単レンズの第1面、像界側を第2面とする。従
って、本発明の単レンズを半導体レーザのコリメータレ
ンズとして使用する場合には、半導体レーザ側の面が第
2面、光ディスクのピンクアップ対物レンズとして使用
する場合には光デイスク側の面がMS2面となる。
In this specification, when the lens is used at a reduction magnification, the end surface on the object side is the first surface of the single lens, and the end surface on the image field side is the second surface. Therefore, when the single lens of the present invention is used as a collimator lens for a semiconductor laser, the surface on the semiconductor laser side is the second surface, and when it is used as a pink-up objective lens for an optical disk, the surface on the optical disk side is the MS2 surface. becomes.

作動距離を増すためには、縮小倍率で使用する場合の物
界側に凹のパワーを配置することが有効である。この為
に、本願の単レンズでは、第1面を物界側に凹なる面と
したものである。
In order to increase the working distance, it is effective to place a concave power on the object world side when used at reduced magnification. For this reason, in the single lens of the present application, the first surface is a surface concave toward the object world side.

更に、第2面も、像界側に凹なる形状を持たせることに
より諸収差を良好に補正したものである6従来、均質レ
ンズ系、特に均質単レンズのみから成る系において、第
1面を物界側に凹なる面とすることは、第1面が凹面で
あることによりレンズが必要以上に大きくなること、最
も球面収差への寄与の大きい第1面を凹とすると、第1
面で発生する負の球面収差を補正するのが困難で:特に
高次の球面収差の補正が困難であることから望ましくな
いと考えられていた。然しなから、本発明に於いては屈
折率分布を有する媒質を用いることにより、第1面を凹
面として長い作動距離を取ってもレンズ径が大きくなら
ない。更に、第2面に像界側へ凹なる曲率を持たせるこ
とにより、諸収差の良好な補の 正を行なうも膚である。又、更に後述する適切な条件を
満足させることにより、より望ましい収差補正を可能と
するものである。
Furthermore, the second surface also has a concave shape on the image field side, so that various aberrations are well corrected.6 Conventionally, in homogeneous lens systems, especially systems consisting of only a homogeneous single lens, the first surface is The reason for making the surface concave toward the object world is that if the first surface is a concave surface, the lens becomes larger than necessary.
It was considered undesirable because it was difficult to correct the negative spherical aberration that occurs on the surface; in particular, it was difficult to correct high-order spherical aberration. However, in the present invention, by using a medium having a refractive index distribution, the lens diameter does not become large even if the first surface is made a concave surface and a long working distance is taken. Furthermore, by giving the second surface a concave curvature toward the image field side, various aberrations can be effectively corrected. Furthermore, by satisfying appropriate conditions to be described later, more desirable aberration correction can be achieved.

に 球面収差と正弦条件を補正するためlは、3次の球面収
差係数工、コマ収差係数Hの値を小さくする必要がある
In order to correct the spherical aberration and the sine condition, it is necessary to reduce the values of the third-order spherical aberration coefficient H and the coma aberration coefficient H.

屈折率Nが光軸からの距離rに対して、N (r)=N
□+N1 r2十N2r4+N5r6+−−−・−−−
−(No 、 Nl 、 N2 、 N3−−−−−−
−−−−一定)と表わされるラディアルグラディエント
単レンズにおいて、3次の収差係数の値に寄与するパラ
メータは、N□、N1.N2及び rl : 第1面の曲率半径 r2:  第2面の曲率半径 d:厚 さ の6つである。この内、軸上屈折率NQは1.4〜1.
8程度の値しか取れないから、N Q 牟1.6とみな
すと、3次収差係数に寄与するパラメータはrl、r2
.d、N1.N2 (7)5つであると考えられる。
When the refractive index N is the distance r from the optical axis, N (r)=N
□+N1 r20 N2r4+N5r6+−−−・−−
-(No, Nl, N2, N3------
In the radial gradient single lens expressed as (constant), the parameters that contribute to the value of the third-order aberration coefficient are N□, N1. N2 and rl: Radius of curvature of the first surface r2: Radius of curvature of the second surface d: Thickness. Among these, the axial refractive index NQ is 1.4 to 1.
Since it can only take a value of about 8, if we assume that N Q is 1.6, the parameters that contribute to the third-order aberration coefficient are rl, r2
.. d, N1. N2 (7) It is thought that there are five.

