JPH0629897B2 - Imaging objective lens - Google Patents

Imaging objective lens

Info

Publication number
JPH0629897B2
JPH0629897B2 JP59212244A JP21224484A JPH0629897B2 JP H0629897 B2 JPH0629897 B2 JP H0629897B2 JP 59212244 A JP59212244 A JP 59212244A JP 21224484 A JP21224484 A JP 21224484A JP H0629897 B2 JPH0629897 B2 JP H0629897B2
Authority
JP
Japan
Prior art keywords
component
lens
object side
aberration
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59212244A
Other languages
Japanese (ja)
Other versions
JPS6190115A (en
Inventor
孝一 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59212244A priority Critical patent/JPH0629897B2/en
Publication of JPS6190115A publication Critical patent/JPS6190115A/en
Publication of JPH0629897B2 publication Critical patent/JPH0629897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、波長200nm程度の紫外域から近赤外領域迄の
広い範囲に対して良好に色消しされた結像用対物レンズ
に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an imaging objective lens which is achromatized favorably over a wide range from the ultraviolet region to the near infrared region having a wavelength of about 200 nm.

(発明の背景) 通常の光学硝子では、350nmより短波長域の光線は吸収
されて透過率が急激に悪化する。従って、一般の撮影レ
ンズでは紫外域の光線で撮影することは困難である。紫
外域の光線を良好に透過する物質としては、螢石(CaF2)
及び溶融石英(SiO2)が知られている。これらは共に200n
mより短い波長域から赤外領域にいたるまで内部吸収が
少なく、優れた透過率を持つので広い波長範囲、特に紫
外線を光源とする光学系にはこれらの物質がよく用いら
れている。さらに、螢石(CaF2)は異常分散性を有してお
り、溶融石英(SiO2)と組合せて色消しを成した場合、二
次スペクトルの発生が極めて少なくすることができるの
で広い波長域に用いる光学系に適するものである。
(Background of the Invention) In ordinary optical glass, light rays in a wavelength range shorter than 350 nm are absorbed, and the transmittance rapidly deteriorates. Therefore, it is difficult to take an image with an ultraviolet ray with a general taking lens. Fluorite (CaF 2 ) is a substance that transmits light in the ultraviolet region well.
And fused silica (SiO 2 ) are known. These are both 200n
These substances are often used in a wide wavelength range, especially in an optical system using an ultraviolet ray as a light source, because they have little internal absorption from the wavelength range shorter than m to the infrared range and have excellent transmittance. Furthermore, fluorite (CaF 2 ) has anomalous dispersion, and when achromatization is performed in combination with fused silica (SiO 2 ), the generation of a secondary spectrum can be extremely reduced, so that a wide wavelength range can be obtained. It is suitable for the optical system used in.

しかし、螢石も溶融石英も共に屈折率が低く、また両者
のアッべ数の差も小さいために、収差補正が困難であ
り、従来十分な性能を有する対物レンズを得ることが難
しかった。殊に、正レンズとして用いられる螢石の屈折
率が、負レンズとして用いられる溶融石英の屈折率より
低いために、ペッツバール和の補正が極めて困難な状況
にあり、例えば、特公昭43−26269号公報に開示
された対物レンズにおいても、ペッツバール和の補正が
不十分であり、結果として負気味の像面弯曲の残存量が
大きくなっていた。
However, since both fluorite and fused silica have low refractive indices and the difference in Abbe number between the two is small, it is difficult to correct aberrations, and it has been difficult to obtain an objective lens having sufficient performance conventionally. Particularly, since the refractive index of fluorite used as a positive lens is lower than that of fused silica used as a negative lens, it is extremely difficult to correct Petzval sum. For example, Japanese Patent Publication No. 43-26269. Even in the objective lens disclosed in the official gazette, the Petzval sum is not sufficiently corrected, and as a result, the amount of negative image plane curvature remaining is large.

