JPS6151282B2 - - Google Patents

Info

Publication number
JPS6151282B2
JPS6151282B2 JP58022031A JP2203183A JPS6151282B2 JP S6151282 B2 JPS6151282 B2 JP S6151282B2 JP 58022031 A JP58022031 A JP 58022031A JP 2203183 A JP2203183 A JP 2203183A JP S6151282 B2 JPS6151282 B2 JP S6151282B2
Authority
JP
Japan
Prior art keywords
film
zirconium oxide
oxide
refractive index
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58022031A
Other languages
Japanese (ja)
Other versions
JPS59148002A (en
Inventor
Shizuko Katsube
Takayuki Katsube
Kazuo Hirasawa
Takeshi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58022031A priority Critical patent/JPS59148002A/en
Publication of JPS59148002A publication Critical patent/JPS59148002A/en
Publication of JPS6151282B2 publication Critical patent/JPS6151282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は蒸着およびスパツタ用酸化ジルコニウ
ム組成物およびそれを用いる光学用薄膜の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zirconium oxide composition for vapor deposition and sputtering and a method for producing optical thin films using the same.

従来、酸化ジルコニウムは多層反射防止膜など
の光学多層膜の主要な膜構成用物質として用いら
れてきた。
Conventionally, zirconium oxide has been used as a main film constituent material for optical multilayer films such as multilayer antireflection films.

すなわち、ガラスなど、n=1.4〜1.8程度の屈
折率を有する基板の多層反射防止用膜としては、
2.0前後の屈折率を有する高屈折率の膜が必要で
あり、かかる膜を蒸着またはスパツタにより製造
するための出発材料としては、酸化ジルコニウム
が唯一の好適な物質であつた。
That is, as a multilayer antireflection film for a substrate such as glass having a refractive index of about n=1.4 to 1.8,
High refractive index films were needed, with a refractive index around 2.0, and zirconium oxide was the only suitable starting material for producing such films by evaporation or sputtering.

しかしながら、酸化ジルコニウムの蒸着膜は、
その膜厚方向の屈折率が、基板側から表面側に近
づくにつれて漸次減少するという光学的不均質性
を現わし、この現象が多層反射防止膜において、
その効果を阻害するという大きな欠点があつた。
However, the deposited film of zirconium oxide is
The refractive index in the film thickness direction gradually decreases from the substrate side to the surface side, which manifests optical inhomogeneity, and this phenomenon occurs in multilayer antireflection films.
There was a major drawback that hindered its effectiveness.

かかる光学的不均質性の発生は、膜が厚くなる
につれて結晶化が進み、表面近くで結晶粒が大き
くなると同時に膜密度が粗となつて、膜の基板近
くよりも表面近くのnが低下するためであると考
えられている。
Such optical inhomogeneity occurs because as the film becomes thicker, crystallization progresses, crystal grains grow larger near the surface, and at the same time the film density becomes coarser, resulting in lower n near the surface of the film than near the substrate. It is believed that this is for the purpose of

そこでこれを改善することを目的として、出発
材料中に酸化ジルコニウムよりも高屈折率の物質
を若干混入し、両者の蒸気圧差などを利用して蒸
着が進むにつれて高屈折率材料の混入度を多くす
ること、あるいは酸化ジルコニウム蒸着膜の結晶
性を低下させることが考えられた。
Therefore, in order to improve this, we mixed a small amount of a substance with a higher refractive index than zirconium oxide into the starting material, and by utilizing the vapor pressure difference between the two, we increased the degree of mixing of the high refractive index material as the deposition progressed. It has been considered to reduce the crystallinity of the zirconium oxide deposited film.

そして混入物質について種々検討の結果、総体
的効果として、酸化チタンの混入が酸化ジルコニ
ウム蒸着膜の光学的不均質性の減少にかなり良い
結果を与えることが認められ、既に一部において
実用化されている。
As a result of various studies on contaminants, it was found that the overall effect of incorporating titanium oxide is to reduce the optical heterogeneity of zirconium oxide deposited films, and it has already been put into practical use in some areas. There is.

しかしながら、酸化チタンの添加によつて、一
方では種々の欠点が現われることが明らかになつ
た。
However, it has become clear that the addition of titanium oxide causes various drawbacks.

すなわち、酸化ジルコニウム膜の屈折率が酸化
チタン未添加のそれよりも大きくなつてしまうこ
と、および酸化チタン添加酸化ジルコニウム膜の
強度が、酸化チタン未添加のそれよりも低下する
ことなどである。
That is, the refractive index of the zirconium oxide film becomes larger than that without the addition of titanium oxide, and the strength of the zirconium oxide film added with titanium oxide is lower than that without the addition of titanium oxide.

