JPH0132337B2 - - Google Patents

Info

Publication number
JPH0132337B2
JPH0132337B2 JP58141184A JP14118483A JPH0132337B2 JP H0132337 B2 JPH0132337 B2 JP H0132337B2 JP 58141184 A JP58141184 A JP 58141184A JP 14118483 A JP14118483 A JP 14118483A JP H0132337 B2 JPH0132337 B2 JP H0132337B2
Authority
JP
Japan
Prior art keywords
pile
frost
active layer
piles
permafrost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141184A
Other languages
Japanese (ja)
Other versions
JPS6033936A (en
Inventor
Kenji Kidera
Shigeru Nakagawa
Takashi Takeda
Katsumi Oomori
Toshuki Ookuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP58141184A priority Critical patent/JPS6033936A/en
Priority to US06/624,750 priority patent/US4585681A/en
Priority to CA000457859A priority patent/CA1210599A/en
Priority to KR1019840004343A priority patent/KR930005272B1/en
Publication of JPS6033936A publication Critical patent/JPS6033936A/en
Publication of JPH0132337B2 publication Critical patent/JPH0132337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/35Foundations formed in frozen ground, e.g. in permafrost soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/60Piles with protecting cases

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、寒冷地帯における構造物基礎のう
ち、杭基礎に関し、さらに詳しくは凍害防止杭に
関するものである。 永久凍土地帯あるいは季節凍土地帯といつた寒
冷地にパイプラインの架台その他各種の構造物を
建造する場合、活動層及び季節凍土層の凍着凍
上、融確沈下といつた凍害から構造物を保護する
ことが必要不可決である。このため各種の対策工
法が用いられているが、最も一般的なものは杭基
礎である。 ここに、永久凍土地帯とは、例えばアラスカ、
カナダ、シベリヤ等の如く、季節に関係なく年間
を通じて凍結している地層(以下永久凍土層とい
う)が分布している地域をいい、その年平均気温
は0℃以下である。活動層とは、地表から永久凍
土層までの部分で、年間の温度変化の影響を大き
く受け、冬季は凍結凍上し、夏季は融解沈下する
地層をいう。また季節凍土層とは、永久凍土層が
存在しない平均気温0℃以下の地域で、冬季は凍
結し、夏季は融解する地層をいう。なお、以下の
説明では、季節凍土層を活動層に含めることがあ
る。 ところで、寒冷地における杭基礎は、永久凍土
内まで根入れし、永久凍土と杭表面の間の凍着強
度によつて、上部構造物の自重、凍着凍上力及び
ネガテイブフリクシヨンに対抗しようとするもの
であり、このためには、永久凍土と杭間の確実な
凍着強度及び永久凍土内への杭の充分な根入長が
必要である。しかしながら、永久凍土層は必ずし
も均一な性質を有しておらず、土質、温度によつ
て凍着強度に大きな相違があるため、設計上は充
分は凍着強度を持つように永久凍土内に長く根入
れしても、現実に構造物が凍害を受けることがし
ばしばあり、安全率を上乗せした設計に基づいて
根入れ長をとらなければならないので、施工性及
び経済性に大きな問題がある。このような前提条
件があるため、その対策として、杭基礎に作用す
る凍着凍土力を軽減化するための幾つかの方法
が、従来考えられている。 第1図乃至第3図は永久凍土地帯及び季節凍土
地帯において、従来行なわれている杭基礎の凍着
凍上力低減方法を示すもので、第1図がサーマル
パイル方式、第2図が凍上防止杭方式、第3図が
凍着強度増大杭方式である。 第1図はサーマルパイル方式の一例を示す縦断
面図で、1は鋼管杭、コンクリート杭等からなる
杭体、2は凍着強度増大のため杭体1の外周に設
けた波付け、3は杭体1内に装入したヒートパイ
プ、4はラジエータである。5は永久凍土層、6
は活動層で、杭体1は活動層6と永久凍土層5に
設けられた掘削孔7内に根入れされ、砂スラリー
8により埋戻されている。なお、Hは杭体1の根
入長をまたhは活動層6の厚さを示す。 このようなサーマルパイル方式においては、根
入部分の永久凍土5の温度をヒートパイプ3によ
り、冬季間に強制的に冷却して冷熱を蓄えること
によつて、凍結融解厚さ(活動層6の厚さh)を
減少させ、これにより、凍着凍上防止力を大きく
しようとするものである。さらに、このサーマル
パイルは、夏季に上部構造からの入熱により、杭
体1の周面の永久凍土が融解するのを防止するこ
とができる。すなわち、サーマルパイル方式によ
れば、杭周囲の永久凍土の融解沈下に伴なつてネ
ガテイブフリクシヨンが杭に働くことと、冬季に
この融解部が凍結して杭に余分な凍着凍上力が働
くことを防止できる。 しかしながら、サーマルパイルは活動層6の層
厚hを多少薄くすることはできるが、凍着凍上力
とネガテイブフリクシヨンをそれほど低減するこ
とができず、依然として構造物の凍害を防ぐこと
はできない。例えば、使用開始1年目の冬には、
地盤深部温度の低下により、サーマルパイルを使
用しない場合よりもかえつて凍上量が増加し、大
きな凍着凍上力が発生することがある。また、2
年目以降も、活動層の温度低下が凍着凍上力を増
加させる傾向をもたらすことが考えられる。従来
の使用例では、サーマルパイルの永久凍土内への
根入長Hをかなり長くして凍害防止をはかつてお
り、施工性、経済性上からも問題がある。 凍上防止杭方式は、活動層と杭周面との間に、
杭と凍土間の付着を切るような材料を充填したも
ので、第2図aに示すものは、杭体1の外側にこ
れと同心的にケーシング9を配置して二重管方式
とし、杭体1とケーシング9との間を、濃度の高
いオイルとワツクスとの混合物10で満たし、ケ
ーシング9の外周を砂スラリー8で埋戻すことに
より、凍着凍上力を分離するようにしたものであ
る。なお、9aはケーシングの下端に設けたフラ
ンジである。また第2図bに示すものは、土、オ
イル及びワツクスを混合した材料10aを建込み
穴7の活動層6の部分の埋戻し材料として使用し
たものである。 このような凍上防止杭方式は、杭周面にオイル
とワツクス等の混合物を充填したり埋戻したりし
ているが、これは現地において施工しなければな
らず、そのための機械や装置を必要とするばかり
でなく、施工性の点でもあまり良好ではない。ま
た、オイルとワツクス等の混合物は、現場で埋戻
し可能な程度の流動性を有しているため、夏季に
埋戻し材料が周囲地盤へ浸透して分散し、このた
め再充填の必要が生じたり、凝固点降下のため永
久凍土を溶かすといつた環境破壊が生じる。加え
