JPS6152021A - Squelch circuit - Google Patents

Squelch circuit

Info

Publication number
JPS6152021A
JPS6152021A JP59174272A JP17427284A JPS6152021A JP S6152021 A JPS6152021 A JP S6152021A JP 59174272 A JP59174272 A JP 59174272A JP 17427284 A JP17427284 A JP 17427284A JP S6152021 A JPS6152021 A JP S6152021A
Authority
JP
Japan
Prior art keywords
differential comparator
digital signal
voltage
output
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59174272A
Other languages
Japanese (ja)
Other versions
JPH0356486B2 (en
Inventor
Kenichi Kishi
健一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59174272A priority Critical patent/JPS6152021A/en
Publication of JPS6152021A publication Critical patent/JPS6152021A/en
Publication of JPH0356486B2 publication Critical patent/JPH0356486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference

Abstract

PURPOSE:To prevent mis-output due to noise by applying a DC voltage to a differential comparator when no digital signal arrives between input terminals. CONSTITUTION:A digital signal arriving between input terminals 1, 2 from a 2- wire transmission line (not shown) is inputted to a differential comparator 4 via a pulse transformer 3 and resistors 11, 12. Then a digital signal subjected to waveform shaping is outputted between output terminals 9, 10. When no digital arrives, a transistor (TR) 16 connected between an input terminal 5 of the comparator 4 and a power supply VEE is conductive and a DC voltage is fed to the comparator 4. When the digital signal arrives, the level of a comparator 18 goes to high one and a TR17 is conducted, then the TR16 is nonconductive and only the digital signal is inputted to the comparator 4. When no digital signal arrives, mis-output due to noise is avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二線式伝送路から到着するディジタル信号を波
形整形する回路に設けられるスケルチ回路に関す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a squelch circuit provided in a circuit for waveform shaping a digital signal arriving from a two-wire transmission line.

二種類の信号レベルにより二値情報を直列伝送するディ
ジタル信号を、長遠な二線式伝送路を経由して伝送する
と、ディジタル信号の振幅も減衰し、また波形も歪を生
ずる。かかるディジタル信号から二値情報を忠実に抽出
する為に、受信側に波形整形回路を設けることが行われ
ている。然しこの種波形整形回路は、前記二線式伝送路
からディジタル信号が到着しない場合に、線路雑音等を
誤って整形出力しないことが必要である。
When a digital signal that serially transmits binary information using two types of signal levels is transmitted via a long two-wire transmission line, the amplitude of the digital signal is attenuated and the waveform is also distorted. In order to faithfully extract binary information from such digital signals, a waveform shaping circuit is provided on the receiving side. However, this type of waveform shaping circuit must not erroneously shape and output line noise etc. when no digital signal arrives from the two-wire transmission line.

〔従来の技術〕[Conventional technology]

第4図はこの種従来ある波形整形回路の一例を示す図で
ある。
FIG. 4 is a diagram showing an example of a conventional waveform shaping circuit of this kind.

第4図において、図示されぬ二線式伝送路から入力端子
1および2間に到着するディジタル信号は、パルス変成
器3を介して差動比較器4の反転入力端子5および非反
転入力端子6に入力される。
In FIG. 4, a digital signal arriving between input terminals 1 and 2 from a two-wire transmission line (not shown) is transmitted to an inverting input terminal 5 and a non-inverting input terminal 6 of a differential comparator 4 via a pulse transformer 3. is input.

抵抗7および8は、パルス変成器3を前記二線式伝送路
の特性インピーダンスに等しい抵抗値で終端すると共に
、中点から反転入力端子5および非反転入力端子6に闇
値電圧V。を供給する。
The resistors 7 and 8 terminate the pulse transformer 3 with a resistance value equal to the characteristic impedance of the two-wire transmission line, and provide a dark value voltage V from the midpoint to the inverting input terminal 5 and the non-inverting input terminal 6. supply.

