JPH0774857B2 - Shooting lens system - Google Patents

Shooting lens system

Info

Publication number
JPH0774857B2
JPH0774857B2 JP59235597A JP23559784A JPH0774857B2 JP H0774857 B2 JPH0774857 B2 JP H0774857B2 JP 59235597 A JP59235597 A JP 59235597A JP 23559784 A JP23559784 A JP 23559784A JP H0774857 B2 JPH0774857 B2 JP H0774857B2
Authority
JP
Japan
Prior art keywords
lens
refractive index
optical axis
point
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59235597A
Other languages
Japanese (ja)
Other versions
JPS61113017A (en
Inventor
博喜 中山
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59235597A priority Critical patent/JPH0774857B2/en
Publication of JPS61113017A publication Critical patent/JPS61113017A/en
Publication of JPH0774857B2 publication Critical patent/JPH0774857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/02Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having one + component only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/10Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only one + and one - component
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Description

【発明の詳細な説明】 本発明は、連続的に屈折率が変化する、殊に光軸方向に
変化するレンズを含むレンズのみからなる、あるいはレ
ンズとミラーを組合せてなる光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system which includes only a lens including a lens whose refractive index changes continuously, and particularly changes in the optical axis direction, or a combination of a lens and a mirror.

レンズの開発は画質の向上を中心に進められるが、レン
ズの小型化あるいは画質を維持しつつレンズ枚数を減少
させる試みも同時に行われ、設計技術の向上ばかりでな
く非球面の導入、新光学素材の採用が行われる。
The development of lenses is focused on improving the image quality, but at the same time, attempts are being made to reduce the size of the lens or reduce the number of lenses while maintaining the image quality, not only improving design technology but also introducing aspherical surfaces and new optical materials. Is adopted.

この様な開発の一分野として屈折率が連続的に変化する
レンズ、いわゆる屈折率分布型レンズを有する撮影レン
ズが提案されている。その場合、屈折率の分布は半径方
向に連続しているものが大方想定されていたが、口径の
大きなレンズ素材を製造する点に困難が在していた。
As one field of such development, a photographing lens having a lens whose refractive index continuously changes, that is, a so-called gradient index lens has been proposed. In that case, it was generally assumed that the distribution of the refractive index was continuous in the radial direction, but there was a difficulty in manufacturing a lens material having a large aperture.

一方、近年、光軸方向に屈折率の連続分布したレンズを
使用した接眼レンズおよび撮影レンズがAPPLIED OPTIC
S,1983年1月号(vol.22,No.3)407〜412頁および1984
年6月号(vol.23,No.11)1735〜1741頁に掲載されてい
る。そしてその設計例の、光軸方向に屈折率が変化し分
布は単調に増加もしくは減少する形式のものが採用され
ており、実用化への模索がつづけられている。
On the other hand, in recent years, the APPLIED OPTIC eyepieces and shooting lenses that use lenses with a continuous refractive index distribution along the optical axis
S, January 1983 (vol.22, No.3) pages 407-412 and 1984
June issue (vol.23, No.11), pages 1735-1741. A design example in which the refractive index changes in the optical axis direction and the distribution monotonically increases or decreases is adopted, and a search for practical application is continued.

(目的) 本発明の目的は、屈折率が光軸方向に連続的に変化する
特質を更に生かして、高度の収差補正を達成する事であ
る。
(Object) An object of the present invention is to achieve a high degree of aberration correction by further utilizing the characteristic that the refractive index continuously changes in the optical axis direction.

以上の目的を達成するために、撮影レンズ系を構成する
レンズの少なくとも1枚のレンズは、所定の曲率半径の
レンズ面を有し、このレンズの屈折率は光軸に沿った平
行な方向だけに屈折率が変化し、レンズ内の位置でその
屈折率の分布が極値を持つ様にしている。
In order to achieve the above object, at least one lens of the lenses constituting the taking lens system has a lens surface with a predetermined radius of curvature, and the refractive index of this lens is only in a direction parallel to the optical axis. The refractive index is changed so that the distribution of the refractive index has an extreme value at the position inside the lens.