て、二重管方式では、活動層の凍結融解に伴なつ
てケーシングが持上りと沈下を起し、これが上部
構造に悪影響を及ぼすことがある。 第3図は、凍着強度増大杭方式を示すもので、
杭体1の永久凍土5内への根入部に、ノツチや波
付け2を設けることにより、永久凍土5と杭体1
との間の凍着強度を増加させ、活動層6の凍着凍
上力に対抗させるようにしたものである。 この方式では、杭体1の根入部の永久凍土の性
質が必ずしも均一でなく、凍着強度のばらつきが
生じること、ノツチや波付けの形状、間隔によつ
て凍着凍上力が変化するため、これによつて大き
な凍着強度を得るためには、端部の異形棒鋼状処
理等にかなりの精度の製作加工を必要とするなど
の問題がある。 また、凍害防止杭は、杭設置場所における活動
層6の厚さhに対応した長さLのものを用いなけ
ればならないが、活動層6の厚さhは、地域、場
所等によつて著しく相違するため、活動層6の厚
さに対応した各種長さの杭を準備しなければなら
ない。 このようなことから、凍害防止杭を例えばパイ
プラインの架台として長距離に亘つて杭基礎を設
置するような場合は、従来、各種長さの杭をあら
かじめ工場で製作し、現地へ輸送して活動層6の
厚さに対応した杭を選び、設置していた。このた
め梱包が面倒であるばかりでなく、荷が大きくな
つて輸送が面倒であり、また大量生産に適さない
ためコストが上昇し、工費の増大を来たす等の問
題があつた。 本発明は、上記のような従来の問題点を解決す
べくなされたもので、活動層及び季節凍土層の凍
結によつて杭に作用する凍着凍上力及び夏季に発
生するネガテイブフリクシヨンを低減する部材を
杭体に付加することにより、上部構造が受ける凍
害を防止すると共に、活動層の厚さに応じて杭の
長さを任意に調整でき、大量生産が可能で梱包、
輸送も容易であり、コストを低減できる凍害防止
杭を提供することを目的とするものである。 本発明に係る凍害防止杭は、上記の目的を達成
するため、凍着凍上力が作用する寒冷地に設置す
る杭において、通常の杭を複数本に切断した長さ
の杭体に可伸縮部材を嵌装してその上下端部を前
記杭体の上下端部より内側に水密に固定し、前記
杭体と可伸縮部材とで形成する空間に流動性物質
を充填して杭部材を構成し、該杭部材を活動層の
厚さに対応して適宜連結したことを特徴とするも
のである。以下図面を参照して本発明を説明す
る。 第4図は本発明実施例の縦断面図である。な
お、第1図乃至第3図と同じ部分には同じ符号を
付し、説明を省略する。図において、10は本発
明に係る凍害防止杭で、適宜長さの複数本の杭部
材11,11a,………を連結したものである。
この杭部材11,11a,………の構成の一例を
第6図に示す。12は杭体(図には鋼管杭が示し
てある)で、その長さlは通常の杭を複数個に切
断した長さ(例えば0.5m程度)に選ばれている。
13は蛇腹状の可伸縮部材で、その上下端部は杭
体12の端部からそれぞれl1,l2を経てゝ、固定
部材14,15により杭体12に水密に固定され
ている。16は杭体12と可伸縮部材13とで形
成する空間に充填した流動性物質である。 本発明に使用する可伸縮部材13は、地域によ
り差異はあるが、一般に、常温から−50℃程度
の低温まで脆性波壊を生じないこと、回復可能
な変位が活動層6の凍結凍上量(h1−h)より大
きいこと、及び流動性物質により劣化または腐
食しないことを条件とし、これらの条件を満足す
るものとして、その代表例を表1に示す。 また、流動性物質16は、地域により差異はあ
るが、一般に、常温から−50℃程度の低温まで
流動挙動を示し、杭体1及び可伸縮部材13を
劣化させたり腐食したりしない物質であることを
条件とし、これらの条件を満たすものとして、そ
の代表例を第2表に示す。
The present invention relates to pile foundations among structure foundations in cold regions, and more specifically to frost damage prevention piles. When constructing pipeline frames and other types of structures in cold regions such as permafrost or seasonal frozen zones, protect the structures from frost damage such as frost heave and thaw subsidence of active and seasonal frozen layers. It is necessary and imperative to do so. Various countermeasure construction methods are used for this purpose, but the most common is pile foundations. Here, the permafrost zone is, for example, Alaska,
This refers to areas such as Canada and Siberia, where there is a geological layer (hereinafter referred to as permafrost) that is frozen throughout the year regardless of the season, and the average annual temperature is below 0°C. The active layer is the area from the earth's surface to the permafrost layer, which is greatly affected by annual temperature changes, freezing and heaving in the winter, and thawing and sinking in the summer. Furthermore, the seasonal frozen layer refers to a geological layer that freezes in the winter and thaws in the summer in areas where there is no permafrost and the average temperature is below 0°C. In the following explanation, the seasonal frozen layer may be included in the active layer. By the way, pile foundations in cold regions are rooted deep into the permafrost, and use the strength of freezing between the permafrost and the pile surface to counteract the superstructure's own weight, frost heave force, and negative friction. For this purpose, it is necessary to have reliable freezing strength between the permafrost and the piles and a sufficient depth of penetration of the piles into the permafrost. However, the permafrost layer does not necessarily