かかる状態で、入力端子1および2間にディジタル信号
が到着すると、差動比較器4は反転入力端子5および非
反転入力端子6間に闇値電圧VIIBを中心電圧として
入力されるディジタル信号を波形整形し、出力端子9お
よび10間に波形整形されたディジタル信号を出力する
In such a state, when a digital signal arrives between input terminals 1 and 2, the differential comparator 4 converts the digital signal input between the inverting input terminal 5 and the non-inverting input terminal 6 with the dark value voltage VIIB as the center voltage into a waveform. The waveform-shaped digital signal is output between output terminals 9 and 10.

なお入力端子1および2間にディジタル信号が到着しな
い場合には、差動比較器4から出力端子9および10間
に出力される電圧レベルは不定となり、例えば入力端子
1および2間に到着する微小な雑音電圧を増幅し、出力
端子9および10間の電圧レベルが変動する恐れがある
Note that if a digital signal does not arrive between input terminals 1 and 2, the voltage level output from differential comparator 4 between output terminals 9 and 10 will be undefined. This may amplify the noise voltage and cause the voltage level between output terminals 9 and 10 to fluctuate.

〔発明が解決しようとする問題点3 以上の説明から明らかな如(、従来ある波形整形回路に
おいては、入力端子間にディジタル信号が到着しない場
合に、出力端子から出力される電圧レベルは不定となり
、例えば線路雑音等により変動する恐れがある。
[Problem to be Solved by the Invention 3] As is clear from the above explanation, in a conventional waveform shaping circuit, when a digital signal does not arrive between the input terminals, the voltage level output from the output terminal becomes unstable. , for example, may vary due to line noise, etc.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、二線式伝送路から到着する直列二値のデ
ィジタル信号を差動比較器に入力して波形整形を行う回
路において、前記差動比較器の両入力端子に直列に挿入
する抵抗と、何れか一方の前記抵抗に電流開閉素子を介
して直流バイアス電流を供給する第1の手段と、前記差
動比較器に到着するディジタル信号を検出し、該ディジ
タル信号の継続中前記電流開閉素子を遮断状態に設定す
る第2の手段とから構成されることを特徴とする本発明
により解決される。
The problem is that in a circuit that inputs a serial binary digital signal arriving from a two-wire transmission line to a differential comparator and shapes the waveform, the resistor inserted in series with both input terminals of the differential comparator and a first means for supplying a DC bias current to one of the resistors via a current switching element, detecting a digital signal arriving at the differential comparator, and switching the current switching while the digital signal continues. and second means for setting the element to a cut-off state.

〔作用〕[Effect]

即ち本発明によれば、ディジタル信号が到着しない場合
には前記第1の手段から前記一方の抵抗に直流バイアス
電流が供給され、差動比較器の両入力端子間には直流バ
イアス電流により抵抗の両端に生ずる直流電圧が常時印
加されることとなり、差動比較器から出力される電圧レ
ベルを一定値に維持する。この侭の状態で差動比較器に
ディジタル信号が到着すると、・差動比較器にはディジ
タル信号と前記直流電圧とが重畳されて入力され、差動
比較器の波形整形に歪を与えることとなる。
That is, according to the present invention, when a digital signal does not arrive, a DC bias current is supplied from the first means to the one resistor, and the DC bias current is applied to the resistor between both input terminals of the differential comparator. The DC voltage generated at both ends is constantly applied, and the voltage level output from the differential comparator is maintained at a constant value. When a digital signal arrives at the differential comparator in this state, the digital signal and the DC voltage are superimposed and input to the differential comparator, causing distortion to the waveform shaping of the differential comparator. Become.

かかる影響を除去する為に、前記第2の手段が、到着す
るディジタル信号を検出し、該ディジタル信号が継続す
る間前記第1の手段の電流開閉素子を遮断状態として直
流バイアス電流を阻止させる。
In order to eliminate this influence, the second means detects the arriving digital signal and blocks the current switching element of the first means to block the DC bias current while the digital signal continues.

