JPS6190115A - Objective lens for forming image - Google Patents

Objective lens for forming image

Info

Publication number
JPS6190115A
JPS6190115A JP21224484A JP21224484A JPS6190115A JP S6190115 A JPS6190115 A JP S6190115A JP 21224484 A JP21224484 A JP 21224484A JP 21224484 A JP21224484 A JP 21224484A JP S6190115 A JPS6190115 A JP S6190115A
Authority
JP
Japan
Prior art keywords
component
lens
refracting power
negative
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21224484A
Other languages
Japanese (ja)
Other versions
JPH0629897B2 (en
Inventor
Koichi Wakamiya
孝一 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59212244A priority Critical patent/JPH0629897B2/en
Publication of JPS6190115A publication Critical patent/JPS6190115A/en
Publication of JPH0629897B2 publication Critical patent/JPH0629897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To improve aberration balance and to make excellent color corrections in a wide wavelength range by composing a lens system of the 1st element which has negative refracting power, the 2nd biconvex element with positive refracting power, the 3rd biconcave element with positive refracting power, and the 4th element with positive refracting power, and allowing the lens to meet specific requirements. CONSTITUTION:The 1st negative-refracting-power element L1 which has a object- side concave surface on the object side and an image-side concave surfaces on the object side, the 2nd biconvex element L2 with positive refracting power, the 3rd biconcave element L3 with negative refracting power, and the 4th element L4 with positive refracting power. Then, inequalities in a figure hold, where (f) is the focal length of the whole system, phi1 the refracting power of the 1st element L1, D the gap between the 2nd element L2 and the 3rd element L3, and R the radius of curvature of the image-side lens surface of the 3rd element L3.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、波長200nm程度の紫外域から近赤外領域
迄の広い範囲に対して良好に色/i’i Lされた結像
用対物レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention provides an imaging objective lens that has good color/i'i L over a wide range from the ultraviolet region with a wavelength of about 200 nm to the near infrared region. Regarding.

(発明の背景) 通常の光学硝子では、350nmより短波長域の光線は
吸収されて透過率が急激に悪化する。従って、一般の撮
影レンズでは紫外域の光線で損影することは困難である
。紫外域の光線を良好に透過する物質としては、螢石(
CaFz)及び溶融石英(Sift)が知られている。
(Background of the Invention) In ordinary optical glass, light in a wavelength range shorter than 350 nm is absorbed and the transmittance deteriorates rapidly. Therefore, with a general photographic lens, it is difficult to cause shadow loss with ultraviolet light. Fluorite (fluorite) is a substance that transmits UV light well.
CaFz) and fused silica (Sift) are known.

これらは共に200nmより短い波長域から赤外領域に
いたるまで内部吸収が少なD、優れた透過率を持つので
広い波長範囲、特に紫外線を光源とする光学系にはこれ
らの物質がよく用いられている。さらに、螢石(CaF
t)は異常分散性を有しておD、溶融石英(SiO□)
と組合せて色消しを成した場合、二次スペクトルの発生
が梅めて少なくすることができるので広い波長域に用い
る光学系に適するものである。
Both of these materials have low internal absorption D and excellent transmittance from wavelengths shorter than 200 nm to the infrared region, so these materials are often used in optical systems that use UV light as a light source over a wide wavelength range. There is. In addition, fluorite (CaF
t) has anomalous dispersion D, fused silica (SiO□)
When combined with achromatism, the generation of secondary spectra can be significantly reduced, making it suitable for optical systems used in a wide wavelength range.