have uniform properties, and the freezing strength varies greatly depending on the soil quality and temperature. Even if the structure is embedded, the structure often suffers from frost damage, and the embedment length must be determined based on a design that takes into account the safety factor, which poses a major problem in terms of workability and economy. Due to these prerequisites, several methods have been considered to reduce the frozen soil force acting on pile foundations as a countermeasure. Figures 1 to 3 show the conventional methods of reducing frost heaving force of pile foundations in permafrost and seasonally frozen land. Figure 1 is the thermal pile method, and Figure 2 is frost heave prevention. Figure 3 shows the pile method with increased freezing strength. Figure 1 is a vertical cross-sectional view showing an example of a thermal pile system, in which 1 is a pile body made of steel pipe piles, concrete piles, etc., 2 is corrugation provided on the outer periphery of the pile body 1 to increase freezing strength, and 3 is a vertical cross-sectional view showing an example of a thermal pile system. A heat pipe 4 is inserted into the pile body 1 and a radiator. 5 is permafrost, 6
is an active layer, and the pile body 1 is embedded in an excavated hole 7 provided in an active layer 6 and a permafrost layer 5, and is backfilled with sand slurry 8. In addition, H indicates the rooting length of the pile body 1, and h indicates the thickness of the active layer 6. In such a thermal pile method, the temperature of the permafrost 5 at the rooted part is forcibly cooled during the winter by the heat pipe 3, and cold energy is stored, thereby controlling the freeze-thaw thickness (the active layer 6). The objective is to reduce the thickness h) and thereby increase the anti-freezing ability. Furthermore, this thermal pile can prevent the permafrost on the circumferential surface of the pile body 1 from melting due to heat input from the upper structure in the summer. In other words, according to the thermal pile method, negative friction acts on the pile as the permafrost around the pile thaws and sinks, and when this thawing part freezes in winter, extra frost heave force acts on the pile. This can be prevented. However, although the thermal pile can reduce the layer thickness h of the active layer 6 to some extent, it cannot reduce the freezing heave force and negative friction to a large extent, and it still cannot prevent frost damage to the structure. For example, in the winter of the first year of use,
Due to the decrease in the deep temperature of the ground, the amount of frost heave increases compared to when thermal piles are not used, and large frost heave forces may occur. Also, 2
It is thought that a decrease in the temperature of the active layer will tend to increase the freezing heave force even after the first year. In conventional usage, the penetration length H of the thermal pile into the permafrost has been considerably increased to prevent frost damage, which poses problems from the viewpoint of workability and economy. The frost heaving prevention pile method uses a