(発明の目的) 本発明の目的は、螢石(CaF2)及び溶融石英(SiO2)をレン
ズ材料として使用しつつ、上記の困難を克服して収差バ
ランスが良好で、波長200nm程度の紫外領域から、可視
領域さらには赤外領域の光線に対して良好に色補正され
た対物レンズを提供することにある。
(Object of the Invention) The object of the present invention is to use fluorite (CaF 2 ) and fused silica (SiO 2 ) as a lens material, overcome the above-mentioned difficulties, and have a good aberration balance. An object of the present invention is to provide an objective lens which is well color-corrected for light rays in the visible region and further in the infrared region.

(発明の概要) 本発明による結像用対物レンズは、物体側から順に、物
体側に凹面を向けた物体側の面と、同じく物体側に凹面
を向けた像側の面とを有する負屈折力の第1成分、両凸
形状で正屈折力の第2成分、両凹形状で負屈折力の第3
成分及び正屈折力の第4成分とを有し、全系の焦点距離
をf、該第1成分の屈折力を、該第2成分と該第3
成分との間隔をD、該第3成分の像側レンズ面の曲率半
径をRとするとき、 −1<f・<0 (1) 0.10f<D<0.25f (2) 0.21f<R<0.90f (3) の各条件を満足するものである。
(Outline of the Invention) An imaging objective lens according to the present invention has, in order from the object side, a negative refraction having an object side surface having a concave surface facing the object side and an image side surface having a concave surface facing the object side. The first component of power, the second component of biconvex shape with positive refracting power, the third component of biconcave shape with negative refracting power
And a fourth component having a positive refracting power, the focal length of the entire system is f, the refracting power of the first component is 1 , the second component and the third component
Assuming that the distance from the component is D and the radius of curvature of the image-side lens surface of the third component is R, −1 <f · 1 <0 (1) 0.10f <D <0.25f (2) 0.21f <R It satisfies the conditions <0.90f (3).

前記の如く、螢石及び溶融石英は、紫外域光線の透過率
に優れているが、具体的には下表のごとき光学特性を有
している。
As described above, fluorite and fused silica are excellent in the transmittance of light in the ultraviolet region, but specifically have the optical characteristics as shown in the table below.

で定義されるものとする。また、n、n及びn
それぞれg線(λ=435.8nm)、F線(λ=486.1nm)及
びC線(λ=656.3nm)に対する屈折率である。
Shall be defined in. Further, n 9 , n F, and n c are the refractive indices for the g line (λ = 435.8 nm), the F line (λ = 486.1 nm), and the C line (λ = 656.3 nm), respectively.

従って、アッベ数の関係から、螢石を正レンズに、溶融
石英を負レンズにそれぞれ用いることによって、色収差
が補正され得る。
Therefore, chromatic aberration can be corrected by using fluorite for the positive lens and fused silica for the negative lens in view of the Abbe number.

部分分散比とアッベ数との関係を第11図に示す。図中
の直線lは一般的光学硝子の傾向を示している。図示の
如く、一般的光学硝子の組合せに比べて、螢石(CaF2)と
溶融石英(SiO2)との組合せでは、部分分散比対アッベ数
の傾斜が小さいので、二次スペクトルを小さくすること
が可能である。そして、色消し条件は、仮りに薄肉の密
着系として軸方向の色収差補正理論によれば、合成焦点
距離をf、螢石の焦点距離をf、溶融石英の焦点距離
をfとし、螢石のアッベ数をV、溶融石英のアッベ
数をVとするとき、 とする場合に、色消しが達成される。しかし、アッベ数
の差が少ないために、各々の焦点距離が短くなり、その
結果、高次収差が発生し易い。
The relationship between the partial dispersion ratio and the Abbe number is shown in FIG. A straight line 1 in the figure shows the tendency of general optical glass. As shown in the figure, in the combination of fluorite (CaF 2 ) and fused silica (SiO 2 ), the slope of the partial dispersion ratio vs. Abbe number is small compared to the general optical glass combination, so the secondary spectrum is made smaller. It is possible. Then, assuming that the achromatic condition is a thin-walled contact system, according to the axial chromatic aberration correction theory, the synthetic focal length is f, the focal length of fluorite is f c , and the focal length of fused silica is f s. When the Abbe number of stone is V c and the Abbe number of fused silica is V s , Achromatism is achieved. However, since the difference in Abbe number is small, each focal length becomes short, and as a result, high-order aberrations are likely to occur.