その結果前記抵抗には最早直流電圧は発生せず到着する
ディジタル信号のみが差動比較器に入力されることとな
り、差動比較器は正常な波形整形を行う。
As a result, no DC voltage is generated across the resistor, and only the arriving digital signal is input to the differential comparator, and the differential comparator performs normal waveform shaping.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による受信回路を示す図であ
る。なお、全図を通じて同一符号は同一対象物を示す。
FIG. 1 is a diagram showing a receiving circuit according to an embodiment of the present invention. Note that the same reference numerals indicate the same objects throughout the figures.

第1図においては、第4図に示される受信回路の他に、
抵抗11乃至14、コンデンサ15、トランジスタ15
および17、エミッタ出力差動比較器およびダイオード
19から構成されるスケルチ回路が設けられている。抵
抗11および12は差動比較器4の反転入力端子5およ
び非反転入力端子6に直列に挿入される抵抗であり、抵
抗13および電流開閉素子であるトランジスタ16は前
記第1の手段を構成し、またエミッタ出ノJ差動比較器
18、抵抗14、コンデンサ15、トランジスタ17お
よびダイオード19は前記第2の手段を構成する。
In FIG. 1, in addition to the receiving circuit shown in FIG.
Resistors 11 to 14, capacitor 15, transistor 15
and 17, a squelch circuit composed of an emitter output differential comparator and a diode 19. Resistors 11 and 12 are resistors inserted in series with the inverting input terminal 5 and non-inverting input terminal 6 of the differential comparator 4, and the resistor 13 and the transistor 16, which is a current switching element, constitute the first means. , the emitter output J differential comparator 18, the resistor 14, the capacitor 15, the transistor 17 and the diode 19 constitute the second means.

第1図において、トランジスタ16のベースには闇値電
圧V0に近い電圧が印加されてトランジスタ16が導通
状態にあると、負電圧■。6から抵抗13、トランジス
タ16、抵抗11.7.8およびパルス変成器3を経由
して直流バイアス電流Iが流れ、抵抗11の両端には直
流電圧(以後バイアス電圧■8と称す)が生ずる。今入
力端子1および2間にディジタル信号が到着していない
と、エミッタ出力差動比較器18の反転入力端子20に
は抵抗8および12を介して闇値電圧■。がと略等しい
電圧が印加されるが(抵抗7および8は抵抗11および
12に比べて充分小さく設定する)、非反転入力端子2
1には闇値電圧■、より略バイアス電圧■8だけ低下し
た直流電圧が印加される。即ち反転入力端子20および
非反転入力端子21間には、バイアス電圧■、が印加さ
れることとなる。その結果エミッタ出力差動比較器18
は負電圧■。に近い電圧レベル(以後低電圧レベル■L
と称す)を出力し、トランジスタ17にはベース電流が
供給されぬ為遮断状態となり、トランジスタ16は導通
状態を維持する。かかる状態では、差動比較器4の反転
入力端子5と非反転入力端子6との間にもバイアス電圧
■、が入力され、出力端子9および10間に出力される
電圧レベルも所定値に維持される。かがる状態で入力端
子1および2間に線路雑音等が到着しても、雑音電圧が
バイアス電圧■8を打消さぬ限り、差動比較器4の出力
する電圧レベルは変動することは無い。
In FIG. 1, when a voltage close to the dark value voltage V0 is applied to the base of the transistor 16 and the transistor 16 is in a conductive state, a negative voltage ■ is applied. A DC bias current I flows from the resistor 13 through the resistor 13, the transistor 16, the resistor 11.7.8, and the pulse transformer 3, and a DC voltage (hereinafter referred to as bias voltage 8) is generated across the resistor 11. If no digital signal has arrived between input terminals 1 and 2, a dark value voltage ■ appears at the inverting input terminal 20 of the emitter output differential comparator 18 via the resistors 8 and 12. (Resistors 7 and 8 are set sufficiently small compared to resistors 11 and 12), but the non-inverting input terminal 2
1 is applied with a dark value voltage ■, and a DC voltage lowered by approximately bias voltage ■8. That is, the bias voltage (2) is applied between the inverting input terminal 20 and the non-inverting input terminal 21. As a result, the emitter output differential comparator 18
is a negative voltage■. Voltage level close to (hereinafter referred to as low voltage level ■L)
Since the base current is not supplied to the transistor 17, the transistor 17 is cut off, and the transistor 16 remains conductive. In this state, the bias voltage ■ is also input between the inverting input terminal 5 and the non-inverting input terminal 6 of the differential comparator 4, and the voltage level output between the output terminals 9 and 10 is also maintained at a predetermined value. be done. Even if line noise etc. arrives between input terminals 1 and 2 in a biased state, the voltage level output from the differential comparator 4 will not fluctuate unless the noise voltage cancels the bias voltage 8. .