しかし、螢石も溶融石英も共に屈折率が低く、また両者
のアノへ数の差も小さいために、収差補正が困難であD
、従来十分な性能を有する対物しンズを得ることが難し
かった。殊に、正レンズとして用いられる螢石の屈折率
が、負レンズとして用いられる溶融石英の屈折率より低
いために、ペッツバール和の補正が極めて困難な状況に
あD、例えば、特公昭43−26269号公輯に開示さ
れた対物レンズにおいても、ペッツバール和の補正が不
十分であD、結果として負気味の像面弯曲の残存量が大
きくなっていた。
However, both fluorite and fused silica have low refractive indexes, and the difference in their numbers is also small, making it difficult to correct aberrations.
Conventionally, it has been difficult to obtain objective lenses with sufficient performance. In particular, since the refractive index of fluorite used as a positive lens is lower than that of fused silica used as a negative lens, it is extremely difficult to correct the Petzval sum. Even in the objective lens disclosed in the publication, the Petzval sum was insufficiently corrected, resulting in a large residual amount of negative field curvature.

(発明の目的) 本発明の目的は、螢石(CaFt)及び溶融石英(Si
(h)をレンズ材料として使用しつつ、上記の困難を克
服して収差バランスが良好で、波長200nm程度の紫
外領域から、可視領域さらには赤外領域の光線に対して
良好に色補正された対物レンズを提供することにある。
(Object of the invention) The object of the invention is to use fluorite (CaFt) and fused silica (Si).
(h) as a lens material, it overcomes the above difficulties and has a good aberration balance, and has good color correction for light rays from the ultraviolet region with a wavelength of about 200 nm to the visible region and even the infrared region. Our objective is to provide objective lenses.

(発明の概要) 本発明による結像用対物レンズは、物体側から順に、物
体側に凹面を向けた物体側の面と、同じく物体側に凹面
を向けた像側の面とを有する負屈折力の第1成分、両凸
形状で正屈折力の第2成分、両凹形状でt’t 1i1
i折力の第3成分及び1F屈折力の第4成分とを打し、
全系の焦点距副をr、該第1成分の屈折力をφ1、該第
2成分と該第3成分との間隔をD、該第3成分の像側レ
ンズ面の曲率半径をRとするとき、 −1〈「・φ、<O(1) 0.1Of<  D  <0.25r(2)0.21f
<  R<0.90f       (3)の各条件を
満足するものである。
(Summary of the Invention) An imaging objective lens according to the present invention has, in order from the object side, an object side surface having a concave surface facing the object side and an image side surface having a concave surface facing the object side. 1st component of power, 2nd component of positive refractive power in biconvex shape, t't 1i1 in biconcave shape
Hitting the third component of i refractive power and the fourth component of 1F refractive power,
Let r be the sub-focal length of the entire system, φ1 be the refractive power of the first component, D be the distance between the second component and the third component, and R be the radius of curvature of the image-side lens surface of the third component. When, -1〈'・φ, <O(1) 0.1Of< D <0.25r(2) 0.21f
<R<0.90f (3) is satisfied.

前記の如く、螢石及び溶融石英は、紫外域光線の透過率
に優れているが、具体的には下表のごとき光学特性を有
している。
As mentioned above, fluorite and fused silica have excellent transmittance of ultraviolet light, and specifically have optical properties as shown in the table below.

で定義されるものとする。また、n、 、nr及びnc
はそれぞれg線(λ=435.8n+a)、F線(λ−
486,1nm)及びC線(λ=656.3nm)に対
する屈折率である。
shall be defined as Also, n, , nr and nc
are the g-line (λ=435.8n+a) and the F-line (λ-
486.1 nm) and C line (λ=656.3 nm).

従って、アツベ数の関係から、螢石を正レンズに、溶融
石英を負レンズにそれぞれ用いることによって、色収差
が補正され得る。
Therefore, from the relationship of Atbe's number, chromatic aberration can be corrected by using fluorite for the positive lens and fused silica for the negative lens.