次に、d線(λ=587.6nm)に対する螢石の屈折率をN
、溶融石英の屈折率をNとするとき、 N<N であることから、薄肉密着系ではペッツバール条件を満
足することができず、正のペッツバール和が残存する。
この残存量Pは、薄肉密着系の理論によれば、 である。
Next, let the refractive index of fluorite for d line (λ = 587.6 nm) be N
c, and the refractive index of fused silica and N s, since it is N c <N s, the thin adhesion system can not satisfy the Petzval condition, positive Petzval sum remains.
According to the theory of the thin-walled adhesive system, this residual amount P is Is.

本発明では、第1成分を物体側に凹面を向けた物体側の
面と、同じく物体側に凹面を向けた像側の面とを有する
負屈折力成分として構成し、より具体的には、第1成分
を、物体側から順に物体側に凹面を有する負レンズと像
側に凸面を有する正レンズとで構成することによって、
第1成分全体としてフラットナーを形成すると共に、ペ
ッツバール和の残存を減少させる働きを持たせている。
In the present invention, the first component is configured as a negative refractive power component having an object side surface having a concave surface facing the object side and an image side surface having a concave surface facing the object side, and more specifically, By constructing the first component by a negative lens having a concave surface on the object side and a positive lens having a convex surface on the image side in order from the object side,
It forms a flattener as a whole of the first component and has a function of reducing the remaining Petzval sum.

条件(1)において、上限を越えた場合には、第1成分が
正屈折力を持つこととなってペッツバール和の正に向か
わせる作用が強くなり、結果として全系のペッツバール
和の補正が不十分となる。第1成分の負屈折力が強いこ
とは、ペッツバール和の補正には有利であるが、条件
(1)が下限を外れる場合には、第1成分での発散作用が
強くなり過ぎて高次の収差が発生する。殊に、非点収差
の発生が顕著となり良好な収差補正が困難となる。第1
成分を負レンズと正レンズとによって構成することによ
って、軸上の色収差の補正を助けると共に、倍率の色収
差の補正に対しても効果的である。
If the upper limit of condition (1) is exceeded, the first component will have a positive refractive power, and the effect of directing the Petzval sum to the positive side will become stronger, and as a result, the Petzval sum of the entire system will not be corrected. Will be enough. The strong negative refractive power of the first component is advantageous for correcting Petzval sum, but the condition
When (1) is out of the lower limit, the divergence action of the first component becomes too strong, and higher-order aberrations occur. In particular, astigmatism is remarkably generated, which makes it difficult to satisfactorily correct aberrations. First
By constructing the component with the negative lens and the positive lens, it is possible to assist correction of axial chromatic aberration and it is also effective for correction of lateral chromatic aberration.