かかる状態で入力端子1および2間にディジタル信号が
到着すると、エミッタ出力差動比較器18の反転入力端
子20および非反転入力端子21間には、バイアス電圧
■1に重畳してディジタル信号が入力される。ディジタ
ル信号がバイアス電圧vIIと同一極性の信号レベル(
以後第1の信号レベルと称す)を示す場合には、エミッ
タ出力差動比較器18が出力する電圧レベルは変化しな
いが、ディジタル信号がバイアス電圧■8と逆極性の信
号レベル(以後第2の信号レベルと称す)を示す場合に
は、エミッタ出力差動比較器18は閾値電圧Vlaに近
い電圧レベル(以後高電圧レベルVHと称す)を出力す
る。なおエミッタ出力差動比較器18は、低電圧レベル
■、から高電圧レベルVHに変化する場合には低出力イ
ンピーダンスを示し、逆に高電圧レベル■8から低電圧
レベル■Lに変化する場合には高出力インピーダンスを
示す。従ってエミッタ出力差動比較器18が低電圧レベ
ルV、から高電圧レベルVl+に変化する場合には、コ
ンデンサ15は低電圧レベル■、と高電圧レベルVHと
の差電圧により急速に充電される。トランジスタ17に
はダイオード19を介しテベース電流が供給され、トラ
ンジスタ17は4通状態となり、負電圧■、から抵抗1
3およびトランジスタ17を経由して略直流バイアス電
流Iに等しい直流電流が流れる。その結果トランジスタ
16は遮断状態に設定され、抵抗11には直流バイアス
電流Iが供給されなくなる。その結果差動比較器4 (
およびエミッタ出力差動比較器18)にはディジタル信
号のみが入力されることとなり、第4図におけると同様
の波形整形機能を維持する。なおディジタル信号が第2
の信号レベルがら第1の信号レベルに変化し、エミッタ
出力差動比較器18が高電圧レベル■8から低電圧レベ
ルVLに変化する場合、エミッタ出力差動比較器18は
高出力インピーダンスを示す為、コンデンサ15に充電
されている電荷は、抵抗14を通じて放電されることと
なる。抵抗14i8よびコンデンサ15から成る時定数
回路の時定数を充分長く設定すれば、ディジタル信号が
再び第1の信号レベルから第2の信号レベルに変化し、
エミッタ出力差動比較器18が再び高電圧レベル■8を
出力する迄、トランジスタ17には前記時定数回路がら
ベース電流が供給され、トランジスタ17は導通状態を
維持し、またトランジスタ16は遮断萩態を維持する。
When a digital signal arrives between input terminals 1 and 2 in this state, the digital signal is input between the inverting input terminal 20 and the non-inverting input terminal 21 of the emitter output differential comparator 18, superimposed on the bias voltage ■1. be done. The digital signal has a signal level with the same polarity as the bias voltage vII (
The voltage level output by the emitter output differential comparator 18 does not change when the digital signal indicates a signal level (hereinafter referred to as the first signal level) with the opposite polarity to the bias voltage ■8 (hereinafter referred to as the second signal level). When the signal level is high (hereinafter referred to as high voltage level VH), the emitter output differential comparator 18 outputs a voltage level close to the threshold voltage Vla (hereinafter referred to as high voltage level VH). The emitter output differential comparator 18 exhibits low output impedance when changing from low voltage level ■ to high voltage level VH, and conversely when changing from high voltage level ■8 to low voltage level ■L. indicates high output impedance. Therefore, when the emitter output differential comparator 18 changes from the low voltage level V to the high voltage level Vl+, the capacitor 15 is rapidly charged by the difference voltage between the low voltage level 2 and the high voltage level VH. The base current is supplied to the transistor 17 via the diode 19, and the transistor 17 is in a 4-way state, and from the negative voltage 1, the resistor 1
3 and transistor 17, a direct current approximately equal to the direct current bias current I flows. As a result, the transistor 16 is set to a cutoff state, and the DC bias current I is no longer supplied to the resistor 11. As a result, differential comparator 4 (
Only digital signals are input to the emitter output differential comparator 18), maintaining the same waveform shaping function as in FIG. Note that the digital signal is
When the signal level changes from the first signal level to the first signal level and the emitter output differential comparator 18 changes from the high voltage level ■8 to the low voltage level VL, the emitter output differential comparator 18 exhibits a high output impedance. , the electric charge stored in the capacitor 15 is discharged through the resistor 14. If the time constant of the time constant circuit consisting of the resistor 14i8 and the capacitor 15 is set to be long enough, the digital signal changes from the first signal level to the second signal level again.
Until the emitter output differential comparator 18 again outputs the high voltage level 8, the base current is supplied to the transistor 17 from the time constant circuit, the transistor 17 maintains the conducting state, and the transistor 16 remains in the cut-off state. maintain.