The pile is filled with a material that breaks the adhesion between the pile and the frozen soil.The one shown in Figure 2a is a double pipe system in which a casing 9 is placed concentrically with the outside of the pile body 1. The space between the body 1 and the casing 9 is filled with a mixture 10 of highly concentrated oil and wax, and the outer periphery of the casing 9 is backfilled with sand slurry 8 to isolate the freezing heave force. . Note that 9a is a flange provided at the lower end of the casing. Further, in the case shown in FIG. 2b, a material 10a containing a mixture of soil, oil and wax is used as a backfilling material for the active layer 6 of the construction hole 7. This type of frost heaving prevention pile method involves filling or backfilling the surrounding surface of the pile with a mixture of oil and wax, but this must be done on-site and requires machinery and equipment for this purpose. Not only that, but also the workability is not very good. In addition, since mixtures such as oil and wax have enough fluidity to allow backfilling on site, the backfilling material permeates and disperses into the surrounding ground during the summer, resulting in the need for refilling. It also causes environmental damage by melting permafrost due to freezing point depression. In addition, in the double-pipe system, the casing may lift and sink as the active layer freezes and thaws, which can adversely affect the superstructure. Figure 3 shows the freezing strength increasing pile method.
By providing notches and corrugations 2 at the root of the pile body 1 into the permafrost 5, the permafrost 5 and the pile body 1 are
This increases the freezing strength between the active layer 6 and the active layer 6 to counteract the freezing heaving force of the active layer 6. In this method, the properties of the permafrost at the root of the pile body 1 are not necessarily uniform, resulting in variations in the freezing strength, and the frost heaving force changes depending on the shape and spacing of the notches and corrugations. In order to obtain a large freezing strength by this, there are problems such as the need for manufacturing and processing with considerable precision in processing the end portion into a deformed steel bar. In addition, frost damage prevention piles must have a length L that corresponds to the thickness h of the active layer 6 at the pile installation location, but the thickness h of the active layer 6 varies significantly depending on the region, location, etc. Because of the difference, piles of various lengths corresponding to the thickness of the active layer 6 must be prepared. For this reason, when installing a pile foundation over a long distance using frost damage prevention piles, for example, as a stand for a pipeline, conventionally, piles of various lengths were manufactured in advance at a factory and transported to the site. Piles corresponding to the thickness of active layer 6 were selected and installed. For this reason, not only is it troublesome to pack, but the cargo becomes large, making transportation troublesome, and since it is not suitable for mass production, costs rise, leading to problems such as an increase in labor costs. The present invention was made to solve the above-mentioned conventional problems, and reduces the frost heaving force that acts on piles due to freezing of the active layer and the seasonal frozen layer, and the negative friction that occurs in the summer. By adding a material to the pile body, it prevents frost damage to the superstructure, and the length of the pile can be adjusted arbitrarily according to the thickness of the active layer, making it possible to mass produce and pack.