条件(2)もペッツバール和をより良く補正するためのも
のである。第2成分から第4成分までは、正・負・正の
所謂トリプレット型のレンズ配置を持つが、第2成分と
第3成分との間隔Dを適当な値とするすることにより、
第3成分の負屈折力をより強く成し、これにより条件
(1)と併せてペッツバール和を良好に補正することが可
能となる。この条件の下限を外れる場合には、第2成分
と第3成分との間隔が小さ過ぎて、ペッツバール和の補
正効果が不十分である。また、上限を越える場合には、
ペッツバール和の補正には有利であるが、レンズ系が長
くなるために非点収差が発生しがちとなり、良好な補正
状態を得ることが難しくなる。
Condition (2) is also for better correcting Petzval sum. The second component to the fourth component have a so-called triplet type lens arrangement of positive, negative and positive, but by setting the distance D between the second component and the third component to an appropriate value,
The negative refractive power of the third component is made stronger, and
Together with (1), it becomes possible to satisfactorily correct Petzval sum. If the lower limit of this condition is not satisfied, the interval between the second component and the third component is too small, and the Petzval sum correction effect is insufficient. If the upper limit is exceeded,
This is advantageous for Petzval sum correction, but as the lens system becomes long, astigmatism tends to occur, making it difficult to obtain a good correction state.

条件(3)は収差バランスを保つために必要な条件であ
る。この条件の上限を越えると、第3成分の像側の面で
の発散作用が小さくなり、球面収差及び子午像面弯曲収
差が補正不足となり、良好な補正状態が得られなくな
る。逆に下限を外れる場合には、第3成分の像側の面で
の発散作用が強くなり過ぎるために、高次の収差が顕著
となり、特に球面収差が悪化して良好な収差バランスを
保つことが難しくなる。
The condition (3) is a condition necessary for maintaining the aberration balance. If the upper limit of this condition is exceeded, the divergent action of the third component on the image-side surface will become small, and spherical aberration and meridional image surface curvature aberration will be undercorrected, and a good correction state will not be obtained. On the other hand, when the value goes below the lower limit, the divergence of the third component on the image-side surface becomes too strong, so that higher-order aberrations become remarkable, and spherical aberrations worsen in particular and good aberration balance is maintained. Becomes difficult.

ところで、近距離撮影では、一般に収差変動を生ずる
が、本発明においては、第3成分と第4成分との合成屈
折力を34とするとき、 −1.1<f・34<0 (4) の条件を満たすことが望ましい。この条件により、近距
離においても球面収差と像面とのバランスを良好に保つ
ことが可能である。近距離では、射出瞳が像面から遠ざ
かるので、一定の像高に達する主光線についてみれば、
射出角が小さくなり、第3及び第4成分を通過する光線
は近距離ほど光軸に近い位置を通ることとなる。この結
果、後方成分としての第3及び第4成分での発散作用が
強ければ、像面を負に向かわせる作用が高まる。そし
て、この条件の下限を外れる場合には、後方成分の発散
作用が強過ぎて、近距離での像面が負になり、収差バラ
ンスが悪化し、上限を上回る場合には、後方成分が収斂
作用を持つこととなるので像面が正に偏倚することとな
り収差バランスが悪化する。
By the way, in short-distance shooting, aberration variation generally occurs, but in the present invention, when the combined refractive power of the third component and the fourth component is 34 , the condition of −1.1 <f · 34 <0 (4) It is desirable to satisfy. Under this condition, it is possible to maintain a good balance between spherical aberration and the image plane even at a short distance. At a short distance, the exit pupil moves away from the image plane, so for the chief ray reaching a certain image height,
The exit angle becomes smaller, and the light rays passing through the third and fourth components pass closer to the optical axis as the distance becomes shorter. As a result, if the diverging action of the third and fourth components as the rear component is strong, the action of directing the image surface to the negative is enhanced. If the lower limit of this condition is not satisfied, the diverging action of the rear component becomes too strong, and the image surface at a short distance becomes negative, deteriorating the aberration balance, and if the upper limit is exceeded, the rear component converges. Since it has a function, the image plane is positively deviated and the aberration balance is deteriorated.