その結果ディジタル信号が到着している間、直流バイア
ス電流Iは抵抗11に供給されることは無く、差動比較
器4は第1図と同様の波形整形を行う。
As a result, while the digital signal is arriving, the DC bias current I is not supplied to the resistor 11, and the differential comparator 4 performs waveform shaping similar to that shown in FIG.

然し、第1図において電源を投入した直後、未だ直流バ
イアス電流Iが流れ始める以前にエミ・ツタ出力差動比
較器18の反転入力端子20および非反転入力端子21
間に雑音電圧が入力され、工ミンク出力差動比較器18
が高電圧レベルV11を出力すると、前記時定数回路の
時定数により定まる期間、前述の過程でトランジスタ1
7が導通状態どなり、直流バイアス電流■が抵抗11に
供給されなくなり、その間差動比較器4は第4図におけ
ると同様に人力される線路雑音等により出力する電圧レ
ベルが変動する恐れがある。
However, in FIG. 1, immediately after the power is turned on, and before the DC bias current I starts flowing, the inverting input terminal 20 and the non-inverting input terminal 21 of the emitter output differential comparator 18
A noise voltage is input between the differential comparators 18 and 18.
When outputs the high voltage level V11, the transistor 1 is activated in the above process for a period determined by the time constant of the time constant circuit.
7 becomes conductive, and the DC bias current {circle around (2)} is no longer supplied to the resistor 11. During this period, the output voltage level of the differential comparator 4 may fluctuate due to human input line noise, etc., as in FIG.

第2図は第1図における前記問題点を解決した本発明の
他の一実施例による受信回路を示す図である。第2図に
おいては、第1図におけるスケルチ回路に、抵抗22乃
至25が付加されている。
FIG. 2 is a diagram showing a receiving circuit according to another embodiment of the present invention, which solves the above-mentioned problems in FIG. 1. In FIG. 2, resistors 22 to 25 are added to the squelch circuit in FIG. 1.