部分分散比とアツベ数との関係を第11図に示す0図中
の直線lは一般的光学硝子の傾向を示している。図示の
如く、一般的光学硝子の組合せに比べて、螢石(CaF
z)と溶融石英(Sift) との組合せでは、部分分
散比対アツベ数の(lit斜が小さいので、二次スペク
トルを小さくすることが可能である。そして、色消し条
件は、仮りに薄肉の密着系として軸方向の色収差補正理
論によれば、合成焦点距離をf、螢石の焦点距離をf6
、溶融石英の焦点距離をfsとし、螢石のアノへ数をV
6、?8融石英のアツベ数を■、とするとき、S とする場合に、色消しが達成される。しかし、アノへ数
の差が少ないために、各々の焦点距離が短くなD、その
結果、高次収差が発生し易い。
The relationship between the partial dispersion ratio and the Abbe number is shown in FIG. 11. The straight line l in FIG. 1 shows the tendency of general optical glasses. As shown in the figure, compared to the combination of general optical glasses, fluorite (CaF)
z) and fused silica (Sift), the slope of the partial dispersion ratio to the Abbe number (lit) is small, so it is possible to reduce the secondary spectrum. According to the axial chromatic aberration correction theory for a close-contact system, the composite focal length is f, and the focal length of fluorite is f6.
, the focal length of fused silica is fs, and the number of fluorite points is V
6.? Achromatization is achieved when the Abbe number of 8-fused silica is ▪ and S is S. However, since the difference in number is small, each focal length is short, and as a result, higher-order aberrations are likely to occur.

次に、d線(λ−587.6nm)に対する螢石の屈折
率をN c + >a融石英の屈折イシをN、とすると
き、NC<N! であることから、薄肉密着系ではペッツバール条件を満
足することができず、正のペッツバール和が残有する。
Next, when the refractive index of fluorite for the d-line (λ-587.6 nm) is N c + >a and the refractive index of fused silica is N, then NC<N! Therefore, the Petzval condition cannot be satisfied in a thin-walled close-contact system, and a positive Petzval sum remains.

この残存¥Pは、薄肉密着系の理論によれば、 である。According to the theory of thin-walled close contact system, this residual ¥P is It is.

本発明では、第1成分を物体側に凹面を向けた物体側の
面と、同しく物体イ■すに凹面を向けた像側の面とを有
する負屈折力成分として構成し、より具体的には、第1
成分を、物体(!1すから順に物体側に凹面を有する頁
レンズと像側に凸面を有する正レンズとで構成すること
によって、第1成分全体としてフラットナーを形成する
と共に、ペッツバール和の残存を残少させる働きを持た
せている6条件(1)において、上限を越えた場合には
、第1成分が正屈折力を持つこととなってペッツバール
和の正に向かわせる作用が強くなD、結果として全系の
ペッツバール和の補正が不十分となる。
In the present invention, the first component is configured as a negative refractive power component having an object-side surface with a concave surface facing the object side and an image-side surface with a concave surface facing the object side. The first
By configuring the component from the object (!1) to a Page lens having a concave surface on the object side and a positive lens having a convex surface on the image side in order, the first component as a whole forms a flattener and the residual Petzval sum. If the upper limit is exceeded in condition 6 (1), which has the effect of reducing the D , as a result, the Petzval sum of the entire system is insufficiently corrected.

第1成分の負屈折力が強いことは、ペッツバール和の補
正には有利であるが、条件(1)が下限を外れる場合に
は、第1成分での発散作用が強くなり過ぎて高次の収差
が発生する。殊に、非点収差の発生が顕著となり良好な
収差補正が困難となる。
A strong negative refractive power in the first component is advantageous for correcting the Petzval sum, but if condition (1) is outside the lower limit, the divergence effect in the first component becomes too strong and high-order Aberrations occur. In particular, the occurrence of astigmatism becomes noticeable, making it difficult to properly correct the aberration.

第1成分を負レンズと正レンズとによって構成すること
によって、軸上の色収差の補正を助けると共に、倍率の
色収差の補正に対しても効果的である。
By configuring the first component with a negative lens and a positive lens, it helps to correct axial chromatic aberration, and is also effective in correcting lateral chromatic aberration.