一方、要求される条件は、 の3つであるから、 rl  を固定しても、条件 (
A)をみたすr2.d、N1.N2の解は多数存在する
ことが予想される。これら多数の解のうちから使用条件
に従って、高次収差の補正可能なもの、あるいは作動距
離が適切なものを選択することかできる。
On the other hand, there are three required conditions, so even if rl is fixed, the condition (
r2. which satisfies A). d, N1. It is expected that there are many solutions to N2. Among these many solutions, one that can correct high-order aberrations or one that has an appropriate working distance can be selected according to the conditions of use.

r2.d、N1.N2  のうち近軸量に寄与するのは
 r2+cl、Nl の3つであり、またPj、5an
ds によるJour、Opt、Soc、Am、、60
.1436〜1443頁(1970年)に示されるよう
に、 N2 は3次の各収差係数と線形な関係にある。
r2. d, N1. Of N2, the three that contribute to the paraxial quantity are r2+cl and Nl, and Pj, 5an
Jour, Opt, Soc, Am, by ds, 60
.. As shown on pages 1436 to 1443 (1970), N2 has a linear relationship with each third-order aberration coefficient.

したがって、ある rlと r2ニ対して、条件(A)
をみたすd、N1.N2は次のような手順により求める
ことができる。
Therefore, for some rl and r2, condition (A)
d, N1. N2 can be determined by the following procedure.

(1)dを任意に与える Ol)単レンズの焦点圧#fが一定となるようN1を求
める。
(1) Give d arbitrarily.Ol) Find N1 so that the focal pressure #f of the single lens is constant.

(m)  I = OとなるようN2を求める。(m) Find N2 so that I = O.

(iV)’ IT = 0となるようdを変化させて(
i)   〜  (ii’i)   を  く  リ 
 返  す 。
(iV)' Change d so that IT = 0 (
i) ~ (ii'i)
return .

二のような手順によりパラメータr1.r2.d、N1
゜N2の初期値を決定した後は、従来のレンズ設計の場
合と同様に各パラメータを変化させ、各収差のバランス
をとればよい。
Parameter r1. r2. d, N1
After determining the initial value of °N2, it is sufficient to balance each aberration by changing each parameter as in the case of conventional lens design.

また、屈折率分布の高次の係数N3.N4゜を導入する
ことにより、さらに良好に球面収差を補正し、大口径化
をはかることが可能である。
Also, the higher-order coefficient N3 of the refractive index distribution. By introducing N4°, it is possible to further correct spherical aberration and increase the aperture.

以上の設計過程より次の事実か明らかになった。The following facts became clear from the above design process.

まず球面収差と正弦条件の補正に対しては。First, regarding correction of spherical aberration and sine condition.

rl、r2.dが次の条件を満だすことが望ましい。rl, r2. It is desirable that d satisfy the following conditions.

=2.7  ≦ f / r 1  ≦ −1,2(1
)0 < f/r2≦2.9    (2)1.3  
≦ d’/f   ≦ 4.5         (3
)f’/r1−が条件式(1)の下限を越えると、第1
面の凹が強くなり1球面収差の補正が困難となる。
=2.7 ≦ f / r 1 ≦ −1,2 (1
)0 < f/r2≦2.9 (2) 1.3
≦ d'/f ≦ 4.5 (3
) f'/r1- exceeds the lower limit of conditional expression (1), the first
The surface becomes more concave, making it difficult to correct one spherical aberration.

又、条件式(1)の上限を越えると、第1面を凹面とし
たことによる作動距離の増大と収差補正の効果が得られ
ない。
Furthermore, if the upper limit of conditional expression (1) is exceeded, the effect of increasing the working distance and correcting aberrations due to the concave first surface cannot be obtained.

f / r 2 が条件式(2)の上限をこえると、第
2面の曲率が強くなり、やはり球面収差が悪化する。
When f/r 2 exceeds the upper limit of conditional expression (2), the curvature of the second surface becomes strong, and the spherical aberration also worsens.

尚、条件式(2)の下限は第2面の形状により自ずと定
まる値である。
Note that the lower limit of conditional expression (2) is a value that is naturally determined depending on the shape of the second surface.

d/f が条件式(3)の下限を越えると、焦点距離を
fに保つには、屈折率分布の勾配を強くする必要があり
、製造困難となると共に、球面収差が悪化する。又、条
件式(3)の上限を越えては、実用上小型化の点から望
ましくない。
If d/f exceeds the lower limit of conditional expression (3), it is necessary to increase the slope of the refractive index distribution in order to maintain the focal length at f, making manufacturing difficult and worsening spherical aberration. Moreover, exceeding the upper limit of conditional expression (3) is not desirable from the point of view of practical miniaturization.