(実施例) 本発明による第1実施例は、第1図に示す如く、負屈折
力の第1成分L1を物体側から順に両凹負レンズと両凸
正レンズとで構成し、第2成分L2を物体側により強い
曲率の面を向けた両凸正レンズで構成し、第3成分L3
を両凹負レンズで第4成分L4を両凸正レンズで構成し
たものである。
(Embodiment) In the first embodiment of the present invention, as shown in FIG. 1, the first component L 1 of the negative refractive power is composed of a biconcave negative lens and a biconvex positive lens in order from the object side. The component L 2 is composed of a biconvex positive lens with a surface having a stronger curvature facing the object side, and the third component L 3
Is a biconcave negative lens and the fourth component L 4 is a biconvex positive lens.

第2図に示した第2実施例は、第1成分L1を両凹負レ
ンズと両凸正レンズとの貼合せ負レンズで構成したもの
である。第3実施例は、第3図に示す如く、第1成分L
1を構成する負レンズと正レンズとの間に、発散性の空
気レンズを形成したものであり、画角を大きくしたもの
である。また、第4図に示した第4実施例は第4成分L
4を像側により強い曲率の面を向けた両凸正レンズとこ
れと分離されて像側に凸面をむけた負メニスカスレンズ
とで構成したものである。第5図の第5実施例は、第4
成分L4を像側により強い曲率の面を向けた正レンズと
これと接合されて像側に凸面を向けた負メニスカスレン
ズとで構成したものである。
In the second embodiment shown in FIG. 2, the first component L 1 is composed of a cemented negative lens composed of a biconcave negative lens and a biconvex positive lens. In the third embodiment, as shown in FIG. 3, the first component L
A divergent air lens is formed between the negative lens and the positive lens which compose 1 to enlarge the angle of view. In addition, the fourth embodiment shown in FIG.
4 is composed of a biconvex positive lens with a surface having a stronger curvature facing the image side, and a negative meniscus lens having a convex surface facing the image side separated from the biconvex positive lens. The fifth embodiment of FIG. 5 is the fourth embodiment.
The component L 4 is composed of a positive lens having a surface having a stronger curvature facing the image side and a negative meniscus lens having a convex surface facing the image side joined to the positive lens.

以下の表1〜表5に、本発明による第1〜第5実施例の
諸元を示す。表中、左端の数字は、物体側からの順序を
表し、Bfはバックフォーカスを、Σpは全系のペッツバ
ール和を表すものとする。
Tables 1 to 5 below show specifications of the first to fifth examples according to the present invention. In the table, the leftmost number represents the order from the object side, Bf represents the back focus, and Σp represents the Petzval sum of the entire system.

上記第1〜第5実施例についての諸収差図を、それぞれ
順に第6AB図〜第10AB図に示す。各収差図のAは
無限遠撮影状態の収差図であり、各収差図のBは撮影倍
率β=−0.5の近距離撮影状態の収差図である。いずれ
も基準波長はd線(λ=587.6nm)であり、無限遠状態
の収差を示す各A図には、g線(λ=435.8nm)、C線
(λ=656.3nm)及びA′線(λ=768.2nm)についての
倍率色収差を示すと共に、二次スペクトルを示すための
軸上色収差をも示した。無限遠撮影状態の軸外収差図で
は、目盛を撮影画角αで表し、近距離撮影状態の軸外収
差図では、目盛を物体の高さHで示した。
Aberration diagrams of the first to fifth examples are shown in FIGS. 6AB to 10AB, respectively. A in each aberration diagram is an aberration diagram in the infinity photographing state, and B in each aberration diagram is an aberration diagram in the short-distance photographing state with the photographing magnification β = −0.5. The reference wavelength is d line (λ = 587.6 nm) in each case, and in each A diagram showing the aberration at infinity, g line (λ = 435.8 nm), C line (λ = 656.3 nm) and A ′ line. The chromatic aberration of magnification for (λ = 768.2 nm) is shown, as well as the axial chromatic aberration for showing the secondary spectrum. In the off-axis aberration diagram in the infinity photographing state, the scale is represented by the photographing field angle α, and in the off-axis aberration diagram in the short distance photographing state, the scale is indicated by the height H 0 of the object.