第1図は正レンズ1へ入射した光線の挙動を示してお
り、図の下方に示した曲線図は屈折率の分布を示してい
る。21は正レンズ1の入射面と光軸の交点、22は射出面
と光軸の交差である。Aは通常の均質光学ガラスの屈折
率で光軸方向に沿つて一定値となる。Bは光軸上で、光
軸方向に沿つて屈折率が連続的に変化する場合で、特に
屈折率は単調増加する。Cは本発明に係るレンズの屈折
率分布で、光軸上(そして木端面23上)の1点に屈折率
の極値(極小値)を持つ。光軸方向に屈折率が変化して
いる光学素材の屈折率分布は、光軸方向の距離をxと
し、その地点での屈折率をN(x)とすると、 N(x)=N0+N1x+N2x2+N3x3+N4x4 ………(1) で表わすことができる。尚、N0,N1……は定数。
FIG. 1 shows the behavior of a light ray incident on the positive lens 1, and the curve diagram shown in the lower part of the figure shows the distribution of the refractive index. Reference numeral 21 is the intersection of the incident surface of the positive lens 1 and the optical axis, and 22 is the intersection of the exit surface and the optical axis. A is a refractive index of ordinary homogeneous optical glass and has a constant value along the optical axis direction. B is a case where the refractive index continuously changes along the optical axis direction on the optical axis, and in particular, the refractive index monotonically increases. C is the refractive index distribution of the lens according to the present invention, and has an extreme value (minimum value) of the refractive index at one point on the optical axis (and on the wood end face 23). The refractive index distribution of an optical material whose refractive index changes in the optical axis direction is N (x) = N 0 + N, where x is the distance in the optical axis direction and N (x) is the refractive index at that point. 1 x + N 2 x 2 + N 3 x 3 + N 4 x 4 ……… (1) Note that N 0 , N 1 ... are constants.

正レンズ1を射出する光線A′,B′,C′は順に屈折率分
布の型式A,B,Cに対応し、正レンズ1へ入射する光線11
は近軸軸上光線、12は開放に近い状態の軸上光線であ
る。レンズ1がA型式の屈折率分布を持つ場合、入射面
上の1点13へ入射した光線12は入射面と射出面で従来知
られた屈折状態となり、光線A′は近軸軸上光線11の入
射位置よりレンズ寄りに収束し、球面収差は補正不足と
なる。B型式の場合、点21で屈折率が最も低く点22で最
も高くなる。従つて点13の位置の屈折率は点21の屈折率
より高いのでそれだけ光線の屈折が大きく、他方点15に
おいては点22より屈折率が低いので光線の屈折は小さく
なる。その結果、光線B′の球面収差はやや補正不足と
なる。
The light rays A ', B', C'that emerge from the positive lens 1 correspond to the types A, B, C of the refractive index distribution in order, and the light rays 11 incident on the positive lens 1
Is a paraxial ray, and 12 is an axial ray in a state close to open. When the lens 1 has an A-type refractive index distribution, the light ray 12 incident on one point 13 on the incident surface enters the conventionally known refraction state on the incident surface and the exit surface, and the light ray A'is a paraxial ray 11 Is converged toward the lens from the incident position of, and the spherical aberration is undercorrected. In the case of the B type, the refractive index is lowest at point 21 and highest at point 22. Therefore, since the refractive index at the position of the point 13 is higher than the refractive index of the point 21, the refraction of the light ray is larger, and at the point 15, the refraction index of the light ray is lower than that of the point 22, so the refraction of the light ray becomes small. As a result, the spherical aberration of the light beam B ′ is slightly undercorrected.