球面収差と正弦条件を同時に良好に補正する為には、更
に次の条件を満たすことが望ましい。
In order to satisfactorily correct the spherical aberration and the sine condition at the same time, it is desirable that the following conditions be satisfied.

条件式(4)は第1面と第2面とのパワー差に関連した
式であり、条件式(4)の上限、下限のいずれを越えて
も、球面収差と正弦条件の同時補正が困難になる。即ち
、条件式(4)の範囲を越えると、第1面と第2面との
パワーの7 ン/< ラスの為に非対称性の収差である
コマ収□ 差が増大する。
Conditional expression (4) is an expression related to the power difference between the first surface and the second surface, and even if both the upper and lower limits of conditional expression (4) are exceeded, it is difficult to simultaneously correct the spherical aberration and the sine condition. become. That is, when the range of conditional expression (4) is exceeded, the comatic aberration difference, which is an asymmetric aberration, increases due to the power difference between the first surface and the second surface.

球面収差と正弦条件の更に良好な補正を行なう為には1
次の条件を満たすことが望ましい。
In order to perform better correction of spherical aberration and sine condition, 1
It is desirable that the following conditions be met.

条件式(5)の下限を越えると2つの凹面で発生する球
面収差を屈折率分布で発生する球面収差で打ち消すのが
困難になり、又、条件式(5)の上限を越えると、やは
りコマ収差補正の効果がなくなる。
If the lower limit of conditional expression (5) is exceeded, it becomes difficult to cancel out the spherical aberration generated by the two concave surfaces with the spherical aberration generated by the refractive index distribution, and if the upper limit of conditional expression (5) is exceeded, coma will also occur. The effect of aberration correction is lost.

次に本発明の実施例を示す。表1は本発明に係る第1実
施例〜第7実施例のレンズデータを示し、いずれも焦点
距離は1に規格化されている。表2は表1に示す各実施
例の物体無限遠時のパ・ンクフォーカス S’k、 3
次の球面収差係数I、コマ収差係数II、非点収差係数
m、ベツツウ′アール和P、歪曲収差係数V、 第1図は、前記第3実施例のレンズ断面図、第2図は同
じく第3実施例の屈折率分布の様子を示す図で、縦軸に
屈折率N、横軸に光軸からの距離rを示す。第3図は実
施例の諸収差を示す。
Next, examples of the present invention will be shown. Table 1 shows lens data of the first to seventh embodiments according to the present invention, and the focal length of each lens is standardized to 1. Table 2 shows the pan-ink focus S'k, 3 when the object is at infinity for each example shown in Table 1.
The following spherical aberration coefficient I, coma aberration coefficient II, astigmatism coefficient m, Betsu'R sum P, distortion aberration coefficient V, This is a diagram showing the state of the refractive index distribution in Example 3, where the vertical axis shows the refractive index N and the horizontal axis shows the distance r from the optical axis. FIG. 3 shows various aberrations of the example.

第3実施例に示す単レンズのみならず、その他のレンズ
もN、A、が0.3、半画角3°程度で良好な性能を有
する。特に第1.第3〜7実施例は、ペッッヴアール和
が小さく、この種のレンズとしては良好な画角特性を有
する。
Not only the single lens shown in the third embodiment but also other lenses have good performance with N and A of 0.3 and a half angle of view of about 3°. Especially the first one. Examples 3 to 7 have a small pevvr sum and have good angle of view characteristics for this type of lens.

また表2より分る様に、3次の球面収差工、コマ収差係
数IIが良好に補正されており、更に大口径化を計る場
合には、高次の屈折率分布係数の制御により高次の球面
収差を補正すれば良い。
In addition, as shown in Table 2, the third-order spherical aberration and coma aberration coefficient II have been well corrected, and when further increasing the aperture, higher-order refractive index distribution coefficients can be controlled. It is sufficient to correct the spherical aberration of .

尚表2の3次収差係数、第3図の収差図はいずれも、物
体無限遠、入射瞳は前側主点位置として算出したもので
ある。
Note that the third-order aberration coefficients in Table 2 and the aberration diagrams in FIG. 3 are calculated assuming that the object is at infinity and the entrance pupil is at the front principal point position.

また、実施例においては球面収差の補正を屈折率分布の
係数、N2.N3.・・−・−・・により行なっている
が、同様な効果は第1面に非球面を導入することによっ
ても得られる。
In addition, in the embodiment, correction of spherical aberration is performed using a coefficient of refractive index distribution, N2. N3. . . . , but the same effect can also be obtained by introducing an aspheric surface to the first surface.