条件(2)もペッツバール和をより良く補正するための
ものである。第2成分から第4成分までは、正・負・正
の所謂トリプレット型のレンズ配置を持つが、第2成分
と第3成分との間隔りを適当な値と4°るするごとに、
Lす、第13成分のS′j屈折力をより強く成し、これ
により条件(1)と併せてペッツバール和を良好に補正
するごとがiiJ能となる。
Condition (2) is also for better correcting the Petzval sum. The second to fourth components have a so-called triplet lens arrangement of positive, negative, and positive, but each time the distance between the second and third components is set to an appropriate value and 4 degrees,
L, the S'j refractive power of the 13th component is made stronger, and the Petzval sum is corrected satisfactorily in combination with condition (1).

この条件の下限を外れる場合には、第2成分と第3成分
との間隔が小さ過ぎて、ペッツバール和の補IL効果が
不十分である。また、上限を越える場合には、ペッツバ
ール和の補正には有利であるが、レンズ系が長くなるた
めにノに点収差が発生しがちとなD、良好な補正状態を
11トることが難しくなる。
If the lower limit of this condition is exceeded, the distance between the second component and the third component is too small, and the complementary IL effect of the Petzval sum is insufficient. In addition, if the upper limit is exceeded, although it is advantageous for correcting the Petzval sum, point aberration tends to occur because the lens system becomes long, and it is difficult to achieve a good correction state. Become.

条件(3)は収差バランスを保つために必要な条(′1
である。この条件の上限を越えると、第3成分の像側の
面での発散作用が小さくなD、球面収差及び子午像面弯
曲収差が補正不足となD、良好な補正状態が得られなく
なる。逆に下限を外れる場合には、第3成分の像側の面
での発散作用が強くなり過ぎるために、高次の収差が顕
著となD、特に球面収差が悪化して良好な収差バランス
を保つことが難しくなる。
Condition (3) is the condition ('1) necessary to maintain aberration balance.
It is. If the upper limit of this condition is exceeded, the divergence effect of the third component on the image side surface will be small (D), spherical aberration and meridional field curvature aberration will be insufficiently corrected (D), and a good correction state will not be obtained. On the other hand, if the lower limit is exceeded, the divergence effect on the image side surface of the third component becomes too strong, resulting in noticeable higher-order aberrations (D), especially spherical aberrations, and making it difficult to maintain a good aberration balance. becomes difficult to maintain.

ところで、近距離撮影では、一般に収差変動を生ずるが
、本発明においては、第3成分と第4成分との合成屈折
力をφ、4とするとき、−1,1<f・φi4<0  
    (4)の条件を満たすことが望ましい、この条
件によD、近距離においても球面収差と像面とのバラン
スを良好に保つことが可能である。近距離では、射出瞳
が像面から遠ざかるので、一定の像高に達する主光線に
ついてみれば、射出角が小さくなD、第3及び第4成分
を通過する光線は近距離はど光軸に近い位置を通ること
となる。この結果、後方成分としての第3及び第4成分
での発散作用が強ければ、像面を負に向かわせる作用が
高まる。そして、この条件の下限を外れる場合には、後
方成分の発散作用が強過ぎて、近距離での像面が負にな
D、収差バランスが悪化し、上限を上回る場合には、後
方成分が収斂作用を持つこととなるので像面が正に偏倚
することとなり収差バランスが悪化する。
By the way, in close-range photography, aberration fluctuations generally occur, but in the present invention, when the combined refractive power of the third component and the fourth component is φ, 4, -1,1<f・φi4<0
It is desirable to satisfy the condition (4). With this condition D, it is possible to maintain a good balance between the spherical aberration and the image plane even at short distances. At short distances, the exit pupil moves away from the image plane, so if we look at the chief ray that reaches a certain image height, the rays that pass through D, the third and fourth components, which have small exit angles, will move toward the optical axis at short distances. It will pass through a nearby location. As a result, if the divergence effect of the third and fourth components as rear components is strong, the effect of directing the image plane toward the negative side increases. If the lower limit of this condition is exceeded, the divergence effect of the rear component is too strong, resulting in a negative image plane at close distances, and the aberration balance deteriorates, and if the upper limit is exceeded, the rear component becomes too strong. Since it has a converging effect, the image plane is positively biased and the aberration balance deteriorates.