一方、レンズ内に極値を持つたC型式の屈折率分布の場
合、軸上光線12が点13へ入射すると、点13の屈折率は点
21の屈折率より低いので光線の屈折は小さく、また射出
面上の点16は点22よりも屈折率が低いので、光線C′は
近軸軸上光線11と同位置に収束する。即ち、屈折率分布
の極値をレンズ内に持たせた結果、収差を2面に分けて
有効に分担させることが可能となり、球面収差が補正不
足になることはないわけである。
On the other hand, in the case of the C-type refractive index distribution having an extreme value in the lens, when the axial ray 12 enters the point 13, the refractive index at the point 13 becomes
Since the ray 16 has a lower refractive index than that of 21 and the point 16 on the exit surface has a lower refractive index than the point 22, the ray C ′ converges at the same position as the paraxial ray 11. That is, as a result of having the extreme value of the refractive index distribution in the lens, it becomes possible to divide the aberration into two surfaces and effectively share them, and spherical aberration will not be undercorrected.

第2図は軸外光束のふるまいを示している。図の下方の
屈折率分布の図は拡大して描いている。正レンズ2と負
レンズ2は正の接合レンズを形成し、背後に絞りが配さ
れている。正レンズ2は均質ガラスのレンズで、屈折率
はDに示す様に一定値である。また負レンズ3に均質ガ
ラスを使つたときの屈折率分布をEとし、本発明に係る
屈折率分布をFとする。本例はレンズ中に屈折率分布の
極大値が存在する型式であつて、光軸位置では屈折率は
単調に減少するが、木端位置の1点で極値を持つ。尚、
正レンズの均質ガラスの屈折率は負レンズの屈折率分布
(1)式のN0より大きい。
FIG. 2 shows the behavior of off-axis light flux. The diagram of the refractive index distribution in the lower part of the figure is enlarged. The positive lens 2 and the negative lens 2 form a positive cemented lens, and a diaphragm is arranged behind. The positive lens 2 is a lens made of homogeneous glass and has a constant refractive index as indicated by D. Further, the refractive index distribution when homogeneous glass is used for the negative lens 3 is E, and the refractive index distribution according to the present invention is F. This example is a type in which the maximum value of the refractive index distribution exists in the lens, and the refractive index monotonically decreases at the optical axis position, but has an extreme value at one point at the tree edge position. still,
The refractive index of the homogeneous glass of the positive lens is larger than N 0 in the refractive index distribution (1) of the negative lens.

E′は、正と負の両レンズが共に均質レンズの場合の射
出光線であるが、接合面上の1点17及び射出面上の1点
18で通常の屈折挙動を示す。これに対し、負レンズ3が
Fで示す屈折率分布を持つと、点17から負レンズ3へ入
射した軸外光線25は、接合面前後の屈折率差が点23にお
ける屈折率差に比べて大きいので屈折の割合が大きくな
り、一定の屈折率を持つE型式の負レンズを接合した場
合に比してF線によるコマ収線の補正に役立つ。更に射
出面上の点19に於いても、射出面前後の屈折率差は点24
での屈折率差に比べて大きいから、E型式の場合に比較
して屈折率の割合が大きく、よりF線によるコマ収差の
補正に役立つ。
E'is the exit ray when both the positive and negative lenses are homogeneous lenses. One point is 17 on the cemented surface and one point is on the exit surface.
18 shows normal refraction behavior. On the other hand, if the negative lens 3 has a refractive index distribution indicated by F, the off-axis ray 25 entering the negative lens 3 from the point 17 has a refractive index difference before and after the cemented surface as compared with the refractive index difference at the point 23. Since it is large, the ratio of refraction becomes large, and it is useful for correcting the coma convergence due to the F line as compared with the case where an E type negative lens having a constant refractive index is cemented. Furthermore, even at point 19 on the exit surface, the difference in refractive index before and after the exit surface is point 24.
Since it is larger than the difference in the refractive index at 1, the ratio of the refractive index is larger than that in the case of the E type, and it is more useful for correcting coma aberration by the F line.