上記の各表及び各収差図より、本発明による実施例はい
ずれもペッツバール和が良好に補正され、諸収差ともに
良好に補正されていることが分かる。特に色収差は良好
に補正され、紫外域から赤外域に渡って極めて広い波長
域に対して優れた結像性能を有していることが明らかで
ある。また、撮影倍率β=−0.5という極めて近距離の
撮影状態においても諸収差の劣下が少なく良好な性能が
維持されていることが分かる。
From the above tables and aberration diagrams, it can be seen that the Petzval sum is satisfactorily corrected and all the aberrations are satisfactorily corrected in each of the examples according to the present invention. In particular, it is clear that chromatic aberration is well corrected and that it has excellent imaging performance in an extremely wide wavelength range from the ultraviolet region to the infrared region. Further, it is understood that even in an extremely short-distance photographing state where the photographing magnification β = −0.5, the various aberrations are not deteriorated and the good performance is maintained.

(発明の効果) 以上の如く、本発明によれば、螢石(CaF2)及び溶融石英
(SiO2)をレンズ材料として使用しつつ、収差バランスが
良好で、波長200nm程度の紫外領域から、可視領域さら
には赤外領域の光線に対して良好に色補正された対物レ
ンズが達成される。
As described above, according to the present invention, fluorite (CaF 2 ) and fused quartz are used.
While using (SiO 2 ) as a lens material, it has an excellent aberration balance and achieves an objective lens with good color correction for light rays in the wavelength range of about 200 nm from the ultraviolet region to the visible region and further to the infrared region. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による第1実施例のレンズ構成図、第2
図は第2実施例のレンズ構成図、第3図は第3実施例の
レンズ構成図、第4図は第4実施例のレンズ構成図、第
5図は第5実施例のレンズ構成図、第6A図及び第6B
図はそれぞれ第1実施例における無限遠撮影状態及び近
距離撮影状態の諸収差図、第7A図及び第7B図はそれ
ぞれ第2実施例における無限遠撮影状態及び近距離撮影
状態の諸収差図、第8A図及び第8B図はそれぞれ第3
実施例における無限遠撮影状態及び近距離撮影状態の諸
収差図、第9A図及び第9B図はそれぞれ第4実施例に
おける無限遠撮影状態及び近距離撮影状態の諸収差図、
第10A図及び第10B図はそれぞれ第5実施例におけ
る無限遠撮影状態及び近距離撮影状態の諸収差図、第1
1図は部分分散比とアッベ数との関係を示す図である。 〔主要部分の符号の説明〕 L…第1成分 L…第2成分 L…第3成分 L…第4成分
FIG. 1 is a lens configuration diagram of a first embodiment according to the present invention, and FIG.
FIG. 4 is a lens block diagram of the second embodiment, FIG. 3 is a lens block diagram of the third example, FIG. 4 is a lens block diagram of the fourth example, and FIG. 5 is a lens block diagram of the fifth example. 6A and 6B
FIGS. 7A and 7B are graphs showing various aberrations in the infinity shooting state and the close-range shooting state, respectively, in FIGS. 7A and 7B, respectively, and FIGS. Figures 8A and 8B are respectively the third
FIGS. 9A and 9B are graphs showing various aberrations in the infinity shooting state and short-distance shooting state, respectively, and FIGS. 9A and 9B are graphs showing aberrations in the infinity shooting state and short-distance shooting state in the fourth example, respectively.
FIGS. 10A and 10B are graphs showing various aberrations of the fifth embodiment in the infinity shooting state and the short-distance shooting state, respectively.
FIG. 1 is a diagram showing the relationship between the partial dispersion ratio and the Abbe number. [Explanation of Symbols of Main Part] L 1 ... First component L 2 ... Second component L 3 ... Third component L 4 ... Fourth component