第2図においては、電源が投入されると、正電圧VCC
から抵抗22.23.12および8を介して闇値電圧■
。に直流電流が流れ、また闇値電圧V11Bから抵抗7
.11.25および24を介して負電圧VEEに直流電
流が流れる。その結果エミッタ出力差動比較器18の反
転入力端子20および非反転入力端子21間には、前記
直流電流による直流電圧が入力されることとなり、エミ
ッタ出力差動比較器18は低電圧レベル■、を出力し、
コンデンサ15は放電状態となり、トランジスタ17に
はベース電流が供給されなくなり、トランジスタ17は
遮断状態に維持され、トランジスタ16は導通状態に設
定されて、直流バイアス電流■が常に流れることとなり
、第1図における直流バイアス電流Iが流れなくなる恐
れは解消する。
In Figure 2, when the power is turned on, the positive voltage VCC
Dark value voltage through resistor 22.23.12 and 8 from ■
. DC current flows through the resistor 7 from the dark value voltage V11B.
.. A direct current flows through 11.25 and 24 to the negative voltage VEE. As a result, a DC voltage due to the DC current is input between the inverting input terminal 20 and the non-inverting input terminal 21 of the emitter output differential comparator 18, and the emitter output differential comparator 18 is at low voltage level (1), Outputs
The capacitor 15 is in a discharged state, no base current is supplied to the transistor 17, the transistor 17 is maintained in a cut-off state, and the transistor 16 is set in a conductive state, so that a DC bias current ■ always flows, as shown in FIG. The fear that the DC bias current I will stop flowing is eliminated.

第3図は第2図と同様に第1図における前記問題点を解
決した本発明の他の一実施例による受信回路を示す図で
ある。第3図においては、第1図におけるスケルチ回路
の他に、抵抗26乃至29と、コンデンサ30および3
1が付加されている。
Similar to FIG. 2, FIG. 3 is a diagram showing a receiving circuit according to another embodiment of the present invention, which solves the problems described in FIG. 1. In FIG. 3, in addition to the squelch circuit in FIG. 1, resistors 26 to 29 and capacitors 30 and 3
1 is added.

第3図においても、正電圧■。Cから抵抗26および2
7を介して直流電流がながれ、負電圧v!Eへ抵抗28
および29を介して直流電流が流れる。
Also in Figure 3, positive voltage ■. C to resistors 26 and 2
A direct current flows through 7, and a negative voltage v! Resistance 28 to E
A direct current flows through and 29.

その結果第2図におけると同様に、電源を投入すると直
ちにエミッタ出力差動比較器18の反転入力端子20お
よび非反転入力端子21間に直流電圧が入力され、トラ
ンジスタ17が遮断状態、トランジスタ16が導通状態
となり、直流バイアス電流Iが必ず抵抗11に供給され
る。
As a result, as in FIG. 2, as soon as the power is turned on, a DC voltage is input between the inverting input terminal 20 and the non-inverting input terminal 21 of the emitter output differential comparator 18, the transistor 17 is in the cut-off state, and the transistor 16 is in the cut-off state. A conductive state is established, and the DC bias current I is always supplied to the resistor 11.

以上の説明から明らかな如く、本実施例によれば、ディ
ジタル信号が到着しない場合には抵抗11に直流バイア
ス電流Iが供給され、抵抗11に生ずるバイアス電圧■
8が差動比較器4の反転入力端子5および非反転入力端
子6間に入力され、出力端子9および10間に出力され
る電圧レベルを所定値に維持し、線路雑音等による電圧
レベルの変動を防止することが可能となる。
As is clear from the above description, according to this embodiment, when a digital signal does not arrive, the DC bias current I is supplied to the resistor 11, and the bias voltage
8 is input between the inverting input terminal 5 and the non-inverting input terminal 6 of the differential comparator 4, and maintains the voltage level output between the output terminals 9 and 10 at a predetermined value, and prevents fluctuations in the voltage level due to line noise, etc. This makes it possible to prevent