そこで本発明はかかる従来の欠点を解消すべく
なされたものであり、酸化ジルコニウムに酸化イ
ツトリウムと酸化チタンを同時に混入することに
より従来の酸化ジルコニウム膜に表われる光学的
不均質性を抑制し、かつ従来の酸化ジルコニウム
膜よりも更に高硬度とすることができ、極めて優
れた特性の多層反射防止膜用の高屈折率光学膜を
得ることができるなどの特長を有するものであ
る。
Therefore, the present invention has been made to eliminate such conventional drawbacks, and by simultaneously mixing yttrium oxide and titanium oxide into zirconium oxide, optical non-uniformity appearing in conventional zirconium oxide films can be suppressed, and It has the advantage that it can have even higher hardness than conventional zirconium oxide films, and can provide a high refractive index optical film for a multilayer antireflection film with extremely excellent properties.

すなわち本発明の蒸着およびスパツタ用酸化ジ
ルコニウム組成物は、酸化ジルコニウムと、この
0.5〜50重量%の酸化イツトリウムおよび0.5〜
160重量%の酸化チタンとからなることを特徴と
するのである。
That is, the zirconium oxide composition for vapor deposition and sputtering of the present invention contains zirconium oxide and this zirconium oxide composition.
0.5-50% by weight of yttrium oxide and 0.5-50% by weight
It is characterized by being composed of 160% by weight of titanium oxide.

また本発明の光学用薄膜の製造方法は、酸化ジ
ルコニウムと、この0.5〜50重量%の酸化イツト
リウムおよび0.5〜160重量%の酸化チタンからな
る組成物を蒸発源またはスパツタ源に用い、真空
蒸発またはスパツタにより基体の表面に薄膜を形
成させることを特徴とするものである。
Further, the method for producing an optical thin film of the present invention uses a composition consisting of zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide as an evaporation source or sputter source, and vacuum evaporation or This method is characterized by forming a thin film on the surface of the substrate by sputtering.

本発明の蒸着およびスパツタ用酸化ジルコニウ
ム組成物において、酸化イツトリウムは膜の結晶
形を安定させ、かつ酸化チタンを添加したとによ
る膜の屈折率の増加を減少させるなどの効果があ
り、その混入量は酸化ジルコニウムの0.5〜50重
量%である。
In the zirconium oxide composition for vapor deposition and sputtering of the present invention, yttrium oxide has the effect of stabilizing the crystalline form of the film and reducing the increase in the refractive index of the film due to the addition of titanium oxide. is 0.5-50% by weight of zirconium oxide.

混入量が0.5重量%に満たないと、得られる膜
の結晶の安定化と屈折率低下の効果をほとんどあ
らわさなくなり、また50重量%を越えると、得ら
れる膜の屈折率低下が多すぎ、かえつて化学的不
安定性を招く恐れを生ずるので好ましくない。
If the amount is less than 0.5% by weight, the effect of stabilizing the crystals and reducing the refractive index of the resulting film will hardly be exhibited, and if it exceeds 50% by weight, the refractive index of the resulting film will be reduced too much, and This is not preferable because it may lead to chemical instability.

酸化チタンは蒸着膜の屈折率を高くするなどの
効果があり、その混入量は酸化ジルコニウムの
0.5〜160重量%である。
Titanium oxide has the effect of increasing the refractive index of the deposited film, and its amount is equal to that of zirconium oxide.
It is 0.5-160% by weight.

この混入量が0.5重量に満たないと、得られる
膜が不均質を大きくあらわすようになり、また
160重量%を越えると可視光域での吸収が大きく
なる傾向があるので好ましくない。
If the amount of this mixture is less than 0.5 weight, the resulting film will be highly heterogeneous, and
If it exceeds 160% by weight, absorption in the visible light region tends to increase, which is not preferable.

なお、酸化ジルコニウムに酸化イツトリウムを
含有させただけでは、光学的不均質性は若干改善
されるものの、改善効果が不十分で、かつ形成さ
れた膜の強度も酸化イツトリウム無添加の場合よ
りも逆に小さくなり、また膜の屈折率も酸化イツ
トリウム無添加の酸化ジルコニウム膜よりも低下
する。
Although optical inhomogeneity is slightly improved by simply adding yttrium oxide to zirconium oxide, the improvement effect is insufficient, and the strength of the formed film is also lower than when yttrium oxide is not added. The refractive index of the film is also lower than that of a zirconium oxide film without addition of yttrium oxide.

