JPS60140309A - Refractive index distribution type single lens - Google Patents

Refractive index distribution type single lens

Info

Publication number
JPS60140309A
JPS60140309A JP24591683A JP24591683A JPS60140309A JP S60140309 A JPS60140309 A JP S60140309A JP 24591683 A JP24591683 A JP 24591683A JP 24591683 A JP24591683 A JP 24591683A JP S60140309 A JPS60140309 A JP S60140309A
Authority
JP
Japan
Prior art keywords
lens
single lens
refractive index
spherical aberration
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24591683A
Other languages
Japanese (ja)
Other versions
JPH0476085B2 (en
Inventor
Takeshi Baba
健 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24591683A priority Critical patent/JPS60140309A/en
Publication of JPS60140309A publication Critical patent/JPS60140309A/en
Priority to US07/317,957 priority patent/USRE33227E/en
Publication of JPH0476085B2 publication Critical patent/JPH0476085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To correct satisfactorily a spherical aberration by constituting a titled lens so that a luminous flux incident surface and a luminous flux emitting surface of a single lens having a refractive index gradient in the direction vertical to an optical axis used by a reducing magnification form a plane and a convex surface, respectively. CONSTITUTION:In case a single lens having a refractive index gradient in the direction vertical to an optical axis is used by a reducing magnification, a surface of a luminous flux incident side and a surface of its luminous flux emitting side form a plane S1 and a convex surface S2 against an image field side, respectively, and a plano-convex lens is formed. A radius of the convex surface S2, a thickness of the single lens, and a focal distance are denoted as r2, (d), and (f), respectively, so as to satisfy a condition of -1.5<=r2/f<=-0.5, and 0.8<=d/f<=2.8. Also, it is desirable to satisfy 0.4<=¦r2/d¦<=0.6. In this way, a spherical aberration and a sine condition are corrected satisfactorily and easily, and this lens is suitable as a collimator lens and a pickup use objective lens of an optical disk.

Description

【発明の詳細な説明】 本発明は、半導体レーザのコリメータレンズや光ディス
クのピックアップ用対物レンズ等に好適な屈折率分布型
レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gradient index lens suitable for a collimator lens of a semiconductor laser, an objective lens for a pickup of an optical disk, and the like.

従来より、光軸と垂直な方向に屈折率分布を有するレン
ズ、いわゆるラディアル・グラディエンド・インデック
ス・レンズとしては、セルフォックレンズ(商品名)が
良く知られており、正立等倍結像素子として複写機など
に使用されている。
Selfoc lens (trade name) is well known as a so-called radial gradient index lens, which has a refractive index distribution in the direction perpendicular to the optical axis. It is used in copying machines, etc.

近年、この屈折率分布型レンズを単レンズで、デジタル
・オーディオ・ディスク等のピックアップ用対物レンズ
として使用する試みがなされている0 4 th 、 
topical meetinton fradien
t−index optical imafinf s
)’atemにおいては、平凸形体の屈折率分布型レン
ズを使用することが示されている。然しなから、ここで
示された単レンズは軸上収差である球面収差の補正だけ
が考慮されているだけである。これに対して、実際にピ
ックアップ対物レンズ又はコリメータレンズとして使用
する場合には、軸上収差だけではなく、軸外の収差も良
好に補正しなければならない。
In recent years, attempts have been made to use this gradient index lens as a single lens as an objective lens for pickups of digital audio discs, etc.
topical meetington fradien
t-index optical imafinfs
) 'atem shows the use of a gradient index lens with a plano-convex shape. However, in the single lens shown here, only the correction of spherical aberration, which is an axial aberration, is considered. On the other hand, when actually used as a pickup objective lens or a collimator lens, not only axial aberrations but also off-axis aberrations must be well corrected.

本発明の目的は、上述した点を鑑み、球面収差と正弦条
件とが同時に良好に補正された屈折率分布型単レンズを
提供することにある。
In view of the above-mentioned points, it is an object of the present invention to provide a gradient index single lens in which spherical aberration and sine conditions are simultaneously well corrected.

本発明に係る単レンズに於いては、形体は平凸のレンズ
で、該単レンズを縮小倍率で使用する場合には、光束入
射側の面が1噂實澗ト←≠3L入アをrt+単レンズの
肉厚をd、焦点距離をfとすると、 −1,5≦r、/f≦−05 0,8≦d/f≦ 28 なる条件を満たすことにより、上記目的を達成せんとす
るものである。従って、本発明に係る単レンズを光ピツ
クアップの対物レンズトシテ使用する場合は、記録媒体
に凸面が向き、又、半導体レーザのコリメータレンズと
して使用する場合は、半導体レーザに凸面が向くのであ
る。
In the single lens according to the present invention, the shape is a plano-convex lens, and when the single lens is used at a reduction magnification, the surface on the light incident side is If the thickness of the single lens is d and the focal length is f, then the above objective is achieved by satisfying the following conditions: -1,5≦r, /f≦-05 0,8≦d/f≦28 It is something. Therefore, when the single lens according to the present invention is used as an objective lens for an optical pickup, the convex surface faces the recording medium, and when used as a collimator lens for a semiconductor laser, the convex surface faces the semiconductor laser.

更に本発明に係る単レンズに於いては、0.4≦l r
t/d I≦0.6 なる条件を満たすことにより、より良好な収差補正を可
能とするものである。
Furthermore, in the single lens according to the present invention, 0.4≦l r
By satisfying the condition t/d I≦0.6, better aberration correction is possible.

尚、本発明に係る単レンズでは、結像倍率が縮小倍率で
使用する場合に、上述した如くレンズを設置すると言う
仁とは、平面に平行光束ないしけ平行光束に近い光束が
入射又は出射するものである。
In addition, when the single lens according to the present invention is used with the imaging magnification being a reduction magnification, the above-mentioned setting of the lens means that a parallel light beam or a light beam close to a parallel light beam enters or exits a plane. It is something.

以下に本発明を詳述する。The present invention will be explained in detail below.

球面収差と正弦条件を補正するためには、:3次の球面
収差係数、コマ収差係数の値を小さくする必要がある。
In order to correct the spherical aberration and the sine condition, it is necessary to reduce the values of the third-order spherical aberration coefficient and coma aberration coefficient.

屈折率Nが光軸から−の距離rに対して、N(r)= 
No +N、 r” + Nzr’ + N、 r’ 
+ N4r@+ 曲・−(1)(No 、Ns 、K 
、Ns −N4・・・・・・・・・ 一定)と懺わされ
るラディアルグラディエント単レンズにおいて、3次の
収差係数の値に寄与するパラメータは、No、N11N
2及び r、:第1面の曲率半径 r、:第2面 〃 d:厚さ の6つである。このうち軸上屈折率N0は1.4・−1
,8柵度の値しかとれないからNoキ1.6とみなすと
、3次収差係数に寄与するパラメータはrl lr、+
 d + NI+ Ntの5つであると考えられる。
For the distance r where the refractive index N is − from the optical axis, N(r)=
No +N, r” + Nzr' + N, r'
+ N4r@+ Song・-(1) (No, Ns, K
, Ns - N4 (constant)), the parameters that contribute to the value of the third-order aberration coefficient are No, N11N
2 and r, : radius of curvature of first surface r, : second surface 〃 d: thickness. Of these, the axial refractive index N0 is 1.4・-1
, 8 degrees, so if we consider it as No. 1.6, the parameters contributing to the third-order aberration coefficient are rl lr, +
It is thought that there are five: d + NI + Nt.

一方、要求される条件は、 の3つであるから、一方の面が平面であることよりr、
=のに限定しても、条件(2)をみたすr2+d 、 
Nl 、 N、の解は多数存在することが予想される。
On the other hand, the following three conditions are required, so since one surface is flat, r,
Even if it is limited to , r2+d satisfies condition (2),
It is expected that there are many solutions for Nl, N.

これら多数の解のうちから、使用条件に従って、高次収
差の補正可能なもの、あるいは作動距離が適切なものを
選択す石ことができる。
From these many solutions, it is possible to select one that can correct high-order aberrations or one that has an appropriate working distance, depending on the conditions of use.

rt + d * N1 g N2のうち、近軸量に寄
与するのはr、 、 d 、 N、の3つであり、また
P、 J、 5andsによるJour、Opt、 S
oc、Am、+ 60.1436〜1443頁(197
0年)に示されるように、N、は3次の各収差係数と線
形な関係にある。したがって、あるrtに対して、条件
(2)をみたすd 、 N’+ 、Ntは次のような手
順によりめることができる。
Of rt + d * N1 g N2, three contribute to the paraxial quantity: r, , d, N, and P, J, Jour, Opt, S by 5ands
oc, Am, + 60. pp. 1436-1443 (197
0 years), N has a linear relationship with each third-order aberration coefficient. Therefore, for a certain rt, d, N'+, and Nt that satisfy condition (2) can be determined by the following procedure.

■dを任意に与える。■Give d arbitrarily.

(−3(=一定となるようN、をめる。Set N so that (-3(==constant).

■l=oとなるようNtをめる。■Set Nt so that l=o.

■■−0となるようdを変化させて■〜■をくり返す〇 このような手順によりパラメータrt+lN1+N2の
初期値を決定した後は、従来のレンズ設計の場合と同様
に各パラメータを変化させ、各収差のバランスをとれば
よい。
■■ Change d so that it becomes -0 and repeat ■~■ After determining the initial value of the parameter rt+lN1+N2 through these steps, change each parameter as in the case of conventional lens design, It is sufficient to balance each aberration.

また、屈折率分布の高次の係数NS t N41・・・
を導入することにより、さらに良好に球面収差を補正し
、大I」径比をはかることが可能である。
In addition, the higher-order coefficients of the refractive index distribution NS t N41...
By introducing this, it is possible to further correct spherical aberration and achieve a large I'' diameter ratio.

以上の設計過程より次の事実が明らかになった0 まず球面収差と正弦条件の補正に対しては、r、、dが
次の条件を満たすことが望ましい。
The following facts have become clear from the above design process. First, for correction of spherical aberration and sine conditions, it is desirable that r, d satisfy the following conditions.

−1,5≦r@/f≦−0゜5 ・・−・−・−(3−
1)0.8≦d/f≦ 2.8 ・・・・・・・・・・
・・(3−2)r2が条件式(3−1)の上限をこえる
と、球面収差の補正が困難になり、 r2が下限をこえ
ると第2面によるコマ収差補正の効果が得られないO またdが条件式(’1−2)の下限をこえると。
−1,5≦r@/f≦−0゜5 ・・−・−・−(3−
1) 0.8≦d/f≦2.8 ・・・・・・・・・・・・
(3-2) When r2 exceeds the upper limit of conditional expression (3-1), it becomes difficult to correct spherical aberration, and when r2 exceeds the lower limit, the effect of coma aberration correction by the second surface cannot be obtained. O Also, if d exceeds the lower limit of conditional expression ('1-2).

焦点距離を一定に保つためにはN、の絶対値が増大し、
製造困難となるとともに球面収差が悪化する。dが上限
をこえると作動距離が減少する。
In order to keep the focal length constant, the absolute value of N increases,
This makes manufacturing difficult and worsens spherical aberration. When d exceeds the upper limit, the working distance decreases.

球面収差と正弦条件のさらに良好な補正には、次の条件
をさらにあわせてみたすことが望ましいQ O14≦l r2/d l≦0.6・・・・・・・・・
・・・(3−3)即ち、1r21が噌太し、第2而によ
る屈折力が状少しだ場合、焦点距離全一定に保つには、
屈折率分布のもつ屈折力を増大させねばならないが、条
件式(3−3’)の関係をもってdを増大させ、屈折率
勾配の増大を抑制することにより、球面収差と正弦条件
を良好に補正できる。
For better correction of spherical aberration and sine conditions, it is desirable to further satisfy the following conditions: Q O14≦l r2/d l≦0.6...
...(3-3) That is, when 1r21 becomes thicker and the refractive power due to the second lens is in a small state, in order to keep the focal length constant throughout,
Although it is necessary to increase the refractive power of the refractive index distribution, spherical aberration and the sine condition can be well corrected by increasing d according to the relationship of conditional expression (3-3') and suppressing the increase in the refractive index gradient. can.

以下1本発明の実施例に関して述べる。第1表は本発明
に係る単レンズの第1実施例〜第7実施例のレンズデー
タを示すもので、第1図に示す如く、r、は平面の曲率
半径+ rtは凸面の曲率半径、dはレンズの肉厚であ
る。尚、平面の曲率半径r1は無限大であるo No 
+ Nr + Nt + Na +N4は(1)式に示
す様に、単レンズの屈折率分布を定める定数である。又
、レンズデータは焦点距離が1に規格化された時の値を
示す。尚、本願では、第1図に示す様に縮小倍率で使用
する場合の嚇レンズの平面から凸面の方向に光束が進む
場合の、単レンズの光束入射側を物界側、光束出射側を
像界側と規定しており、従って面の曲率半径の値は、曲
率中心が面よりも像界側に存する場合が正、その逆の場
合が負である。
An embodiment of the present invention will be described below. Table 1 shows the lens data of the first to seventh embodiments of the single lens according to the present invention, and as shown in FIG. 1, r is the radius of curvature of the plane + rt is the radius of curvature of the convex surface. d is the thickness of the lens. Note that the radius of curvature r1 of the plane is infinite.
+Nr +Nt +Na +N4 is a constant that determines the refractive index distribution of a single lens, as shown in equation (1). Further, the lens data indicates a value when the focal length is normalized to 1. In this application, when the light beam advances from the flat surface to the convex surface of the threat lens when used at a reduction magnification as shown in Fig. 1, the light beam incident side of the single lens is the object world side, and the light beam exit side is the image side. Therefore, the value of the radius of curvature of the surface is positive when the center of curvature is located on the image field side of the surface, and negative when vice versa.

第 1 表 第2表は、第1表に示す各実施例(階1〜隘7)の、物
体無限遠時のバックフォーカスS’K +3次の球面収
差係数1.コマ収差係数■、非点収差係数■、ペツツヴ
アール和P、歪曲収差係数V及びI rt/d lの値
を示す。
Table 1 Table 2 shows the back focus S'K + third-order spherical aberration coefficient 1. when the object is at infinity for each of the examples (floors 1 to 7) shown in Table 1. The values of the coma aberration coefficient (■), the astigmatism coefficient (■), the Petzval sum P, the distortion aberration coefficient V, and I rt/d l are shown.

弔 2 衣 第2図(a) (b)は、前記第3実施例(醜3)の収
差を示す図で、第2図(a)の実線は球面収差、破線は
正弦条件、第2図(b)の実線は球欠像面湾曲。
Figure 2 (a) and (b) are diagrams showing the aberrations of the third embodiment (Ugly 3), where the solid line in Figure 2 (a) is the spherical aberration, and the broken line is the sine condition. The solid line in (b) represents the spherical field curvature.

破線は子午像面湾曲を示す。第3図は、同じく前記第3
実施例に示されるレンズの光軸と直交する方向の屈折率
分布N(r)を示す図で、縦軸は屈折率N、横軸は光軸
(r−0)からの距離を示す。
Dashed lines indicate meridional field curvature. Figure 3 also shows the third
It is a diagram showing the refractive index distribution N(r) in the direction orthogonal to the optical axis of the lens shown in the example, where the vertical axis shows the refractive index N and the horizontal axis shows the distance from the optical axis (r-0).

前記第4実施例(la4)は、特にNAが0.5程度の
大口径を有し、光ディスクのピックアップ用対物レンズ
等として使用可能である。
The fourth embodiment (la4) has a particularly large aperture with an NA of about 0.5, and can be used as an objective lens for optical disk pickup.

第2図(a)(b)に示す様に、各収差は良好に補正さ
れており、他のレンズの収差も、NA;0.2〜0.3
.半画角3°程度で良好な性能を示す。
As shown in Fig. 2 (a) and (b), each aberration is well corrected, and the aberrations of other lenses are also reduced to NA: 0.2 to 0.3.
.. It shows good performance with a half angle of view of about 3 degrees.

これ等、第1〜第7実施例のいずれに対しても第2表よ
り分る様に、3次球面収差係数、コマ収差係数が良好に
補正されており、大口径化にあたっては高次の屈折率分
布の係数の制御によシ、高次の球面収差を補正すれば良
い。
As can be seen from Table 2 for all of the first to seventh embodiments, the third-order spherical aberration coefficient and coma aberration coefficient are well corrected, and when increasing the aperture, higher-order Higher-order spherical aberrations can be corrected by controlling the coefficients of the refractive index distribution.

また、実施例においては球面収差の補正を屈折率分布の
係数I Nt l N’31・・・によシ行なっている
が、同様な効果は第2面に非球面を導入することによっ
ても得られる。
In addition, in the embodiment, the spherical aberration is corrected by the coefficient I Nt l N'31... of the refractive index distribution, but a similar effect can also be obtained by introducing an aspheric surface to the second surface. It will be done.

なぜなら、屈折率勾配により発生する3次の球面収差係
数に対しては、N2はL x/ h”(x) dx。
This is because for the third-order spherical aberration coefficient caused by the refractive index gradient, N2 is L x/h''(x) dx.

3次コマ収差係数に対してはNt x/ h26cl 
h (x) dxという形で寄与する。ここで、h(x
)は不均質媒質内部の点における近軸軸上光線の高さ、
h(x)は近軸主光線の高さであわ、積分は不均質媒質
の光軸方向に行なう。従って、これらの積分値はr、H
r2 、d HNo HN(と、物体、入射瞳位置のみ
によって定まるが、入射瞳がレンズ近傍にあり、あまり
レンズが長くないとすると、h(x)はh(幻よシかな
シ小さい値となり、N2はコマ収差係数に対してはほと
んど影響を与えない。即ち、コマ収差係数の値はrt 
+ rt + d + No + N+と物体距離だけ
で定まる。
For the third-order coma aberration coefficient, Nt x/h26cl
It contributes in the form of h (x) dx. Here, h(x
) is the height of the paraxial ray at a point inside the heterogeneous medium,
h(x) is the height of the paraxial principal ray, and integration is performed in the optical axis direction of the heterogeneous medium. Therefore, these integral values are r, H
r2 , d HNo HN (determined only by the object and entrance pupil position, but if the entrance pupil is near the lens and the lens is not very long, then h(x) will be a small value, N2 has almost no effect on the coma aberration coefficient.That is, the value of the coma aberration coefficient is rt
It is determined only by + rt + d + No + N+ and the object distance.

N、による球面収差の補正効果を第2面の4次の非球面
係数により得ることは容易であるが、その場合もやはり
4次非球面係数はコマ収差係数に寄与しない。球面収差
を補正した段階では、コマ収差係数は入射瞳位置に関係
しないから入射瞳が第2面にあるとすると4次非球面係
数のコマ収差係数への寄与は0となる。
It is easy to obtain the effect of correcting the spherical aberration due to N by the fourth-order aspherical coefficient of the second surface, but in that case, the fourth-order aspherical coefficient does not contribute to the coma aberration coefficient. At the stage where the spherical aberration is corrected, the coma aberration coefficient is not related to the entrance pupil position, so if the entrance pupil is located on the second surface, the contribution of the fourth-order aspherical coefficient to the coma aberration coefficient becomes 0.

このような事情は高次収差に対しても基本的にかわりは
ないから、屈折率分布の係数N2.N、。
This situation is basically the same for higher-order aberrations, so the coefficient N2. of the refractive index distribution. N.

・・・は4次、6次・・・の非球面係数と収差補正上、
はとんど等価である。
... is based on the 4th and 6th order aspheric coefficients and aberration correction,
are almost equivalent.

第4図は、本発明の単レンズを光ディスクのピンクアッ
プ用対物レンズとして応用した場合の一部概略図である
。第4図に於いて、lは本発明における単レンズ% 2
は元デ゛イスクのガラス板である。tはガラス板の厚さ
s NGはガラス板の屈折率、WDは単レンズとガラス
板の空気間隔である。
FIG. 4 is a partial schematic diagram of the case where the single lens of the present invention is applied as an objective lens for pinking up an optical disk. In FIG. 4, l is the single lens in the present invention % 2
is the glass plate of the original disk. t is the thickness s of the glass plate, NG is the refractive index of the glass plate, and WD is the air distance between the single lens and the glass plate.

第3衣に、t=1.2、NO−2,52、\VD=0.
87とじん場合の単レンズ1のレンズデータの1例を示
す0 第 3 表 第4表はこの時の焦点距離f、単レンズの空気換算バク
フォーカスS’K + 3 次の各収差係数。
For the third garment, t=1.2, NO-2,52, \VD=0.
Table 4 shows an example of the lens data of the single lens 1 in the case of 87 dust. Table 4 shows the focal length f at this time, the air-equivalent back focus S'K + 3rd order aberration coefficients of the single lens.

及び+ rt/a +の値を示す。and +rt/a+ values are shown.

第 4 表 又、第5図(a) (b)にこの単レンズの収差を示す
Table 4 and FIGS. 5(a) and 5(b) show the aberrations of this single lens.

尚、第5図(a)の実線及び破線は第2図(a)のそれ
と、第5図(b)の実線及び破線は第2図(b)のそれ
と同一のものを示す。
The solid lines and broken lines in FIG. 5(a) are the same as those in FIG. 2(a), and the solid lines and broken lines in FIG. 5(b) are the same as those in FIG. 2(b).

この様な本発明に係る単レンズの適用は、第1表より適
切なバックフォーカスをもつものを選択し、ガラス板2
による球面収差の悪化を補正するだけで容易に達゛成さ
れる。
To apply such a single lens according to the present invention, select a lens with an appropriate back focus from Table 1, and attach it to the glass plate 2.
This can be easily achieved by simply correcting the deterioration of spherical aberration caused by.

尚、第2表、第4表の収差係数、第2図、第5図の収差
図は、いずれも物体無限遠、入射瞳は画側主点゛位置に
一致している状態の値である。
Note that the aberration coefficients in Tables 2 and 4 and the aberration diagrams in Figures 2 and 5 are values when the object is at infinity and the entrance pupil is aligned with the principal point on the image side. .

また、本発明においては、第3図のごとく、レンズの光
軸付近でごく弱い負ないしは正の屈折率勾配、レンズ周
辺で強い正の屈折率勾配をもつことが高次の球面収差の
補正の上で望ましい。このような屈折率分布はY、 K
oike 、 Y。
In addition, in the present invention, as shown in Figure 3, it is possible to correct higher-order spherical aberrations by having a very weak negative or positive refractive index gradient near the optical axis of the lens and a strong positive refractive index gradient around the lens. preferred above. Such a refractive index distribution is Y, K
oike, Y.

0htsuka : ApPlied 01)ties
 + 22 + 418〜423頁(1983年)Kみ
られるような光共重合法等によって形成することができ
る。
0htsuka: ApPlied 01)ties
It can be formed by a photocopolymerization method as shown in K. + 22 + pp. 418-423 (1983).

また、イオン交換法においては、短時間のイオン交換に
より屈折率を上昇させる効果をもつイオン、例えばTL
+、 Cs+等をレンズ周辺部に分布させることにより
可能である。
In addition, in the ion exchange method, ions that have the effect of increasing the refractive index by short-term ion exchange, such as TL, are used.
+, Cs+, etc., by distributing them around the lens periphery.

以上のように、本発明においては一方の端面が平面であ
りながら良好な性能を有し、このことはレンズの加工や
検査が著しく容易になるだけでなく、レンズ鏡筒の構造
も著しく簡素化される。
As described above, the present invention has good performance even though one end surface is flat, and this not only greatly facilitates lens processing and inspection, but also significantly simplifies the structure of the lens barrel. be done.

例えば、第4図で説明した光ディスクのピックアップ用
対物レンズの場合、通常光ディスク面損れや偏心に対処
するため、オートフォーカス機構とオートトラッキング
機構が必要とされる。このため、対物レンズをアクチュ
エータと呼ばれる電磁駆動の可動素子に取り付け、対物
レンズを光軸方向及び光軸と直交方向に移動させる方法
が用いられている。
For example, in the case of the optical disk pickup objective lens described in FIG. 4, an autofocus mechanism and an autotracking mechanism are usually required to deal with optical disk surface damage and eccentricity. For this reason, a method is used in which the objective lens is attached to an electromagnetically driven movable element called an actuator, and the objective lens is moved in the direction of the optical axis and in the direction perpendicular to the optical axis.

このような場合、駆動の応答性を高めるには、対物レン
ズ自体、及びレンズを支持するレンズ鏡筒の軽量化が要
求される。
In such a case, in order to improve drive responsiveness, it is necessary to reduce the weight of the objective lens itself and the lens barrel that supports the lens.

本発明においては、対物レンズが単レンズであり、軽量
であるが対物レンズの第1面が平面であるために、レン
ズ鏡筒やアクチュエータへの取付は機構も著しく簡素化
される。
In the present invention, the objective lens is a single lens and is lightweight, but since the first surface of the objective lens is flat, the mechanism for attaching it to a lens barrel or actuator is significantly simplified.

第6図は、本発明における光ディスクのピックアップ用
対物レンズとアクチュエータの取り付は方の一例を示す
FIG. 6 shows an example of how to attach an optical disk pickup objective lens and an actuator according to the present invention.

lは本発明における単レンズ、3は簡単化して描いたア
クチュエータの可動部であり、単レンズlの平面である
第1面を可動部の端面に接着するだけでよい。
1 is a single lens according to the present invention, 3 is a simplified movable part of the actuator, and it is only necessary to bond the first surface of the single lens 1, which is a flat surface, to the end surface of the movable part.

このように本発明の単レンズにおいては、第1面が平面
であることにより、レンズ自体の加工が著しく容易であ
り、またレンズを支持するレンズ鏡筒の構造も著しく簡
単化、軽量化される0 まだ、レンズ前方にプリズム等を配置して使用する場合
にもプリズム表面と本発明の単レンズ端面を接着して使
用することにより、鏡筒構造の簡単化の他、表面反射を
減少させる効果も得られる。
In this way, in the single lens of the present invention, since the first surface is flat, processing of the lens itself is extremely easy, and the structure of the lens barrel that supports the lens is also significantly simplified and lightened. 0 Even when a prism or the like is placed in front of the lens, by bonding the prism surface and the end face of the single lens of the present invention, it is possible to simplify the lens barrel structure and reduce surface reflection. You can also get

以上述べた実施例では、縮小倍率で使用する場合の実施
例として、平面に対し物点が無限遠に存在する場合を例
示したが、物点は平面から有限な距離であっても、縮小
倍率で使用するならば、嚇レンズの性能は良好である。
In the embodiments described above, the case where the object point exists at an infinite distance from the plane is illustrated as an example of using the reduction magnification. However, even if the object point is at a finite distance from the plane, the reduction magnification The performance of the intimidation lens is good if used in

本願では、単レンズにより球面収差と正弦条件を補正す
るものであるが、この様な単レンズは、組み合わせレン
ズの一素子としても有効に活用され得るものである。
In the present application, spherical aberration and sine conditions are corrected using a single lens, but such a single lens can also be effectively utilized as one element of a combination lens.

以上述べた様に、本発明による屈折率分布型単レンズに
よると、球面収差と正弦条件の補正が可能で、コリメー
タレンズや光ディスクのピックアップ用対物レンズとし
て使用可能である。
As described above, according to the gradient index single lens according to the present invention, it is possible to correct spherical aberration and sine conditions, and it can be used as a collimator lens or an objective lens for picking up an optical disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る単レンズの形状を示す図、第2図
(a)(b)は本発明に係る単レンズの一実施例の収差
を示す図、第3図は本発明に係る単レンズの一実施例の
屈折率分布を示す図、第4図は本発明に係る単レンズを
光ディスクのピックアップレンズとして使用した場合の
概略図、第5図(a) (b)は第4図に示す単レンズ
の一実施例の収差図、第6図は本発明に係る単レンズを
光ディスクのピックアップレンズとして使用した場合の
レンズ支持の一実施例を示す図。 1・・・屈折率分布型単レンズ、2・・ガラス板、3・
・アクチュエーター町動部、rl+rt・・・曲率半径
、d・・・軸上肉厚、N、NQ・・・屈折率、 W、 
D・・・軸上空気間隔、t・・・ガラス板の厚さ。 出願人 キャノン株式会社 第30 η4霞
FIG. 1 is a diagram showing the shape of a single lens according to the present invention, FIGS. 2(a) and (b) are diagrams showing aberrations of an example of the single lens according to the present invention, and FIG. 3 is a diagram showing the shape of a single lens according to the present invention. A diagram showing the refractive index distribution of an example of a single lens, FIG. 4 is a schematic diagram when the single lens according to the present invention is used as a pickup lens for an optical disk, and FIGS. 5(a) and (b) are FIG. FIG. 6 is an aberration diagram of an embodiment of the single lens shown in FIG. 1... Gradient index single lens, 2... Glass plate, 3...
・Actuator moving part, rl+rt...radius of curvature, d...axial wall thickness, N, NQ...refractive index, W,
D...axial air gap, t...thickness of the glass plate. Applicant Canon Co., Ltd. No. 30 η4 Kasumi

Claims (1)

【特許請求の範囲】 (1)光軸と垂直な方向に屈折率分布を有する単レンズ
に於いて、該単レンズを縮小倍率で使用する場合の光束
入射側の面が平面を、同じく光束射出側の面が凸面を形
成しており、前記光束出射側の面の曲率半径をr、、d
を単レンズの肉厚、fを単レンズの焦点距離とすると、 −1,5≦r、/f≦−0,5 0,8≦d/f≦ 2.8 葎 であることを特徴とする屈折率分布型!ンズ。 (2) 前記dとr、とは、 0.4≦l rz/d I≦0.6 なる関係である特許請求の範囲第1項記載の屈折率分布
型単レンズ。
[Claims] (1) In a single lens having a refractive index distribution in a direction perpendicular to the optical axis, when the single lens is used at a reduction magnification, the surface on the incident side of the light beam is a flat surface, and the surface on the light beam exit side is also a flat surface. The side surface forms a convex surface, and the radius of curvature of the surface on the light beam output side is r, d.
When is the thickness of the single lens and f is the focal length of the single lens, -1,5≦r, /f≦-0,5 0,8≦d/f≦2.8. Refractive index distribution type! ns. (2) The gradient index single lens according to claim 1, wherein the relationship between d and r is as follows: 0.4≦l rz/d I≦0.6.
JP24591683A 1983-12-28 1983-12-28 Refractive index distribution type single lens Granted JPS60140309A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24591683A JPS60140309A (en) 1983-12-28 1983-12-28 Refractive index distribution type single lens
US07/317,957 USRE33227E (en) 1983-12-28 1989-03-02 Gradient index type single lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24591683A JPS60140309A (en) 1983-12-28 1983-12-28 Refractive index distribution type single lens

Publications (2)

Publication Number Publication Date
JPS60140309A true JPS60140309A (en) 1985-07-25
JPH0476085B2 JPH0476085B2 (en) 1992-12-02

Family

ID=17140741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24591683A Granted JPS60140309A (en) 1983-12-28 1983-12-28 Refractive index distribution type single lens

Country Status (1)

Country Link
JP (1) JPS60140309A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755029A (en) * 1986-05-22 1988-07-05 Olympus Optical Co., Ltd. Objective for an endoscope
US4964703A (en) * 1985-11-22 1990-10-23 Canon Kabushiki Kaishi Image-forming lens
CN103119661A (en) * 2010-09-23 2013-05-22 3M创新有限公司 Shielded electrical cable
US8466365B2 (en) 2010-08-31 2013-06-18 3M Innovative Properties Company Shielded electrical cable
US8658899B2 (en) 2009-06-19 2014-02-25 3M Innovative Properties Company Shielded electrical cable
US9064612B2 (en) 2010-08-31 2015-06-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964703A (en) * 1985-11-22 1990-10-23 Canon Kabushiki Kaishi Image-forming lens
US4755029A (en) * 1986-05-22 1988-07-05 Olympus Optical Co., Ltd. Objective for an endoscope
US9686893B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US10448547B2 (en) 2009-06-19 2019-10-15 3M Innovative Properties Company Shielded electrical cable
US10306819B2 (en) 2009-06-19 2019-05-28 3M Innovative Properties Company Shielded electrical cable
US8658899B2 (en) 2009-06-19 2014-02-25 3M Innovative Properties Company Shielded electrical cable
US10080319B2 (en) 2009-06-19 2018-09-18 3M Innovative Properties Company Shielded electrical cable
US9035186B2 (en) 2009-06-19 2015-05-19 3M Innovative Properties Company Shielded electrical cable
US9883620B2 (en) 2009-06-19 2018-01-30 3M Innovative Properties Company Shielded electrical cable
US9763369B2 (en) 2009-06-19 2017-09-12 3M Innovative Properties Company Shielded electrical cable
US9715951B2 (en) 2009-06-19 2017-07-25 3M Innovative Properties Company Shielded electrical cable
US9685259B2 (en) 2009-06-19 2017-06-20 3M Innovative Properties Company Shielded electrical cable
US9892823B2 (en) 2010-08-31 2018-02-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10109396B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9607734B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US9627106B2 (en) 2010-08-31 2017-04-18 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9646740B2 (en) 2010-08-31 2017-05-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9653195B2 (en) 2010-08-31 2017-05-16 3M Innovative Properties Company Shielded electrical cable
US9666332B1 (en) 2010-08-31 2017-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9595371B2 (en) 2010-08-31 2017-03-14 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9502154B1 (en) 2010-08-31 2016-11-22 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9704619B1 (en) 2010-08-31 2017-07-11 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9449738B2 (en) 2010-08-31 2016-09-20 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9715952B2 (en) 2010-08-31 2017-07-25 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9443644B2 (en) 2010-08-31 2016-09-13 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9786411B2 (en) 2010-08-31 2017-10-10 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9865378B2 (en) 2010-08-31 2018-01-09 3M Innovative Properties Company Shielded electrical cable
US11923112B2 (en) 2010-08-31 2024-03-05 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US9064612B2 (en) 2010-08-31 2015-06-23 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10056170B2 (en) 2010-08-31 2018-08-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US11699536B2 (en) 2010-08-31 2023-07-11 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10090082B2 (en) 2010-08-31 2018-10-02 3M Innovative Properties Company Shielded electrical cable
US10109397B2 (en) 2010-08-31 2018-10-23 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US9607735B2 (en) 2010-08-31 2017-03-28 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10134506B2 (en) 2010-08-31 2018-11-20 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10147522B2 (en) 2010-08-31 2018-12-04 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US8466365B2 (en) 2010-08-31 2013-06-18 3M Innovative Properties Company Shielded electrical cable
US10340059B2 (en) 2010-08-31 2019-07-02 3M Innovative Properties Company Shielded electrical cable
US10347393B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10347398B2 (en) 2010-08-31 2019-07-09 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US10373734B2 (en) 2010-08-31 2019-08-06 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10438725B2 (en) 2010-08-31 2019-10-08 3M Innovative Properties Company Electrical characteristics of shielded electrical cables
US11688530B2 (en) 2010-08-31 2023-06-27 3M Innovative Properties Company Shielded electric cable
US10573427B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical ribbon cable with dielectric spacing
US10573432B2 (en) 2010-08-31 2020-02-25 3M Innovative Properties Company Shielded electrical cable
US10629329B2 (en) 2010-08-31 2020-04-21 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10784021B2 (en) 2010-08-31 2020-09-22 3M Innovative Properties Company Shielded electrical cable
US10896772B2 (en) 2010-08-31 2021-01-19 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
US10998111B2 (en) 2010-08-31 2021-05-04 3M Innovative Properties Company Shielded electrical cable
US11348706B2 (en) 2010-08-31 2022-05-31 3M Innovative Properties Company Shielded electrical cable
US11488745B2 (en) 2010-08-31 2022-11-01 3M Innovative Properties Company Shielded electrical cable
US11651871B2 (en) 2010-08-31 2023-05-16 3M Innovative Properties Company Shielded electric cable
US11664137B2 (en) 2010-08-31 2023-05-30 3M Innovative Properties Company High density shielded electrical cable and other shielded cables, systems, and methods
CN103119661A (en) * 2010-09-23 2013-05-22 3M创新有限公司 Shielded electrical cable
US8859901B2 (en) 2010-09-23 2014-10-14 3M Innovative Properties Company Shielded electrical cable
US9129724B2 (en) 2010-09-23 2015-09-08 3M Innovative Properties Company Shielded electrical cable

Also Published As

Publication number Publication date
JPH0476085B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US9678305B2 (en) Inner focus lens
US9841608B2 (en) Inner focus lens
JPH09325274A (en) Zoom lens
JPH06235858A (en) High performance photographic lens
JPH11183796A (en) Image pickup optical system
JPS60140309A (en) Refractive index distribution type single lens
JPH0961708A (en) Standard lens system
JPS6361213A (en) Inverted telephoto type wide angle lens
JPS6113206B2 (en)
JP2001183581A (en) Medium telephoto lens
JP2637317B2 (en) Projection lens
JPH0423763B2 (en)
JPS5965820A (en) Telephoto lens system
JPS59100409A (en) Objective lens for microscope
JPH0244042B2 (en)
JPS63294506A (en) High variable power zoom lens including wide angle range
US4836665A (en) Objective lens
JP3500473B2 (en) Wide-angle lens
JPH0823626B2 (en) Objective lens for optical disc
JPH0526170B2 (en)
JP2002267928A (en) Image pickup lens
JP3118030B2 (en) Ultra wide-angle lens with compact rear focus
JPS60225816A (en) Distributed refractive index type single lens
JPH04255813A (en) Inner focusing type telephoto lens
JPS615220A (en) Refractive index distribution type single lens