以上、補正作用を例示した様に本発明の構成によれば、
レンズの光軸位置と木端位置との夫々の少くとも1箇所
で屈折率分布に極値を持たせることができ、あるいは光
軸位置と木端位置のどちらか一方の分布を単調増加又は
減少とし、更にはこれらの組合せが実現できるわけで、
極値の位置と面形状を適宜選定することにより所望の収
差を有効に補正できる。
As described above, according to the configuration of the present invention as exemplified by the correction action,
It is possible to give an extreme value to the refractive index distribution at at least one of the optical axis position and the tree edge position of the lens, or monotonically increase or decrease the distribution of either the optical axis position or the tree edge position. And further, because these combinations can be realized,
A desired aberration can be effectively corrected by appropriately selecting the extreme value position and the surface shape.

尚、光軸方向に変化する屈折率分布を持つレンズの入射
面又は射出面そして好ましくは両面の屈折率分布の、光
軸から任意の高さの位置に於ける光軸方向の微小変化を
dN(x)/dxとし、その面の曲率半径をr、そしてこの
レンズを含む全系の焦点距離をfとすると、下式を満足
するのが望ましい。
It should be noted that a minute change in the optical axis direction at a position at an arbitrary height from the optical axis of the refractive index distribution of the entrance surface or the exit surface of a lens having a refractive index distribution that changes in the optical axis direction, and preferably on both surfaces.
When dN (x) / dx, the radius of curvature of the surface is r, and the focal length of the entire system including this lens is f, it is desirable to satisfy the following equation.

それはこの(2)式の範囲を逸脱すると、曲率半径rに
対する屈折率分布の軸上変化率が大きすぎるので、曲率
半径に沿つた軸上と周辺での屈折率差が大きくなりす
ぎ、曲率半径rがゆるくなつてしまう。そうなると式
(1)に従うレンズは、レンズ内部に屈折力を持たない
のでレンズ自体は弱い屈折率しか持てなくなり、屈折力
の分担が他の面、及びレンズで大きくなつて像面彎曲の
発生等、収差の劣化に結びつき易い。
If it deviates from the range of the equation (2), the axial change rate of the refractive index distribution with respect to the radius of curvature r is too large, so that the difference in the refractive index between the axis and the periphery along the radius of curvature becomes too large, and the radius of curvature r becomes loose. In that case, the lens according to the formula (1) does not have a refractive power inside the lens, so that the lens itself has only a weak refractive index, and the share of the refractive power is increased in other surfaces, and when the lens is large, the occurrence of image surface curvature, etc. It easily leads to deterioration of aberration.

以下、第1図を使つて説明した球面収差補正作用を適用
したレンズのデータを記載する。第3図にレンズ断面形
状を示し、第4図に物体距離60Fに対する諸収差を示
す。第3正レンズが屈折率分布を具える。
Hereinafter, the data of the lens to which the spherical aberration correcting action described with reference to FIG. 1 is applied will be described. FIG. 3 shows the lens cross-sectional shape, and FIG. 4 shows various aberrations with respect to the object distance of 60F. The third positive lens has a refractive index distribution.

Riは第i番目のレンズ面の曲率半径、Diは第i番目のレ
ンズ面と第i+1番目のレンズ面の間の肉厚又は空気間
隔、Niは第i番目のレンズの屈折率でνiはアツベ数で
ある。
R i is the radius of curvature of the i-th lens surface, D i is the wall thickness or the air gap between the i-th lens surface and the (i + 1) th lens surface, and N i is the refractive index of the i-th lens. ν i is an Atsube number.