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側から順に、物体側に凹面を向けた物
体側の面と、同じく物体側に凹面を向けた像側の面とを
有する負屈折力の第1成分、両凸形状で正屈折力の第2
成分、両凹形状で負屈折力の第3成分及び正屈折力の第
4成分とを有し、全系の焦点距離をf、該第1成分の屈
折力を、該第2成分と該第3成分との間隔をD、該
第3成分の像側レンズ面の曲率半径をRとするとき、 −1<f・<0 (1) 0.10f<D<0.25f (2) 0.21f<R<0.90f (3) の各条件を満足することを特徴とする結像用対物レン
ズ。
1. A first component of negative refractive power having, in order from the object side, an object side surface having a concave surface facing the object side, and an image side surface having a concave surface facing the object side, a biconvex shape. Second of positive refracting power
A third component having a biconcave shape and a negative refractive power and a fourth component having a positive refractive power, the focal length of the entire system is f, the refractive power of the first component is 1 , the second component and the second component When the distance from the third component is D and the radius of curvature of the image-side lens surface of the third component is R, −1 <f · 1 <0 (1) 0.10f <D <0.25f (2) 0.21f An imaging objective lens characterized by satisfying the respective conditions of <R <0.90f (3).
JP59212244A 1984-10-09 1984-10-09 Imaging objective lens Expired - Lifetime JPH0629897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212244A JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212244A JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Publications (2)

Publication Number Publication Date
JPS6190115A JPS6190115A (en) 1986-05-08
JPH0629897B2 true JPH0629897B2 (en) 1994-04-20

Family

ID=16619357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212244A Expired - Lifetime JPH0629897B2 (en) 1984-10-09 1984-10-09 Imaging objective lens

Country Status (1)

Country Link
JP (1) JPH0629897B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006232A (en) * 2000-06-19 2002-01-09 Nikon Corp Microscope having automatic focusing function
JP4879540B2 (en) * 2005-09-26 2012-02-22 富士フイルム株式会社 Imaging lens
JP5015657B2 (en) 2007-05-18 2012-08-29 富士フイルム株式会社 Image pickup lens and image pickup apparatus including the image pickup lens
US7830620B2 (en) 2008-10-07 2010-11-09 Fujinon Corporation Imaging lens and imaging apparatus
JP5426901B2 (en) 2009-02-26 2014-02-26 株式会社日立製作所 Spectral optical system in DUV-UV band and spectroscopic measurement apparatus using the same
DE102015218328B4 (en) * 2015-09-24 2019-01-17 Carl Zeiss Smt Gmbh Optical system for field imaging and / or pupil imaging
TWI713894B (en) * 2018-09-07 2020-12-21 大立光電股份有限公司 Electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111506A (en) * 1980-12-27 1982-07-12 Olympus Optical Co Ltd Lens system having short distance correcting function

Also Published As

Publication number Publication date
JPS6190115A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
US5808808A (en) Wide-angle lens system
JP3397439B2 (en) Imaging lens
JPH10246854A (en) Compact wide-angle lens
JPH06130291A (en) Standard lens
JPH07128592A (en) Reduction stepping lens
JPH0629897B2 (en) Imaging objective lens
JP2000028919A (en) Middle telephotographic lens
JPS6132654B2 (en)
JPS6034737B2 (en) microscope objective lens
JP4491107B2 (en) Lens for photography
JPH11271610A (en) Medium telephoto lens
JPH0713704B2 (en) Wide-angle lens
JPS6042452B2 (en) zoom lens
JPH07113952A (en) Optical system for infrared ray
JP4765229B2 (en) Imaging optics
JP4552248B2 (en) Microscope objective lens
JPH0750242B2 (en) Gradient index type meniscus lens and lens system
JPH0574806B2 (en)
JPS6125125B2 (en)
JPS61275812A (en) Microscope objective
US3958865A (en) Retrofocus type lens system
JPH0448201B2 (en)
JPS6145207B2 (en)
JPH11316337A (en) Image-formation lens
JPS6113723B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term