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、前記受信回路において、二線式
伝送路からディジタル信号が到着しない場合に、線路雑
音等により差動比較器の出力する電圧レベルが変動する
ごとが防止され、安定した波形整形が実施可能となる。
As described above, according to the present invention, in the receiving circuit, when a digital signal does not arrive from the two-wire transmission line, the voltage level output from the differential comparator is prevented from fluctuating due to line noise, etc., and the voltage level output from the differential comparator is stabilized. Waveform shaping becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による波形整形回路を示す図
、第2図は本発明の他の一実施例による波形整形回路を
示す図、第3図は本発明の他の一実施例による波形整形
回路を示す図、第4図は従来ある波形整形回路の一例を
示す図である。 図において、1および2は入力端子、3はパルス変成器
、4は差動比較器、5および20は反転入力端子、6お
よび21は非反転入力端子、7.11乃至14および2
2乃至乃至29は抵抗、9および10は出力端子、15
.30および31はコンデンサ、16および17はトラ
ンジスタ、19はダイオード、■は直流バイアス電流、
■8はバイアス電圧、VBBは閾値電圧、VCCは正電
圧、VEEは負電圧、を示す。 第4 問
FIG. 1 is a diagram showing a waveform shaping circuit according to one embodiment of the present invention, FIG. 2 is a diagram showing a waveform shaping circuit according to another embodiment of the present invention, and FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a diagram showing an example of a conventional waveform shaping circuit. In the figure, 1 and 2 are input terminals, 3 is a pulse transformer, 4 is a differential comparator, 5 and 20 are inverting input terminals, 6 and 21 are non-inverting input terminals, 7.11 to 14 and 2
2 to 29 are resistors, 9 and 10 are output terminals, 15
.. 30 and 31 are capacitors, 16 and 17 are transistors, 19 is a diode, ■ is a DC bias current,
(2) 8 represents a bias voltage, VBB represents a threshold voltage, VCC represents a positive voltage, and VEE represents a negative voltage. Question 4

Claims (2)

【特許請求の範囲】[Claims] (1)二線式伝送路から到着する直列二値のディジタル
信号を差動比較器に入力して波形整形を行う回路におい
て、前記差動比較器の両入力端子に直列に挿入する抵抗
と、何れか一方の前記抵抗に電流開閉素子を介して直流
バイアス電流を供給する第1の手段と、前記差動比較器
に到着するディジタル信号を検出し、該ディジタル信号
の継続中前記電流開閉素子を遮断状態に設定する第2の
手段とから構成されることを特徴とするスケルチ回路。
(1) In a circuit that inputs a serial binary digital signal arriving from a two-wire transmission line to a differential comparator and performs waveform shaping, a resistor inserted in series to both input terminals of the differential comparator; a first means for supplying a DC bias current to one of the resistors via a current switching element; detecting a digital signal arriving at the differential comparator; and detecting a digital signal arriving at the differential comparator; and second means for setting the squelch circuit to a cutoff state.
(2)前記第2の手段は、前記差動比較器の両入力端子
に並列に両入力端子を接続し、該両入力端子に到着する
前記ディジタル信号が第1の信号レベルから第2の信号
レベルに変化する場合に低出力インピーダンス、該第2
の信号レベルから該第1の信号レベルに変化する場合に
高出力インピーダンスを示すエミッタ出力差動比較器と
、該エミッタ出力差動比較器の出力に接続され、前記デ
ィジタル信号が入力されている期間中該エミッタ出力差
動比較器が出力する電圧レベルを保持する時定数回路と
、該時定数回路が前記電圧レベルを保持する間該時定数
回路からベース電流を供給されて導通状態となり、前記
電流開閉素子を遮断状態に設定するトランジスタとから
構成されることを特徴とする特許請求の範囲第1項記載
のスケルチ回路。
(2) The second means connects both input terminals in parallel to both input terminals of the differential comparator, and the digital signal arriving at the two input terminals changes from a first signal level to a second signal level. Low output impedance, when the level changes, the second
an emitter output differential comparator that exhibits high output impedance when the signal level changes from the signal level to the first signal level; and a period during which the emitter output differential comparator is connected to the output of the emitter output differential comparator and the digital signal is input. a time constant circuit that holds the voltage level output by the emitter output differential comparator; and while the time constant circuit holds the voltage level, it is supplied with a base current from the time constant circuit and becomes conductive; 2. The squelch circuit according to claim 1, further comprising a transistor for setting the switching element to a cutoff state.
JP59174272A 1984-08-22 1984-08-22 Squelch circuit Granted JPS6152021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59174272A JPS6152021A (en) 1984-08-22 1984-08-22 Squelch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59174272A JPS6152021A (en) 1984-08-22 1984-08-22 Squelch circuit