例1 焦点距離f=40.0 Fナンバー=1:3.5 画角2ω=65° R1= 13.802 D1=4.99 N1=1.77250 ν1=49.6 R2= 33.483 D2=2.08 R3=−43.392 D3=2.73 N2=1.72825 ν2=28.5 R4= 13.753 D4=1.21 R5= 28.681 D5=3.47 N3=N(x) R6=−32.033 但し、N(x)=1.8340−3.43877×10-3x+1.36703×1
0-2x2 次のレンズは第2図を使つて説明した軸外光束のF線に
よるフレアを除去した例である。第5図にレンズ断面形
状を示し、第6図に物体距離60Fに対する諸収差を示
す。第3接合レンズの負レンズが屈折率分布を具える。
Example 1 Focal length f = 40.0 F number = 1: 3.5 Angle of view 2ω = 65 ° R1 = 13.802 D1 = 4.99 N1 = 1.77250 ν1 = 49.6 R2 = 33.483 D2 = 2.08 R3 = −43.392 D3 = 2.73 N2 = 1.72825 ν2 = 28.5 R4 = 13.753 D4 = 1.21 R5 = 28.681 D5 = 3.47 N3 = N (x) R6 = −32.033 However, N (x) = 1.8340−3.43877 × 10 −3 x + 1.36703 × 1
The 0 -2 x 2nd order lens is an example in which the flare due to the F-line of the off-axis light beam described with reference to FIG. 2 is removed. FIG. 5 shows the lens cross-sectional shape, and FIG. 6 shows various aberrations with respect to the object distance of 60F. The negative lens of the third cemented lens has a refractive index profile.

例2 焦点距離f=40.0 Fナンバー=1:2.8 画角2ω=65° R1= 12.032 D1=3.07 N1=1.77250 ν1=49.6 R2= 22.089 D2=2.48 R3=−33.958 D3=1.00 N2=1.74077 ν2=27.8 R4= 12.760 D4=0.67 R5= 22.289 D5=3.77 N3=1.88300 ν3=40.8 R6=−16.257 D6=1.50 N4=N(x) R7=−52.758 但し、N(x)=1.47−5.69148×10-3x2 従来より正のメニスカスレンズ、両凹レンズそして正と
負を順に接合したレンズを順次具えた構成の場合、この
タイプ特有の軸外光束のF線のフレアが発生し易いこと
が知られている。本例は、主に両凹レンズで発生するこ
のフレアを、最後のレンズ群中像側の、光軸方向に屈折
率分布を持つレンズの接合面及び空気に接する最終レン
ズ面でゆるやかに且つ有効に補正することができる。ま
た前述の(2)式の上限を越えない構成としているの
で、屈折力の配分も良好であり、他方、第3接合レンズ
の正レンズを高屈折率、負レンズを低屈折率としている
ため、ペツツバール和も小さく抑えることができ、像面
わん曲の小さな撮影レンズが実現できた。
Example 2 Focal length f = 40.0 F number = 1: 2.8 Angle of view 2ω = 65 ° R1 = 12.032 D1 = 3.07 N1 = 1.77250 ν1 = 49.6 R2 = 22.089 D2 = 2.48 R3 = −33.958 D3 = 1.00 N2 = 1.74077 ν2 = 27.8 R4 = 12.760 D4 = 0.67 R5 = 22.289 D5 = 3.77 N3 = 1.88300 ν3 = 40.8 R6 = −16.257 D6 = 1.50 N4 = N (x) R7 = −52.758 However, N (x) = 1.47−5.69148 × 10 −3 x 2 It has been known that, in the case of a configuration in which a positive meniscus lens, a biconcave lens, and a lens in which positive and negative are cemented in order, are sequentially provided, flare of F-line of off-axis light flux peculiar to this type is likely to occur. In this example, this flare mainly generated in the biconcave lens is gently and effectively applied on the image side of the final lens group on the cemented surface of the lens having the refractive index distribution in the optical axis direction and the final lens surface in contact with air. Can be corrected. Moreover, since the upper limit of the formula (2) is not exceeded, the distribution of the refractive power is good, while the positive lens of the third cemented lens has a high refractive index and the negative lens has a low refractive index. The Petzval sum can be suppressed to a small value, and a photographic lens with a small field curvature can be realized.