本発明の酸化ジルコニウム組成物は、上述した
所定量の酸化ジルコニウム、酸化イツトリウムお
よび酸化チタンを、通常では焼結して用いられ
る。
The zirconium oxide composition of the present invention is usually used by sintering the above-mentioned predetermined amounts of zirconium oxide, yttrium oxide, and titanium oxide.

次に本発明の光学用薄膜の製造方法において
は、上述した酸化ジルコニウム組成物を蒸発源ま
たはスパツタ源に用い、真空蒸発またはスパツタ
により基体の表面に薄膜を形成させることにより
行なわれる。ここで基体は、その形状が特に限定
されるものではなく、たとえばガラス板、レンズ
などをあげることができる。
Next, in the method for producing an optical thin film of the present invention, the above-described zirconium oxide composition is used as an evaporation source or a sputtering source, and a thin film is formed on the surface of a substrate by vacuum evaporation or sputtering. Here, the shape of the base body is not particularly limited, and examples thereof include a glass plate, a lens, and the like.

この製造方法により得られた光学用薄膜は酸化
ジルコニウムと、この0.5〜50重量%の酸化イツ
トリウムと、0.5〜160重量%の酸化チタンを含有
するので、従来の酸化ジルコニウム単独膜のよう
に基板側から表面側に近づくにつれて屈折率が減
少するというような光学的不均質性を生ずること
がない。また、酸化チタンのみを添加した酸化ジ
ルコニウム膜にあらわれる屈折率の増加を低減す
ることができる。
The optical thin film obtained by this manufacturing method contains zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide. There is no optical non-uniformity in which the refractive index decreases as it approaches the surface. Furthermore, it is possible to reduce the increase in refractive index that appears in a zirconium oxide film to which only titanium oxide is added.

更に、基板に対する膜の付着力および膜の硬度
を、酸化ジルコニウム単独の膜、酸化チタンのみ
を添加した酸化ジルコニウム膜、および酸化イツ
トリウムのみを添加した酸化ジルコニウム膜に比
較してより高めることができる。
Furthermore, the adhesion of the film to the substrate and the hardness of the film can be further increased compared to a film made of zirconium oxide alone, a zirconium oxide film to which only titanium oxide is added, and a zirconium oxide film to which only yttrium oxide is added.

加えて、本発明の酸化ジルコニウム組成物は、
酸化イツトリウム混入量を0.5〜50重量%の範囲
内で、および酸化チタン混入量を0.5〜160重量%
の範囲内で調節することによつて、得られる光学
用薄膜の屈折率を変化させることができる。
In addition, the zirconium oxide composition of the present invention
The amount of yttrium oxide mixed in is within the range of 0.5 to 50% by weight, and the amount of titanium oxide mixed in is within the range of 0.5 to 160% by weight.
The refractive index of the resulting optical thin film can be changed by adjusting it within this range.

そこで、多層反射防止膜の製作において、基板
となるガラスの屈折率が、たとえば1.5〜1.8に変
化するに対応して酸化ジルコニウム膜の屈折率が
所望の最適値になるように調節することができ
る。
Therefore, in the production of a multilayer antireflection film, the refractive index of the zirconium oxide film can be adjusted to the desired optimum value as the refractive index of the glass substrate changes, for example, from 1.5 to 1.8. .

したがつて本発明の酸化ジルコニウム組成物に
よれば、極めて優れた特性の多層反射防止膜用の
高屈折率光学用薄膜を得ることができる。
Therefore, according to the zirconium oxide composition of the present invention, a high refractive index optical thin film for a multilayer antireflection film with extremely excellent properties can be obtained.

以下、本発明を実施例にもとづき詳述する。 Hereinafter, the present invention will be explained in detail based on examples.

実施例 1 酸化ジルコニウム粉末に、酸化イツトリウム粉
末と酸化チタン粉末を重量比で夫々8%添加し、
十分混合した後に、約300Kg/cm2の圧力でプレス成
形し、次いで約1300℃で2時間焼成して直径18
mm、厚さ7mmの円板状のペレツトを得た。
Example 1 Yttrium oxide powder and titanium oxide powder were each added in an amount of 8% by weight to zirconium oxide powder,
After thorough mixing, it was press-molded at a pressure of about 300 kg/cm 2 and then baked at about 1300°C for 2 hours to form a diameter of 18 mm.
A disk-shaped pellet with a thickness of 7 mm and a thickness of 7 mm was obtained.

このペレツトを2kWの電磁偏向型電子ビーム
蒸発源のルツボ中に入れて、真空度1.5×
10-5Torrまで排気した後、蒸発源直上25cmにお
き、350℃に加熱したガラス基板(ガラスの屈折
率n=1.51)面上に電子ビーム加熱によつて12n
m/minの蒸着速度で蒸着させ、光学的膜厚nd
(n=屈折率、d=膜厚)がλ/4およびλ/2
(λ=520nm)となるまで蒸着を続けた。
This pellet was placed in a crucible of a 2kW electromagnetic deflection type electron beam evaporation source, and the vacuum level was 1.5×.
After exhausting the air to 10 -5 Torr, a glass substrate (refractive index of glass n = 1.51) heated to 350°C was placed 25 cm directly above the evaporation source and 12n was heated by electron beam heating.
Deposited at a deposition rate of m/min, optical film thickness nd
(n=refractive index, d=film thickness) are λ/4 and λ/2
The vapor deposition was continued until (λ=520 nm).

ガラス基板面上に蒸着された蒸着膜は、その屈
折率を分光反射率曲線の極大値から求めると、可
視域の中心付近(波長520nm)でnは2.09とな
り、吸収も不均質性も認められなかつた。
When the refractive index of the vapor-deposited film deposited on the glass substrate surface is determined from the maximum value of the spectral reflectance curve, n is 2.09 near the center of the visible region (wavelength 520 nm), and both absorption and non-uniformity are observed. Nakatsuta.

また基板に対する付着力および膜の硬度も、酸
化ジルコニウム単独膜、酸化チタン添加酸化ジル
コニウム膜、および酸化イツトリウム添加酸化ジ
ルコニウム膜よりも大きかつた。
Furthermore, the adhesion to the substrate and the hardness of the film were greater than those of a zirconium oxide film alone, a titanium oxide-added zirconium oxide film, and a yttrium oxide-added zirconium oxide film.

実施例 2 酸化ジルコニウム粉末に酸化イツトリウム粉末
と酸化チタン粉末を重量比で夫々、18%と30%添
加し、実施例1と同様な方法でペレツトを得た。
Example 2 Pellets were obtained in the same manner as in Example 1 by adding 18% and 30% by weight of yttrium oxide powder and titanium oxide powder to zirconium oxide powder, respectively.

このペレツトを用いて実施例1と同様にして蒸
着を行なつたところ、同様に付着力と膜強度の大
きい、かつ吸収も屈折率の不均質性もない良好な
膜が得られた。
When this pellet was used for vapor deposition in the same manner as in Example 1, a good film was obtained which similarly had high adhesion and film strength, and had no absorption or non-uniformity in refractive index.

一方、この膜の屈折率は2.19で、酸化イツトリ
ウムよりも酸化チタンの添加量が多いので実施例
1の屈折率よりも大きかつた。
On the other hand, the refractive index of this film was 2.19, which was higher than that of Example 1 because the amount of titanium oxide added was greater than that of yttrium oxide.

そしてこの膜が多層反射防止膜用の高屈折率膜
として良好な特性を有していた。
This film had good properties as a high refractive index film for a multilayer antireflection film.

更に同一組成物を用いて、繰り返し蒸着を行な
つたが、得られた膜の光学的特性、付着力および
強度などの諸特性はいづれも安定しており、優れ
た再現性が得られた。
Furthermore, when repeated vapor depositions were performed using the same composition, the properties of the resulting film, such as optical properties, adhesion and strength, were all stable and excellent reproducibility was obtained.

実施例 3 酸化ジルコニウム粉末に酸化イツトリウム粉末
と酸化チタン粉末を重量比で夫々8%添加し、十
分混合した後にホツトプレス機を用いて温度700
℃、圧力150Kg/cm2で直径17cm、厚さ1cmの円板体
を製造した。
Example 3 Yttrium oxide powder and titanium oxide powder were added in an amount of 8% by weight to zirconium oxide powder, and after thorough mixing, the mixture was heated to a temperature of 700 using a hot press.
A disk body with a diameter of 17 cm and a thickness of 1 cm was manufactured at a temperature of 150 Kg/cm 2 at a temperature of 150 Kg/cm 2 .