(実施例) 本発明による第1実施例は、第1図に示す如く、負屈折
力の第1成分L1を物体側から順に両凹負レンズと両凸
正レンズとで構成し、第2成分し、を物体側により強い
曲率の面を向けた両凸正レンズで構成し、第3成分D、
を両凹負レンズで第4成分し4をl+lil凸正レンズ
で構成したものである。
(Embodiment) In the first embodiment of the present invention, as shown in FIG. 1, the first component L1 of negative refractive power is composed of a biconcave negative lens and a biconvex positive lens in order from the object side, The third component D,
The fourth component is composed of a biconcave negative lens, and 4 is composed of an l+lil convex positive lens.

第2図に示した第2実施例は、第1成分D、を両凹負レ
ンズと両凸正レンズとの貼合せ負レンズで構成したもの
である。第3実施例は、第3図に示す如く、第1成分し
、を構成する負レンズと正レンズとの間に、発散性の空
気レンズを形成したものであD、内角を大きくしたもの
である。また、第4図に示した第4実施例は第4成分L
4を像側により強い曲率の面を向けた両凸正レンズとこ
れと分離されて+IL (!l’lに凸面をむりたf[
メニスカスレンズとで構成したものである。第5図の第
5実施例は、第4成分し、を像側により強い曲率の面を
向けた正レンズとこれと接合されて像側に凸面を向けた
負メニスカスレンズとで構成したものである。
In the second embodiment shown in FIG. 2, the first component D is composed of a negative lens made up of a biconcave negative lens and a biconvex positive lens. In the third embodiment, as shown in FIG. 3, a diverging air lens is formed between the negative lens and the positive lens constituting the first component. be. Further, in the fourth embodiment shown in FIG.
4 is a biconvex positive lens with a surface of stronger curvature facing the image side, and +IL (!l'l) is separated from this by a biconvex positive lens with a surface of stronger curvature facing +IL (!l'l with f[
It is composed of a meniscus lens. The fifth embodiment shown in FIG. 5 is composed of a positive lens having a fourth component with a surface of stronger curvature facing the image side, and a negative meniscus lens cemented with this lens having a convex surface facing the image side. be.

以下の表1〜表5に、本発明による第1〜第5実施例の
諸元を示す。表中、左端の数字は、物体側からの111
1序を表し、B「はパックフォーカスを、ΣPは全系の
ペッツバール和を表すものとする。
Tables 1 to 5 below show specifications of the first to fifth embodiments of the present invention. In the table, the leftmost number is 111 from the object side.
1, B is the pack focus, and ΣP is the Petzval sum of the entire system.

表1 (第1実施例) Fナンバー 4    画角2ω=23.4゜Bf =
 73.723 ΣP =  0.00249 φ、 = −0,00083 φsa” −0,00885 表2(第2実施例) Fナンバー 4    画角2ω=23.4゜nf =
 72.453 Σp =  0.00248 φ、 =−0,00084 φ、4= −0,00922 表3(第3実施例) Fナンバー 4    画角2ω=32.2゜Bf =
 79.142 ΣP =  0.00271 φ、 =−0,00305 φコ、= −0,01053 表4 (第4実施例) f=100 Fナンバー 4.5    画角2ω= 23.4゜R
(= 82.765 ΣP =  0.00191 φ夏−−0.00447 φ1.−−0.00695 表5 (第5実施例) f=100 Fナンバー 3.76    画角2ω=23.4゜B
f −78,764 ΣP =  0.00281 φ、 =−0,00593 φ、、= −0,00483 に5己第1〜第5実施例についての1堵収差図を、それ
ぞれ順に第6AB図〜第10八B図に示す。
Table 1 (First Example) F number 4 Angle of view 2ω = 23.4°Bf =
73.723 ΣP = 0.00249 φ, = −0,00083 φsa” −0,00885 Table 2 (Second Example) F number 4 Angle of view 2ω = 23.4゜nf =
72.453 Σp = 0.00248 φ, = -0,00084 φ, 4 = -0,00922 Table 3 (Third Example) F number 4 Angle of view 2ω = 32.2°Bf =
79.142 ΣP = 0.00271 φ, = -0,00305 φko, = -0,01053 Table 4 (4th example) f = 100 F number 4.5 Angle of view 2ω = 23.4°R
(= 82.765 ΣP = 0.00191 φ Summer −−0.00447 φ1.−−0.00695 Table 5 (Fifth Example) f = 100 F number 3.76 Angle of view 2ω = 23.4°B
f -78,764 ΣP = 0.00281 φ, = -0,00593 φ, , = -0,00483 The first aberration diagrams for the first to fifth embodiments are shown in Figures 6AB to 6AB, respectively. Shown in Figure 108B.