Publications (2)

Publication Number Publication Date
JPS6152021A true JPS6152021A (en) 1986-03-14
JPH0356486B2 JPH0356486B2 (en) 1991-08-28

Family

ID=15975750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59174272A Granted JPS6152021A (en) 1984-08-22 1984-08-22 Squelch circuit

Country Status (1)

Country Link
JP (1) JPS6152021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111028U (en) * 1990-02-28 1991-11-14
JPH04191165A (en) * 1990-11-27 1992-07-09 Hitachi Ltd Installation method in radiator chamber for diesel locomotive

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0507485A (en) 2004-02-05 2007-07-10 Probiodrug Ag new glutaminyl cyclase inhibitors
US8278345B2 (en) 2006-11-09 2012-10-02 Probiodrug Ag Inhibitors of glutaminyl cyclase
JP5523107B2 (en) 2006-11-30 2014-06-18 プロビオドルグ エージー Novel inhibitors of glutaminyl cyclase
NZ579310A (en) 2007-03-01 2012-03-30 Probiodrug Ag Use of glutaminyl cyclase inhibitors for the treatment of mild cognitive impairment and diagnostic purposes thereof
US9181233B2 (en) 2010-03-03 2015-11-10 Probiodrug Ag Inhibitors of glutaminyl cyclase
US8269019B2 (en) 2010-03-10 2012-09-18 Probiodrug Ag Inhibitors
EP2560953B1 (en) 2010-04-21 2016-01-06 Probiodrug AG Inhibitors of glutaminyl cyclase
PL3461819T3 (en) 2017-09-29 2020-11-30 Probiodrug Ag Inhibitors of glutaminyl cyclase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314447A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Refrigerating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314447A (en) * 1976-07-26 1978-02-09 Mitsubishi Electric Corp Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111028U (en) * 1990-02-28 1991-11-14
JPH04191165A (en) * 1990-11-27 1992-07-09 Hitachi Ltd Installation method in radiator chamber for diesel locomotive

Also Published As

Publication number Publication date
JPH0356486B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
US3671671A (en) Pulse transmitting and receiving systems
US4339727A (en) Waveform converting circuit
US3868519A (en) Data transmission systems and components therefor
JPS6152021A (en) Squelch circuit
JPH04212570A (en) Clamping circuit
US4071781A (en) Pulse duration correction circuit
KR890003132A (en) Temperature Stable RF Detector
KR860006883A (en) Digital line receiver
CA2078041A1 (en) Ring trip detection circuit
JP2005521375A (en) Optoelectronic receiver circuit for digital communication.
US5148162A (en) Analog-to-digital converter comparator circuit utilizing a reverse polarity sampling technique
US2986655A (en) Variable level gating circuit
JPS6253967B2 (en)
US3381089A (en) Data transmission apparatus
US4266099A (en) Pulse rejection and duration correction circuit
JP3181458B2 (en) Gain switching type optical receiving amplifier
JP2640003B2 (en) FSK data waveform shaping circuit
GB955791A (en) Transistorised transmitter for polar signals
US3663887A (en) Memory sense amplifier inherently tolerant of large input disturbances
US3961207A (en) Output retaining electronic circuit
GB1592770A (en) Pulse duration standardising circuit
GB1225464A (en)
ATE28250T1 (en) CIRCUIT ARRANGEMENT FOR TRANSMISSION OF VOLTAGE SIGNALS.
JP2626191B2 (en) AMI signal receiving circuit
US3988548A (en) Dial pulse correction circuit for telephone signaling system