The object of the present invention is to provide a frost damage prevention pile that is easy to transport and can reduce costs. In order to achieve the above-mentioned object, the frost damage prevention pile according to the present invention is a pile installed in a cold region where freezing heaving force acts, and is provided with an expandable member attached to a pile body having a length obtained by cutting a regular pile into multiple pieces. The pile member is constructed by fitting the pile body and fixing its upper and lower ends watertightly inside the upper and lower ends of the pile body, and filling the space formed by the pile body and the expandable member with a fluid substance. , the pile members are connected as appropriate depending on the thickness of the active layer. The present invention will be explained below with reference to the drawings. FIG. 4 is a longitudinal sectional view of an embodiment of the present invention. Note that the same parts as in FIGS. 1 to 3 are denoted by the same reference numerals, and explanations thereof will be omitted. In the figure, reference numeral 10 denotes a frost damage prevention pile according to the present invention, which is constructed by connecting a plurality of pile members 11, 11a, . . . of appropriate length.
An example of the structure of the pile members 11, 11a, . . . is shown in FIG. 6. Reference numeral 12 denotes a pile body (a steel pipe pile is shown in the figure), and its length l is selected to be the length of a normal pile cut into multiple pieces (for example, about 0.5 m).
Reference numeral 13 denotes a bellows-shaped extensible member, whose upper and lower ends are watertightly fixed to the pile body 12 by fixing members 14 and 15 via l 1 and l 2 from the end of the pile body 12, respectively. 16 is a fluid substance filled in the space formed by the pile body 12 and the expandable member 13. Although there are differences depending on the region, the expandable member 13 used in the present invention generally does not cause brittle wave breakage from room temperature to low temperatures of about -50°C, and the recoverable displacement is the amount of frost heave in the active layer 6 ( h 1 -h) and not be deteriorated or corroded by fluid substances, and representative examples are shown in Table 1 as those satisfying these conditions. In addition, although there are differences depending on the region, the fluid substance 16 is generally a substance that exhibits fluid behavior from room temperature to low temperatures of about -50°C, and does not deteriorate or corrode the pile body 1 and the expandable member 13. Table 2 shows representative examples of those satisfying these conditions.

【表】【table】

〔実施例〕〔Example〕

(1) 鋼管杭(在来のもの) 外径:34mm、長さ:4000mm、埋込長:250mm (2) 凍害防止杭(第4図の実施例に相当するも
の) (a) 杭の寸法 外径:27.5mm、長さ:400mm、埋込長:250
mm、杭部材の長さ:50mm (b) 可伸縮部材の材質及び寸法 材質:低密度ポリエチレン、厚さ:1.5mm、
山のピツチ:9.0mm、山と谷の差:6.0mm (c) 流動性物質 イソパラフイン(C13〜C18) 上記のような在来の鋼管杭と本発明に係る凍害
防止杭とを、それぞれ第10図に示す実験装置に
建込んだのち実験装置を冷凍室内に設置し、常温
から開始して−20℃まで冷却し、約24時間経過後
−40℃に変更し、その状態を約48時間継続したの
ち冷却を中止した。この間の土槽35内の土35
の凍上量を経時変化を変位計39で測定した結果
を第11図に、また、凍着凍上力の経時変化をロ
ードセル38で測定した結果を第12図に示す
(図中Aは在来の鋼管杭、Bは本発明の凍害防止
杭の実験結果である。)図から明らかなように、
凍上量は両者ほとんど変らないのにかかわらず、
凍着凍上力は、−40℃において鋼管杭Aは3.5Kg/
cm2前後であるのに対し、本発明に係る凍害防止杭
Bはほぼ0であり、格段に低減されたことが確認
された。 上記の実施例では、本発明を鋼管杭に実施した
場合を示したが、本発明はコンクリート杭にも実
施することができ、また、内部にコンクリートを
打設した拡底杭に実施することも可能であり、そ
の場合、鋼管以外にプラスチツク管を使用するこ
ともできる。さらに、従来の凍害防止杭(例えば
第3図に示した凍着強度増大杭)にも併用するこ
とができる。その他各部の材質、形状、寸法等も
上記実施例に限定するものではなく、本発明の要
旨を逸脱しない範囲で適宜変更することができ
る。 以上の説明から明らかなように、本発明によれ