なぜなら、屈折率勾配により発生する3次の球面収差係
数に対しては、N2はN2×f h3 (x) dx 
This is because for the third-order spherical aberration coefficient caused by the refractive index gradient, N2 is N2×f h3 (x) dx
.

3次コマ収差係数に対してはN2Xfh2 (x) h
 (x) dxという形で寄与する。ここでh (x)
 は不均質媒質内部の点における近軸軸上光線の高さ、
h (x)は近軸主光線の高さであり、積分は不均質媒
質の光軸方向に行なう。従って、これらの積分値はrt
+r2+d、No、Ntと、物体、入射瞳位置のみによ
って定まるが、入射瞳がレンズ近傍にあり、あまりレン
ズが長くないとすると、h (x)  はh (x) 
 よりかなり小さい値となり、N2はコマ収差係数に対
してはほとんど影響を与えない。即ち、コマ収差係数の
値はrllr2.dlNo、N1と物体距離だけで定ま
る。
For the third-order coma aberration coefficient, N2Xfh2 (x) h
(x) Contributes in the form of dx. Here h (x)
is the height of the paraxial ray at a point inside the heterogeneous medium,
h(x) is the height of the paraxial chief ray, and integration is performed in the optical axis direction of the heterogeneous medium. Therefore, these integral values are rt
It is determined only by +r2+d, No, Nt, the object, and the entrance pupil position, but if the entrance pupil is near the lens and the lens is not very long, h (x) is h (x)
The value is much smaller than that of N2, and N2 has almost no effect on the coma aberration coefficient. That is, the value of the coma aberration coefficient is rllr2. It is determined only by dlNo, N1 and object distance.

N2による球面収差の補正効果を第1面の4次の非球面
係数により得ることは容易であるが、その場合もやはり
4次非球面係数はコマ収差係数に寄与しない。球面収差
を補正した段階では、コマ収差係数は入射瞳位置に関係
しないから、入射瞳が第1面にあるとすると4次非球面
係数のコマ収差係数への寄与は零となる。
Although it is easy to obtain the effect of correcting the spherical aberration by N2 using the fourth-order aspherical coefficient of the first surface, the fourth-order aspherical coefficient does not contribute to the coma aberration coefficient in that case as well. At the stage where the spherical aberration is corrected, the coma aberration coefficient is not related to the entrance pupil position, so if the entrance pupil is located on the first surface, the contribution of the fourth-order aspherical coefficient to the coma aberration coefficient becomes zero.

このような事情は高次収差に対しても基本的にかわりは
ないから、屈折率分布の係数N2゜N3.・・・・・・
・・・は4次、6次・・・・・・・・・の非球面係数と
収差補正上、はとんど等価である。
This situation is basically the same for higher-order aberrations, so the coefficient of refractive index distribution N2°N3.・・・・・・
. . . are almost equivalent to the 4th order, 6th order, . . . aspherical coefficients in terms of aberration correction.

又、本発明は単レンズとして良好な性能を有することを
目的としたものであるが、この様に球面収差の補正され
た単レンズが、例えば写真レンズの前玉の様に組み合わ
せレンズ系の最も球面収差の発生し易い箇所に有効に使
用されうることは言うまでもないことである。
Furthermore, although the present invention aims to have good performance as a single lens, a single lens with spherical aberration corrected in this way is ideal for use in the most important parts of a combination lens system, such as the front lens of a photographic lens. Needless to say, it can be effectively used in locations where spherical aberration is likely to occur.

又、このような屈折率分布は従来においても、イオン交
換法等によって達成されてきたものであり、またY、K
oike、Y、0htsuka:AppliedOpt
 ics、22,418〜423頁(1983年)にみ
られるような光共重合法等によっても形成可能である。
In addition, such a refractive index distribution has been achieved in the past by ion exchange methods, etc.
oike, Y, 0htsuka: Applied Opt
ics, 22, pp. 418-423 (1983), etc. can also be used.

以上述べた様に、本発明に係る単レンズに於いては、単
レンズでワーキングディスタンスの長い、しかも収差の
良好に補正されたレンズが得られるもので、コリメータ
レンズや光ディスクのピックアップ用対物レンズとして
使用可能である。
As described above, the single lens according to the present invention has a long working distance and has well-corrected aberrations, and can be used as a collimator lens or an objective lens for picking up optical discs. Available for use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る単レンズの形状を示す図、第2図
は第1図に示す単レンズの屈折率分布を示す図、第3図
は第1図に示す単レンズの諸収差を示す図。
Figure 1 is a diagram showing the shape of the single lens according to the present invention, Figure 2 is a diagram showing the refractive index distribution of the single lens shown in Figure 1, and Figure 3 is a diagram showing various aberrations of the single lens shown in Figure 1. Figure shown.