以上述べた通り本発明は、所望の収差に対して有効に働
くから面像品質の向上に資するところがあり、またレン
ズの小型化に有効である。
As described above, the present invention effectively works for desired aberrations, which contributes to improvement of the surface image quality, and is also effective for downsizing of the lens.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の実施例を説明するための光学
断面図。第3図はレンズ断面図。第4図は縦収差曲線
図。第5図はレンズ断面図。第6図は縦及び横収差曲線
図。 図中、1は正レンズ、11は近軸軸上光線、12は開放近傍
の軸上光線、2と3は接合レンズの正レンズと負レン
ズ、A〜Fは屈折率分布である。
1 and 2 are optical sectional views for explaining an embodiment of the present invention. FIG. 3 is a lens cross-sectional view. FIG. 4 is a longitudinal aberration curve diagram. FIG. 5 is a lens cross-sectional view. FIG. 6 is a longitudinal and lateral aberration curve diagram. In the figure, 1 is a positive lens, 11 is a paraxial ray, 12 is an axial ray near the open end, 2 and 3 are positive and negative lenses of a cemented lens, and A to F are refractive index distributions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】撮影レンズ系を構成するレンズの少なくと
も1枚のレンズは、所定の曲率半径のレンズ面を有し、
このレンズの屈折率は光軸に沿った平行な方向だけに屈
折率が変化し、レンズ内の位置でその屈折率の分布が極
値を持つことを特徴とする撮影レンズ系。
1. At least one lens of lenses constituting a photographing lens system has a lens surface having a predetermined radius of curvature,
The taking lens system is characterized in that the refractive index of this lens changes only in a direction parallel to the optical axis, and the distribution of the refractive index has an extreme value at a position within the lens.
JP59235597A 1984-11-08 1984-11-08 Shooting lens system Expired - Lifetime JPH0774857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59235597A JPH0774857B2 (en) 1984-11-08 1984-11-08 Shooting lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59235597A JPH0774857B2 (en) 1984-11-08 1984-11-08 Shooting lens system

Publications (2)

Publication Number Publication Date
JPS61113017A JPS61113017A (en) 1986-05-30
JPH0774857B2 true JPH0774857B2 (en) 1995-08-09

Family

ID=16988359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59235597A Expired - Lifetime JPH0774857B2 (en) 1984-11-08 1984-11-08 Shooting lens system

Country Status (1)

Country Link
JP (1) JPH0774857B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639983B2 (en) * 1988-10-11 1997-08-13 オリンパス光学工業株式会社 Refractive index distribution type lens
JP2597513B2 (en) * 1989-12-19 1997-04-09 オリンパス光学工業株式会社 Microscope objective lens
JP3108697B2 (en) * 1991-04-25 2000-11-13 旭光学工業株式会社 Focus detection device
US5206498A (en) * 1991-06-07 1993-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Focus detecting apparatus having variable power condenser lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219507A (en) * 1982-06-15 1983-12-21 Nippon Sheet Glass Co Ltd One-dimensional lens
JPS59149312A (en) * 1983-02-16 1984-08-27 Asahi Optical Co Ltd Photographic lens of high aperture ratio

Also Published As

Publication number Publication date
JPS61113017A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
JP3541983B2 (en) Wide-angle lens
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JPH09325274A (en) Zoom lens
JP3074026B2 (en) Super wide-angle zoom lens
JP3781394B2 (en) Imaging optical system
JP2991524B2 (en) Wide-angle lens
JPH06235858A (en) High performance photographic lens
JPS6210407B2 (en)
JP3254239B2 (en) Large aperture medium telephoto lens
JPS6038687B2 (en) Wide-angle photographic lens with short overall length
JPH0961708A (en) Standard lens system
JP3005905B2 (en) Shooting lens
US4269477A (en) Symmetrical objective
JPS6125122B2 (en)
JPS6113206B2 (en)
KR100189069B1 (en) Small wide angle photo lens
JP2000028919A (en) Middle telephotographic lens
JP3234618B2 (en) Large aperture medium telephoto lens
JP2004102083A (en) Zoom lens
JPH0713704B2 (en) Wide-angle lens
JPS6153695B2 (en)
JPS6117114A (en) Converter lens
JP2750775B2 (en) Compact zoom lens
JP2518055B2 (en) Catadioptric optical system
JPH0774857B2 (en) Shooting lens system