この円板体をターゲツトとして高周波二極平板
型スパツタ装置に取り付け、電極間間隔を8cmと
して、その対向電極面においたガラス板に、5×
10-3TorrのArガス圧下でターゲツト電圧を
2KV、基板温度を300〜400℃として15分間のプレ
スパツタを行ない、次いでシヤツターを開いて
ndがλ/4およびλ/2になるまでスパツタを
行なつた。
This disk was attached to a high-frequency two-pole flat plate sputtering device as a target, and the electrode spacing was 8 cm, and a glass plate placed on the opposing electrode surface was 5×
Target voltage under Ar gas pressure of 10 -3 Torr.
Perform press spatter for 15 minutes at 2KV and substrate temperature of 300-400℃, then open the shutter.
Sputtering was performed until nd reached λ/4 and λ/2.

この結果、実施例1および2と同様に、優れた
光学特性と膜強度を有する酸化ジルコニウム膜が
得られた。
As a result, as in Examples 1 and 2, a zirconium oxide film having excellent optical properties and film strength was obtained.

Claims (1)

【特許請求の範囲】 1 酸化ジルコニウムと、この0.5〜50重量%の
酸化イツトリウムおよび0.5〜160重量%の酸化チ
タンとからなることを特徴とする蒸着およびスパ
ツタ用酸化ジルコニウム組成物。 2 酸化ジルコニウムと、この0.5〜50重量%の
酸化イツトリウムおよび0.5〜160重量%の酸化チ
タンとからなる組成物を蒸発源またはスパツタ源
に用い、真空蒸発またはスパツタにより基体の表
面に薄膜を形成させることを特徴とする光学用薄
膜の製造方法。
[Scope of Claims] 1. A zirconium oxide composition for vapor deposition and sputtering, comprising zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide. 2. Using a composition consisting of zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide as an evaporation source or sputtering source, a thin film is formed on the surface of the substrate by vacuum evaporation or sputtering. A method for producing an optical thin film, characterized by:
JP58022031A 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition Granted JPS59148002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022031A JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022031A JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Publications (2)

Publication Number Publication Date
JPS59148002A JPS59148002A (en) 1984-08-24
JPS6151282B2 true JPS6151282B2 (en) 1986-11-08

Family

ID=12071603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022031A Granted JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Country Status (1)

Country Link
JP (1) JPS59148002A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206780B1 (en) * 1985-06-20 1992-02-26 Tosoh Corporation Zirconia sintered body of improved light transmittance
US4753902A (en) * 1986-11-24 1988-06-28 Corning Glass Works Transformation toughened zirconia-titania-yttria ceramic alloys
JP2561955B2 (en) * 1989-04-28 1996-12-11 ホーヤ株式会社 Multi-layer antireflection film for plastic lenses
ES2075084T3 (en) * 1989-03-31 1995-10-01 Hoya Corp ANTI-REFLECTION OPTICAL ELEMENT.
JP3779174B2 (en) 2000-11-13 2006-05-24 Hoya株式会社 Vapor deposition composition, method of forming antireflection film using the same, and optical member

Also Published As

Publication number Publication date
JPS59148002A (en) 1984-08-24

Similar Documents

Publication Publication Date Title
JP4087447B2 (en) Sputtering target and manufacturing method thereof
US7440204B2 (en) ND filter of optical film laminate type with carbon film coating
JP2900759B2 (en) Silicon oxide deposition material and deposition film
JPH02309511A (en) Transparent conductive film
JPH02181304A (en) Zinc oxide transparent conductive film and manufacture thereof
JPH06318406A (en) Conductive transparent base member and manufacture thereof
US3695910A (en) Method of applying a multilayer antireflection coating to a substrate
JPS6151282B2 (en)
CN112813391B (en) Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film
JPH08277462A (en) Optical coating film of medium refractive index
US4139678A (en) Piezoelectric crystalline films and method of preparing the same
JPH07331412A (en) Optical parts for infrared ray and their production
US4156050A (en) Piezoelectric crystalline films and method of preparing the same
JPH0371510A (en) Transparent conductive film
US4205117A (en) Piezoelectric crystalline film of zinc oxide and method for making same
JPH04341707A (en) Transparent conductive film
JP2902729B2 (en) Manufacturing method of dielectric multilayer film
JP2815951B2 (en) Anti-reflective coating
JPS6151281B2 (en)
JPH0449172Y2 (en)
JPS6250550B2 (en)
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JPH0813140A (en) Indium oxide sputtering target, its production, indium oxide film, and production of indium oxide film
WO2003023084A1 (en) Fluoride sputtering target and method for preparation thereof
JPH0624826A (en) High density ito sintered compact and its production