Claims (1)

【特許請求の範囲】 (1)光軸と垂直な方向に屈折率分布を有する単レンズ
に於いて、該単レンズを縮小倍率で使用する場合の光束
入射側の面が、物界側に対して凹なる面を、光束出射側
の面が像界側に対して凹なる面としたことを特徴とする
屈折率分布型単レンズ (2)r_1を前記単レンズの物界側端面の曲率半径、
r_2を同じく像界側端面の曲率半径、dを同じく軸上
肉厚、fを同じく焦点距離とすると、 −2.7≦f/r_1≦−1.2 0<f/r_2≦2.9 1.3≦d/f≦4.5 である特許請求の範囲第1項記載の屈折率分布型単レン
ズ。
[Claims] (1) In a single lens having a refractive index distribution in a direction perpendicular to the optical axis, when the single lens is used at a reduction magnification, the surface on the light flux incident side is relative to the object world side. The gradient index single lens (2) r_1 is characterized in that the surface on the light output side is concave with respect to the image field side, and the radius of curvature of the object field side end surface of the single lens is ,
If r_2 is the radius of curvature of the end surface on the image field side, d is the axial wall thickness, and f is the focal length, -2.7≦f/r_1≦-1.2 0<f/r_2≦2.9 1 .3≦d/f≦4.5 The gradient index single lens according to claim 1, wherein .3≦d/f≦4.5.
JP59125749A 1983-12-28 1984-06-19 Gradient index type single lens Expired - Fee Related JPH0731305B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59125749A JPH0731305B2 (en) 1984-06-19 1984-06-19 Gradient index type single lens
US07/070,602 US4770506A (en) 1983-12-28 1987-07-06 Gradient index single lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125749A JPH0731305B2 (en) 1984-06-19 1984-06-19 Gradient index type single lens

Publications (2)

Publication Number Publication Date
JPS615220A true JPS615220A (en) 1986-01-11
JPH0731305B2 JPH0731305B2 (en) 1995-04-10

Family

ID=14917852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125749A Expired - Fee Related JPH0731305B2 (en) 1983-12-28 1984-06-19 Gradient index type single lens

Country Status (1)

Country Link
JP (1) JPH0731305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361166A (en) * 1993-01-28 1994-11-01 Gradient Lens Corporation Negative abbe number radial gradient index relay and use of same
US5457576A (en) * 1993-01-28 1995-10-10 Gradient Lens Corporation Negative Abbe number radial gradient index relay, method of making, and use of same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421751A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Refractive index distribution type lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421751A (en) * 1977-07-19 1979-02-19 Mitsubishi Electric Corp Refractive index distribution type lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361166A (en) * 1993-01-28 1994-11-01 Gradient Lens Corporation Negative abbe number radial gradient index relay and use of same
US5457576A (en) * 1993-01-28 1995-10-10 Gradient Lens Corporation Negative Abbe number radial gradient index relay, method of making, and use of same

Also Published As

Publication number Publication date
JPH0731305B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPH02100011A (en) Zoom lens
US4765723A (en) Objective lens system for optical reading device
JPS59149312A (en) Photographic lens of high aperture ratio
JPS6210407B2 (en)
JPH045168B2 (en)
JPS61148414A (en) Compact zoom lens
JPS6038687B2 (en) Wide-angle photographic lens with short overall length
JPS6113206B2 (en)
US4755039A (en) Focusing lens
JPS60140309A (en) Refractive index distribution type single lens
JPS6132654B2 (en)
JPH11271610A (en) Medium telephoto lens
US4013350A (en) Large aperture superwide-angle lens
US4974947A (en) Refractive index distribution type meniscus lens and optics
JPS615220A (en) Refractive index distribution type single lens
JPS6190115A (en) Objective lens for forming image
US4964703A (en) Image-forming lens
JP2597513B2 (en) Microscope objective lens
JPS615221A (en) Refractive index distribution type single lens
JPS6265008A (en) Refractive index distribution type single lens
JPS60140308A (en) Refractive index distribution type single lens
JPH0774857B2 (en) Shooting lens system
JPH023968B2 (en)
JP2004029474A (en) Image forming optical system
USRE33227E (en) Gradient index type single lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees