JPS6151102B2 - - Google Patents

Info

Publication number
JPS6151102B2
JPS6151102B2 JP11604183A JP11604183A JPS6151102B2 JP S6151102 B2 JPS6151102 B2 JP S6151102B2 JP 11604183 A JP11604183 A JP 11604183A JP 11604183 A JP11604183 A JP 11604183A JP S6151102 B2 JPS6151102 B2 JP S6151102B2
Authority
JP
Japan
Prior art keywords
pile
permafrost
frost
freezing
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11604183A
Other languages
Japanese (ja)
Other versions
JPS6010020A (en
Inventor
Kenji Kidera
Shigeru Nakagawa
Takashi Takeda
Katsumi Oomori
Toshuki Ookuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP11604183A priority Critical patent/JPS6010020A/en
Publication of JPS6010020A publication Critical patent/JPS6010020A/en
Publication of JPS6151102B2 publication Critical patent/JPS6151102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/10Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
    • E02D31/14Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against frost heaves in soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Piles And Underground Anchors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、寒冷地帯における構造物基礎のう
ち、杭基礎に関し、さらに詳しくは凍害防止杭に
関するものである。 永久凍土地帯あるいは季節凍土地帯といつた寒
冷地にパイプラインの架台その他各種の構造物を
建造する場合、活動層及び季節凍土層の凍上、融
解沈下といつた凍害から構造物を保護することが
必要不可欠である。このため各種の対策工法が用
いられているが、最も一般的なものは杭基礎であ
る。 ここに、永久凍土地帯とは、例えばアラスカ、
カナダ、シベリヤ等の如く、季節に関係なく年間
を通じて凍結している地層(以下永久凍土層とい
う)が分布している地域をいい、その年平均気温
は0℃以下である。活動層とは、地表から永久凍
土層までの部分で、年間の温度変化の影響を大き
く受け、冬季は凍結凍上し、夏季は融解沈下する
地層をいう。また季節凍土層とは、永久凍土層が
存在しない平均気温0℃以下の地域で、冬季は凍
結し、夏季は融解する地層をいう。なお、以下の
説明では、季節凍土層を活動層に含めることがあ
る。 ところで、寒冷地における杭基礎は、永久凍土
内まで根入れし、永久凍土と杭表面の間の凍着強
度によつて、上部構造物の自重、凍着凍上力及び
ネガテイブフリクシヨンに対杭しようとするもの
であり、このためには、永久凍土と杭間の確実な
凍着強度及び永久凍土内への杭の充分な根入長が
必要である。しかしながら、永久凍土層は必ずし
も均一な性質を有しておらず、土質、温度によつ
て凍着強度に大きな相違があるため、設計上は充
分な凍着強度を持つように永久凍土内に長く根入
れしても、現実に構造物が凍害を受けることがし
ばしばあり、安全率を上乗せした設計に基づいて
根入れ長をとらなければならないので、施工性及
び経済性に大きな問題がある。このような前提条
件があるため、その対策として、杭基礎に作用す
る凍着凍上力を軽減化するための幾つかの方法
が、従来考えられている。 第1図乃至第3図は永久凍土地帯及び季節凍土
地帯において、従来行なわれている杭基礎の凍着
凍上力低減方法を示すもので、第1図がサーマル
パイル方式、第2図が凍上防止杭方式、第3図が
凍着強度増大杭方式である。 第1図はサーマルパイル方式の一例を示す縦断
面図で、1は鋼管杭、コンクリート杭等からなる
杭体、2は凍着強度増大のため杭体1の外周に設
けた波付け、3は杭体1内に装入したヒートパイ
プ、4はラジエータである。5は永久凍土層、6
は活動層で、杭体1は活動層6と永久凍土層5に
設けられた掘削孔7内に根入れされ、砂スラリー
8により埋戻されている。なお、Hは杭体1の根
入長をまたhは活動層6の厚さを示す。 このようなサーマルパイル方式においては、根
入部分の永久凍土5の温度をヒートパイプ3によ
り、冬季間に強制的に冷却して冷熱を蓄えること
によつて、凍結融解厚さ(活動層6の厚さh)を
減少させ、これにより、凍着凍上防止力を大きく
しようとするものである。さらに、このサーマル
パイルは、夏季に上部構造からの入熱により、杭
体1の周面の永久凍土が融解するのを防止するこ
とができる。すなわち、サーマルパイル方式によ
れば、杭周囲の永久凍土の融解沈下に伴なつてネ
ガテイブフリクシヨンが杭に働くことと、冬季に
この融解部が凍結して杭に余分な凍着凍上力が働
くことを防止できる。 しかしながら、サーマルパイルは活動層6の層
厚hを多少薄くすることができるが、凍着凍上力
とネガテイブフリクシヨンをそれほど低減するこ
とができず、依然として構造物の凍害を防ぐこと
はできない。例えば、使用開始1年目の冬には、
地盤深部温度の低下により、サーマルパイルを使
用しない場合よりもかえつて凍土量が増加し、大
きな凍着凍上力が発生することがある。また、2
年目以降も、活動層の温度低下が凍着凍上力を増
加させる傾向をもたらすことが考えられる。従来
の使用例では、サーマルパイルの永久凍土内への
根入長Hをかなり長くして凍害防止をはかつてお
り、施工性、経済性上からも問題がある。 凍上防止杭方式は、活動層と杭周面との間に、
杭と凍土間の付着を切るような材料を充填したも
ので、第2図aに示すものは、杭体1の外側にこ
れと同心的にケーシング9を配置して二重管方式
とし、杭体1とケーシング9との間を、濃度の高
いオイルとワツクスとの混合物10で満たし、ケ
ーシング9の外周を砂スラリー8で埋戻すことに
より、凍着凍上力を分離するようにしたものであ
る。なお、9aはケーシングの下端に設けたフラ
ンジである。また第2図bに示すものは、土、オ
イル及びワツクスを混合した材料10aを建込み
穴7の活動層6の部分の埋戻し材料として使用し
たものである。 このような凍上防止杭方式は、杭周面にオイル
とワツクス等の混合物を充填したり埋戻したりし
ているが、これは現地において施工しなければな
らず、そのための機械や装置を必要とするばかり
でなく、施工性の点でもあまり良好ではない。ま
た、オイルとワツクス等の混合物は、現物で埋戻
し可能な程度の流動性を有しているため、夏季に
埋戻し材料が周囲地盤へ浸透して分散し、このた
め再充填の必要が生じたり、凝固点降下のため永
久凍土を溶かすといつた環境破壊を生じる。加え
て、二重管方式では、活動層の凍結融解に伴なつ
てケーシングが持上りと沈下を起し、これが上部
構造に悪影響を及ぼすことがある。 第3図は、凍着強度増大杭方式を示すもので、
杭体1の永久凍土5内への根入部に、ノツチや波
付け2を設けることにより、永久凍土5と杭体1
との間の凍着強度を増加させ、活動層6の凍着凍
上力に対抗させるようにしたものである。 この方式では、杭体1の根入部の永久凍土の性
質が必ずしも均一でなく、凍着強度にばらつきが
生じること、ノツチや波付けの形状、間隔によつ
て凍着凍上力が変化するため、これによつて大き
な凍着強度を得るためには、端部の異形棒鋼状処
理等にかなりの精度の製作加工を必要とするなど
の問題がある。 さらに、杭体の表面に、例えばアスフアルト、
グリスの如き粘弾性物質を塗布して、活動層の凍
着凍上力と融解沈下に伴なうネガテイブフリクシ
ヨンに対抗させることも考えられるが、寒冷地に
おいては、凍着凍上力とネガテイブフリクシヨン
が激しく繰返えされるため、粘弾性物質が抗体か
ら剥離し、所期の効果を期待することができな
い。 本発明は、上記のような従来の問題点を解決す
べくなされたもので、冬季に活動層若しくは季節
凍土層の凍結によつて杭に作用する凍着凍上力及
び夏季の融解沈下によつて杭に作用するネガテイ
ブフリクシヨンを減少させ、上部構造が受ける凍
害を防止することを目的とするものである。 本発明に係る凍害防止杭は、上記の目的を達成
するため凍着凍上力が作用する寒冷地に設置する
杭において、建込まれる杭体の活動層又は季節凍
土層にあたる杭体表面に、あらかじめ前記活動層
又は季節凍土層の厚さよりやや長めに固体潤滑剤
を覆装したことを特徴とするものである。以下図
面を用いて本発明を説明する。 第4図は本発明の基本構成を示す縦断面図、第
5図はその作用説明図である。なお、第1図乃至
第3図と同じ部分には同じ符号を付し、説明を省
略する。本発明は、第4図に示すように杭体1の
表面の活動層6の厚さよりやや長い範囲に、固体
潤滑剤11をあらかじめほぼ一様な厚さに吹付け
その他の手段により塗覆装したものである。この
固体潤滑剤11は、土壌又は凍結凍土に対する摩
擦係数が杭体表面の場合より小さく、かつ杭体表
面に塗覆装できることを条件とし、その一例を示
せば表1の通りである。
The present invention relates to pile foundations among structure foundations in cold regions, and more specifically to frost damage prevention piles. When constructing pipeline frames and various other structures in cold regions such as permafrost or seasonal frozen land, it is necessary to protect the structures from frost damage such as frost heaving, thawing, and subsidence in the active and seasonal frozen layers. It is essential. Various countermeasure construction methods are used for this purpose, but the most common is pile foundations. Here, the permafrost zone is, for example, Alaska,
This refers to areas such as Canada and Siberia, where there is a geological layer (hereinafter referred to as permafrost) that is frozen throughout the year regardless of the season, and the average annual temperature is below 0°C. The active layer is the area from the earth's surface to the permafrost layer, which is greatly affected by annual temperature changes, freezing and heaving in the winter, and thawing and sinking in the summer. Furthermore, the seasonal frozen layer refers to a geological layer that freezes in the winter and thaws in the summer in areas where there is no permafrost and the average temperature is below 0°C. In the following explanation, the seasonal frozen layer may be included in the active layer. By the way, pile foundations in cold regions are embedded deep into the permafrost, and the strength of the freezing between the permafrost and the pile surface is used to withstand the weight of the superstructure, frost heave force, and negative friction. To achieve this, it is necessary to have reliable freezing strength between the permafrost and the piles, and a sufficient depth of penetration of the piles into the permafrost. However, the permafrost layer does not necessarily have uniform properties, and the freezing strength varies greatly depending on the soil quality and temperature. Even if the structure is embedded, the structure often suffers from frost damage, and the embedment length must be determined based on a design that takes into account the safety factor, which poses a major problem in terms of workability and economy. Because of these prerequisites, several methods have been considered to reduce the frost heaving force acting on pile foundations as a countermeasure. Figures 1 to 3 show the conventional methods of reducing frost heaving force of pile foundations in permafrost and seasonally frozen land. Figure 1 is the thermal pile method, and Figure 2 is frost heave prevention. Figure 3 shows the pile method with increased freezing strength. Figure 1 is a vertical cross-sectional view showing an example of a thermal pile system, in which 1 is a pile body made of steel pipe piles, concrete piles, etc., 2 is corrugation provided on the outer periphery of the pile body 1 to increase freezing strength, and 3 is a vertical cross-sectional view showing an example of a thermal pile system. A heat pipe 4 is inserted into the pile body 1 and a radiator. 5 is permafrost, 6
is an active layer, and the pile body 1 is embedded in an excavated hole 7 provided in an active layer 6 and a permafrost layer 5, and is backfilled with sand slurry 8. In addition, H indicates the rooting length of the pile body 1, and h indicates the thickness of the active layer 6. In such a thermal pile method, the temperature of the permafrost 5 at the rooted part is forcibly cooled during the winter by the heat pipe 3, and cold energy is stored, thereby controlling the freeze-thaw thickness (the active layer 6). The objective is to reduce the thickness h) and thereby increase the anti-freezing ability. Furthermore, this thermal pile can prevent the permafrost on the circumferential surface of the pile body 1 from melting due to heat input from the upper structure in the summer. In other words, according to the thermal pile method, negative friction acts on the pile as the permafrost around the pile thaws and sinks, and when this thawing part freezes in winter, extra frost heave force acts on the pile. This can be prevented. However, although the thermal pile can reduce the layer thickness h of the active layer 6 to some extent, it cannot reduce the freezing heave force and negative friction to a large extent, and it still cannot prevent frost damage to the structure. For example, in the winter of the first year of use,
Due to the decrease in the deep temperature of the ground, the amount of frozen soil may increase even more than if thermal piles were not used, and large frost heaving forces may occur. Also, 2
It is thought that a decrease in the temperature of the active layer will tend to increase the freezing heave force even after the first year. In conventional usage, the penetration length H of the thermal pile into the permafrost has been considerably increased to prevent frost damage, which poses problems from the viewpoint of workability and economy. The frost heaving prevention pile method uses a
The pile is filled with a material that breaks the adhesion between the pile and the frozen soil.The one shown in Figure 2a is a double pipe system in which a casing 9 is placed concentrically with the outside of the pile body 1. The space between the body 1 and the casing 9 is filled with a mixture 10 of highly concentrated oil and wax, and the outer periphery of the casing 9 is backfilled with sand slurry 8 to isolate the freezing heave force. . Note that 9a is a flange provided at the lower end of the casing. Further, in the case shown in FIG. 2b, a material 10a containing a mixture of soil, oil and wax is used as a backfilling material for the active layer 6 of the construction hole 7. This type of frost heaving prevention pile method involves filling or backfilling the surrounding surface of the pile with a mixture of oil and wax, but this must be done on-site and requires machinery and equipment for this purpose. Not only that, but also the workability is not very good. In addition, since mixtures such as oil and wax have enough fluidity to allow backfilling in-kind, the backfilling material permeates into the surrounding ground and disperses during the summer, making it necessary to refill. It also causes environmental damage by melting permafrost due to freezing point depression. In addition, in the double-pipe system, the casing may lift and sink as the active layer freezes and thaws, which can adversely affect the superstructure. Figure 3 shows the freezing strength increasing pile method.
By providing notches and corrugations 2 at the root of the pile body 1 into the permafrost 5, the permafrost 5 and the pile body 1 are
This increases the freezing strength between the active layer 6 and the active layer 6 to counteract the freezing heaving force of the active layer 6. In this method, the properties of the permafrost at the root of the pile body 1 are not necessarily uniform, causing variations in the freezing strength, and the frost heaving force changes depending on the shape and spacing of the notches and corrugations. In order to obtain a large freezing strength by this, there are problems such as the need for manufacturing and processing with considerable precision in processing the end portion into a deformed steel bar. Furthermore, on the surface of the pile body, for example, asphalt,
It is possible to apply a viscoelastic substance such as grease to counteract the freezing heaving force of the active layer and the negative friction caused by thawing and subsidence, but in cold regions, the freezing heaving force and negative friction As this is repeated violently, the viscoelastic substance peels off from the antibody, making it impossible to expect the desired effect. The present invention has been made to solve the above-mentioned conventional problems. The purpose is to reduce the negative friction that acts on the piles and prevent frost damage to the superstructure. In order to achieve the above-mentioned objective, the frost damage prevention pile according to the present invention is installed in a cold region where freezing heaving force acts. It is characterized in that the solid lubricant is coated to a length slightly longer than the thickness of the active layer or the seasonal frozen layer. The present invention will be explained below using the drawings. FIG. 4 is a vertical sectional view showing the basic configuration of the present invention, and FIG. 5 is an explanatory view of its operation. Note that the same parts as in FIGS. 1 to 3 are denoted by the same reference numerals, and explanations thereof will be omitted. As shown in FIG. 4, the solid lubricant 11 is coated on the surface of the pile body 1 in an area slightly longer than the thickness of the active layer 6 by spraying the solid lubricant 11 in advance to a substantially uniform thickness or by other means. This is what I did. The solid lubricant 11 must have a coefficient of friction with respect to soil or frozen ground that is smaller than that of the surface of the pile body, and can be coated on the surface of the pile body, an example of which is shown in Table 1.

〔実験例〕[Experiment example]

(1) 鋼管杭(在来もの) 外径:34mm、長さ:400mm、埋込長:250mm (2) 本発明に係る凍害防止杭 (a) 杭体の寸法 外径:27.5mm、長さ:400mm、埋込長:250mm (3) 固定潤滑剤 材料:二硫化モリブデン系潤滑処理剤 塗覆厚さ:0.03mm 塗覆長さ:300mm 上記のような在来の鋼管杭と本発明に係る凍害
防止杭とを、それぞれ第6図に示す実験装置に建
込んだのち実験装置を冷凍室内に設置し、常温か
ら開始して−20℃まで冷却し、約24時間経過後−
40℃に変更し、その状態を約48時間継続したのち
冷却を中止した。この間の土槽35内の土36の
凍着凍上量の経時変化を変位計39で測定した結
果を第7図に、また凍着凍上力の経時変化をロー
ドセル38で測定した結果を第8図に示す(な
お、図中Aは在来の鋼管杭、Bは本発明の凍害防
止杭の実験結果である)。図から明らかなよう
に、凍着凍上層は鋼管杭Aに比べて本発明に係る
凍害防止杭Bの方が大きいのにかかわらず、凍着
凍上力は−40℃において鋼管杭Aは3.5Kg/cm2
度であるのに対し、本発明に係る凍害防止杭Bは
ほぼ1.1〜1.2Kg/cm2で、3分の1以下に低減した
ことが確認された。 上記の実施例では、本発明を鋼管杭に実施した
場合を示したが、本発明はコンクリート杭、木材
杭にも実施することができ、さらに、従来の凍害
防止杭(例えば第3図に示した凍着強度増大杭)
にも併用することができる。また、本発明に使用
する固体潤滑剤の一例を表1に示したが、本発明
はこれに限定するものではなく、杭体の形状等も
含め、本発明の要旨を逸脱しない範囲で適宜変更
することができる。 以上の説明から明らかなように、本発明によれ
ば以下のような顕著な効果を挙げることができ
る。 (1) 杭体に対する活動層の凍着凍上力を大幅に低
減できるので、寒冷地における構造物を凍害か
ら保護することができる。 (2) 杭体に作用する凍着凍上力を低減できるので
杭の根入れ長を大幅に短縮できる。さらに施工
性、メンテナンスを考慮すると大幅にコストを
低減できる。
(1) Steel pipe pile (conventional) Outer diameter: 34 mm, length: 400 mm, embedded length: 250 mm (2) Freeze damage prevention pile according to the present invention (a) Dimensions of pile body Outer diameter: 27.5 mm, length : 400mm, embedded length: 250mm (3) Fixed lubricant material: Molybdenum disulfide-based lubricant coating thickness: 0.03mm coating length: 300mm Conventional steel pipe piles as above and the present invention After erecting the frost damage prevention piles into the experimental equipment shown in Figure 6, the experimental equipment was placed in a freezing room, and cooled starting from room temperature to -20°C, and after about 24 hours -
The temperature was changed to 40°C, and after that state was continued for about 48 hours, cooling was discontinued. Figure 7 shows the results of measuring changes over time in the amount of frost heaving of the soil 36 in the soil tank 35 using the displacement meter 39, and Figure 8 shows the results of measuring changes in the frost heave force over time using the load cell 38. (In the figure, A is the experimental result of a conventional steel pipe pile, and B is the experimental result of the frost damage prevention pile of the present invention). As is clear from the figure, although the frost damage prevention pile B according to the present invention has a larger frozen upper layer than the steel pipe pile A, the frost heaving force of the steel pipe pile A at -40°C is 3.5 kg. It was confirmed that the frost damage prevention pile B according to the present invention had a weight loss of approximately 1.1 to 1.2Kg/ cm2 , which was reduced to one-third or less. In the above embodiment, the present invention was applied to steel pipe piles, but the present invention can also be applied to concrete piles and wood piles. (Piles with increased freezing strength)
It can also be used together. Further, although an example of the solid lubricant used in the present invention is shown in Table 1, the present invention is not limited thereto, and modifications may be made as appropriate, including the shape of the pile body, etc., without departing from the gist of the present invention. can do. As is clear from the above description, according to the present invention, the following remarkable effects can be achieved. (1) Since the freezing heave force of the active layer on the pile body can be significantly reduced, structures in cold regions can be protected from frost damage. (2) Since the frost heaving force acting on the pile body can be reduced, the pile penetration length can be significantly shortened. Furthermore, considering ease of construction and maintenance, costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は従来の凍着凍上力低減方法
を示すもので、第1図はサーマルパイル方式、第
2図a,bは凍上防止杭方式、第3図は凍着強度
増大杭方式である。第4図は本発明の基本構成を
示す縦断面図、第5図はその作用説明図、第6図
は本発明に係る凍害防止杭を実験する装置の概念
図、第7図は在来の鋼管杭と本発明に係る凍害防
止杭との凍着凍上量の経時変化を示す線図、第8
図は同じく凍着凍上量の経時変化を示す線図であ
る。 1:杭体、5:永久凍土層、6:活動層、8:
砂スラリー、10:凍害防止杭、11:固体潤滑
剤。
Figures 1 to 3 show conventional methods for reducing frost heaving force. Figure 1 is the thermal pile method, Figures 2 a and b are the frost heaving prevention pile method, and Figure 3 is the frost heaving prevention pile method. It is a method. Fig. 4 is a longitudinal sectional view showing the basic configuration of the present invention, Fig. 5 is an explanatory diagram of its operation, Fig. 6 is a conceptual diagram of an apparatus for testing the frost damage prevention pile according to the present invention, and Fig. 7 is a conventional Diagram showing changes over time in the amount of frost heave of steel pipe piles and frost damage prevention piles according to the present invention, No. 8
The figure is also a diagram showing changes over time in the amount of frost heave. 1: Pile body, 5: Permafrost layer, 6: Active layer, 8:
Sand slurry, 10: Freeze damage prevention pile, 11: Solid lubricant.

Claims (1)

【特許請求の範囲】[Claims] 1 凍着凍上力が作用する寒冷地に設置する杭に
おいて、建込まれる杭体の活動層又は季節凍土層
にあたる杭体表面に、あらかじめ前記活動層又は
季節凍土層の厚さよりやや長めに固体潤滑剤を塗
覆装したことを特徴とする凍害防止杭。
1. For piles to be installed in cold regions where freezing heaving forces are applied, solid lubrication is applied in advance to the surface of the pile that corresponds to the active layer or seasonal frozen layer to a length slightly longer than the thickness of the active layer or seasonal frozen layer. A frost damage prevention pile characterized by being coated with an agent.
JP11604183A 1983-06-29 1983-06-29 Freezing damage preventive pile Granted JPS6010020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11604183A JPS6010020A (en) 1983-06-29 1983-06-29 Freezing damage preventive pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11604183A JPS6010020A (en) 1983-06-29 1983-06-29 Freezing damage preventive pile

Publications (2)

Publication Number Publication Date
JPS6010020A JPS6010020A (en) 1985-01-19
JPS6151102B2 true JPS6151102B2 (en) 1986-11-07

Family

ID=14677255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11604183A Granted JPS6010020A (en) 1983-06-29 1983-06-29 Freezing damage preventive pile

Country Status (1)

Country Link
JP (1) JPS6010020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428209U (en) * 1987-08-12 1989-02-20
JPH0538649Y2 (en) * 1986-10-29 1993-09-30

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538649Y2 (en) * 1986-10-29 1993-09-30
JPS6428209U (en) * 1987-08-12 1989-02-20

Also Published As

Publication number Publication date
JPS6010020A (en) 1985-01-19

Similar Documents

Publication Publication Date Title
US10443207B2 (en) Pile foundations for supporting power transmission towers
FI81437C (en) Method for reducing stress in an underground refrigerated gas pipeline and a refrigerated gas pipeline
CN107386281B (en) Screw rod uplift pile and its construction method under a kind of upper straight rod suitable for seasonal frozen soil region
US20160340851A1 (en) Method for installing metal piles in permafrost soil
US4242012A (en) Method for constructing a multiseason ice platform
RU2295608C2 (en) Method for pile driving in permafrost ground (variants)
RU2441116C1 (en) Pile and method of its installation into permafrost soil
JPS6151102B2 (en)
CN210127498U (en) Permafrost region pile foundation anti-freezing-pulling structure
CA1174063A (en) Ice island construction
KR900001101B1 (en) Frost damage proofed pile
WO2016095052A9 (en) Composite sleeve for piles
WO1997011232A1 (en) Structure for preventing frost heaving damage to underground structure and method of building the same
JPS6310252B2 (en)
JPH0132337B2 (en)
JPS5985036A (en) Freeze preventing pile
JPS6010016A (en) Freezing damage preventive pile
JP2021179113A (en) Foundation reinforcement method, and structure
JP3071381B2 (en) Pile used for foundation structure of permafrost zone and pile foundation using it
JPS6010018A (en) Freezing damage preventive pile
JPS6310253B2 (en)
CN112064627A (en) Freeze-proofing taper cylinder pile foundation in frozen soil area and construction process thereof
JPH0553895B2 (en)
JPS61261525A (en) Frost-damage preventor pile
CN214169052U (en) Be suitable for reinforced prestressed anchorage structure of frozen soil district freeze thawing foundation ditch