各収差図のAは無限遠撮影状!那の収差図であD、各収
差図のBは撮影倍率β−−0,5の近距離撮影状態の収
差図である。いずれも基準波長はd線(λ”’587.
(in+n)であD、無限遠状態の収差を示す各A図に
は、g線(λ=435.8nm)、C線(λ=656゜
3Bm)及びへ゛線(λ=768.2nm)についての
倍率色収差を示すと共に、二次スペクトルを示すための
軸上色収差をも示した。無限遠撮影状態の軸外収差図で
は、目盛を撮影画角αで表し、近距離撮影状態の軸外収
差図では、talnPtを物体の高さHoで示した。
A in each aberration diagram is like shooting at infinity! D is an aberration diagram of the lens, and B of each aberration diagram is an aberration diagram in a close-range photographing state at a photographing magnification β-0.5. In both cases, the reference wavelength is the d-line (λ”'587.
(in+n)D, and each A diagram showing aberrations at infinity includes g-line (λ=435.8nm), C-line (λ=656°3Bm), and centerline (λ=768.2nm). In addition to showing the lateral chromatic aberration of , it also showed the axial chromatic aberration to show the secondary spectrum. In the off-axis aberration diagram for the infinity photographing state, the scale is represented by the photographing angle of view α, and in the off-axis aberration diagram for the close-range photographing state, talnPt is represented by the height Ho of the object.

」−記の各表及び各収差図よD、本発明による実施例は
いずれもペッツバール和が良好に補正され、諸収差とも
に良好に補正されていることが分かる。
It can be seen from the tables and aberration diagrams D that the Petzval sum is well corrected and all aberrations are well corrected in all the examples according to the present invention.

特に色収差は良好に補正され、紫外域から赤外域に渡っ
て極めて広い波長域に対して優れた結像性能を有してい
ることが明らかである。また、撮影倍率β=−0,5と
いう極めて近距離の撮影状態においても諸収差の劣下が
少なく良好な性能が維持されていることが分かる。
In particular, it is clear that chromatic aberration is well corrected and that it has excellent imaging performance over an extremely wide wavelength range from the ultraviolet region to the infrared region. Furthermore, it can be seen that good performance is maintained with little deterioration in various aberrations even in an extremely close-distance photographing state where the photographing magnification β=-0.5.

(発明の効果) 以上の如く、本発明によれば、螢石(CaF、)及び溶
融石英(SiO□)をレンズ材料として使用しつつ、収
差バランスが良好で、波長200nm程度の紫外領域か
ら、可視領域さらには赤外領域の光線に  。
(Effects of the Invention) As described above, according to the present invention, while using fluorite (CaF) and fused silica (SiO□) as lens materials, the aberration balance is good, and from the ultraviolet region with a wavelength of about 200 nm, For light rays in the visible region and even in the infrared region.

対して良好に色補正された対物レンズが達成される。In contrast, an objective lens with good color correction is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1実施例のレンズ構成図、第2
図は第2実施例のレンズ構成図、第3図は第3実施例の
レンズ構成図、第4図は第4実施例のレンズ構成図、第
5図は第5実施例のレンズ構成図、第6A図及び第6B
図はそれぞれ第1実施例における無限遠撮影状態及び近
距離撮影状態の諸収差図、第7A図及び第7B図はそれ
ぞれ第2実施例における無限遠撮影状態及び近距離撮影
状態の諸収差図、第8A図及び第8B[2Iはそれぞれ
第3実施例における無限遠ti影状態及び近距離撮影状
態の諸収差図、第9八図及び第9B図はそれぞれ第4実
施例における無限遠撮影状態及び近回Ml 11影状態
の諸収差図、第10A図及び第1OB図はそれぞれ第5
実施例における無限遠撮影状f磨及び近距離撮影状態の
諸収Z二図、第11図は部分分散比とアツベ数との関係
を示す図である。 〔主要部分の符号の説明〕 Ll・・・第1成分 L工・・・第2成分 し、・・・第3成分 ]、4・・・第4成分
FIG. 1 is a lens configuration diagram of the first embodiment according to the present invention, and the second
FIG. 3 is a lens configuration diagram of the second embodiment, FIG. 3 is a lens configuration diagram of the third embodiment, FIG. 4 is a lens configuration diagram of the fourth embodiment, and FIG. 5 is a lens configuration diagram of the fifth embodiment. Figures 6A and 6B
The figures are various aberration diagrams for the infinity photography state and the close-range photography state in the first embodiment, respectively, and FIGS. 7A and 7B are various aberration diagrams for the infinity photography state and the close-range photography state in the second embodiment, respectively. Figures 8A and 8B [2I are various aberration diagrams for the infinity ti shadow state and close-up shooting state in the third embodiment, respectively, and Figures 98 and 9B are respectively for the infinity shooting state and the close-up shooting state in the fourth embodiment. The various aberration diagrams of the recent Ml 11 shadow state, Figure 10A, and Figure 1OB are shown in Figure 5, respectively.
FIG. 11 is a diagram showing the relationship between the partial dispersion ratio and the Abbe number. [Explanation of symbols of main parts] Ll...first component L...second component,...third component], 4...fourth component

Claims (1)

【特許請求の範囲】 物体側から順に、物体側に凹面を向けた物体側の面と、
同じく物体側に凹面を向けた像側の面とを有する負屈折
力の第1成分、両凸形状で正屈折力の第2成分、両凹形
状で負屈折力の第3成分及び正屈折力の第4成分とを有
し、全系の焦点距離をf、該第1成分の屈折力をφ_1
、該第2成分と該第3成分との間隔をD、該第3成分の
像側レンズ面の曲率半径をRとするとき、 −1<f・φ_1<0(1) 0.10f<D<0.25f(2) 0.21f<R<0.90f(3) の各条件を満足することを特徴とする結像用対物レンズ
[Claims] In order from the object side, an object-side surface with a concave surface facing the object side;
A first component of negative refractive power that also has a concave surface facing the object side and an image side surface, a second component of positive refractive power that is biconvex, a third component of negative refractive power that is biconcave, and a third component of positive refractive power. , the focal length of the entire system is f, and the refractive power of the first component is φ_1
, when the distance between the second component and the third component is D, and the radius of curvature of the image-side lens surface of the third component is R, -1<f・φ_1<0(1) 0.10f<D An imaging objective lens characterized by satisfying the following conditions: <0.25f(2) 0.21f<R<0.90f(3).
JP59212244A 1984-10-09 1984-10-09 Imaging objective lens Expired - Lifetime JPH0629897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212244A JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212244A JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Publications (2)

Publication Number Publication Date
JPS6190115A true JPS6190115A (en) 1986-05-08
JPH0629897B2 JPH0629897B2 (en) 1994-04-20

Family

ID=16619357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212244A Expired - Lifetime JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Country Status (1)

Country Link
JP (1) JPH0629897B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006232A (en) * 2000-06-19 2002-01-09 Nikon Corp Microscope having automatic focusing function
JP2007086612A (en) * 2005-09-26 2007-04-05 Fujinon Corp Imaging lens
EP1992975A2 (en) 2007-05-18 2008-11-19 Fujinon Corporation Imaging lens of the retrofocus type
US7830620B2 (en) 2008-10-07 2010-11-09 Fujinon Corporation Imaging lens and imaging apparatus
US8730471B2 (en) 2009-02-26 2014-05-20 Hitachi, Ltd. DUV-UV band spectroscopic optical system and spectrometer using same
CN108351513A (en) * 2015-09-24 2018-07-31 卡尔蔡司Smt有限责任公司 Optical system for field imaging and/or pupil imaging
CN110888221A (en) * 2018-09-07 2020-03-17 大立光电股份有限公司 Electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111506A (en) * 1980-12-27 1982-07-12 Olympus Optical Co Ltd Lens system having short distance correcting function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111506A (en) * 1980-12-27 1982-07-12 Olympus Optical Co Ltd Lens system having short distance correcting function

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006232A (en) * 2000-06-19 2002-01-09 Nikon Corp Microscope having automatic focusing function
JP2007086612A (en) * 2005-09-26 2007-04-05 Fujinon Corp Imaging lens
EP1992975A2 (en) 2007-05-18 2008-11-19 Fujinon Corporation Imaging lens of the retrofocus type
US7924510B2 (en) 2007-05-18 2011-04-12 Fujinon Corporation Imaging lens and imaging apparatus equipped with the imaging lens
US7830620B2 (en) 2008-10-07 2010-11-09 Fujinon Corporation Imaging lens and imaging apparatus
US8730471B2 (en) 2009-02-26 2014-05-20 Hitachi, Ltd. DUV-UV band spectroscopic optical system and spectrometer using same
CN108351513A (en) * 2015-09-24 2018-07-31 卡尔蔡司Smt有限责任公司 Optical system for field imaging and/or pupil imaging
JP2018529999A (en) * 2015-09-24 2018-10-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system for object mapping and / or pupil mapping
US10656411B2 (en) 2015-09-24 2020-05-19 Carl Zeiss Smt Gmbh Optical system for field mapping and/or pupil mapping
JP2021039366A (en) * 2015-09-24 2021-03-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical system for object mapping and/or pupil mapping
CN108351513B (en) * 2015-09-24 2021-03-30 卡尔蔡司Smt有限责任公司 Optical system for field imaging and/or pupil imaging
CN110888221A (en) * 2018-09-07 2020-03-17 大立光电股份有限公司 Electronic device
CN110888221B (en) * 2018-09-07 2021-10-22 大立光电股份有限公司 Electronic device

Also Published As

Publication number Publication date
JPH0629897B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US5808808A (en) Wide-angle lens system
JP3397439B2 (en) Imaging lens
US4111558A (en) Retrofocus type wide angle objective lens
JPH10246854A (en) Compact wide-angle lens
JPH06130291A (en) Standard lens
JPS6040604B2 (en) Gauss type large aperture ratio photographic lens
JPH07128592A (en) Reduction stepping lens
JPS6243613A (en) Converter lens
JPS6113206B2 (en)
JP2000028919A (en) Middle telephotographic lens
US4643536A (en) Rear conversion lens
JPS6190115A (en) Objective lens for forming image
JPS6132654B2 (en)
JPH052132A (en) Telephoto objective
JPS6042452B2 (en) zoom lens
JPH0713704B2 (en) Wide-angle lens
JPH11271610A (en) Medium telephoto lens
JPS623928B2 (en)
JPH07113952A (en) Optical system for infrared ray
JPS598803B2 (en) All-purpose lens
JPH06337348A (en) Gauss type lens
JP4765229B2 (en) Imaging optics
JPS6048014B2 (en) wide field eyepiece
US3958865A (en) Retrofocus type lens system
JPH0574806B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term