ば以下のような顕著な効果を挙げることができ
る。 (1) 杭体に対する活動層の凍着凍上力をほぼ0に
することができるので、寒冷地における構造物
を凍害から充分保護することができる。 (2) 杭体に作用する凍着凍上力を低減できるの
で、杭の根入れ長を大幅に短縮できる。 (3) 杭の長さを活動層の厚さに応じて任意に調整
できる。 (4) 多量生産が可能であり、梱包、輸送も容易な
ので、コストを低減することができる。
(1) Steel pipe pile (conventional type) Outer diameter: 34 mm, length: 4000 mm, embedded length: 250 mm (2) Freeze damage prevention pile (corresponding to the example shown in Figure 4) (a) Pile dimensions Outer diameter: 27.5mm, length: 400mm, embedded length: 250
mm, length of pile member: 50mm (b) Material and dimensions of expandable member Material: low density polyethylene, thickness: 1.5mm,
Pitch of peak: 9.0 mm, difference between peak and valley: 6.0 mm (c) Fluid substance isoparaffin (C 13 - C 18 ) A conventional steel pipe pile as described above and a frost damage prevention pile according to the present invention, After setting up the experimental equipment shown in Figure 10, the experimental equipment was placed in a freezing room, cooled from room temperature to -20°C, and after about 24 hours, the temperature was changed to -40°C, and the condition was kept at about -20°C. Cooling was discontinued after 48 hours. Soil 35 in the soil tank 35 during this time
Fig. 11 shows the results of measuring changes over time in the amount of frost heaving using the displacement meter 39, and Fig. 12 shows the results of measuring changes over time in the frost heaving force using the load cell 38 (A in the figure shows the conventional Steel pipe pile, B is the experimental result of the frost damage prevention pile of the present invention.) As is clear from the figure,
Even though the amount of frost heave is almost the same in both cases,
The freezing heaving force of steel pipe pile A at -40℃ is 3.5 kg/
cm 2 , whereas the frost damage prevention pile B according to the present invention had almost 0, and it was confirmed that the frost damage was significantly reduced. In the above embodiments, the present invention was applied to steel pipe piles, but the present invention can also be applied to concrete piles, and it is also possible to apply the present invention to expanded-bottomed piles with concrete poured inside. In that case, plastic pipes can also be used instead of steel pipes. Furthermore, it can also be used in conjunction with conventional frost damage prevention piles (for example, the frost damage increasing pile shown in FIG. 3). The materials, shapes, dimensions, etc. of other parts are not limited to the above embodiments, and can be changed as appropriate without departing from the gist of the present invention. As is clear from the above description, according to the present invention, the following remarkable effects can be achieved. (1) Since the freezing heave force of the active layer against the pile body can be reduced to almost zero, structures in cold regions can be sufficiently protected from frost damage. (2) Since the frost heave force acting on the pile body can be reduced, the pile penetration length can be significantly shortened. (3) The length of the pile can be adjusted arbitrarily according to the thickness of the active layer. (4) It can be produced in large quantities and is easy to pack and transport, reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来の凍着凍上力低減方法
を示すもので、第1図はサーマルパイル方式、第
2図a,bは凍上防止杭方式、第3図は凍着強度
増大杭方式の説明図である。第4図は本発明実施
例の縦断面図、第5図はその作用説明図、第6
図、第7図は本発明の要部をなす杭部材の実施例
を示す要部拡大断面図、第8図a,b及び第9図
a〜fは本発明要部の別の実施例の拡大断面図、
第10図は本発明に係る凍害防止杭を実験する装
置の概念図、第11図は在来の鋼管杭と本発明に
係る凍害防止杭との凍着凍上量の経時変化を示す
線図、第12図は同じく凍着凍上力の経時変化を
示す線図である。 5:永久凍土層、6:活動層、8:砂スラリ
ー、10:凍害防止杭、11,11a:杭部材、
12:杭体、13:可伸縮部材、16:流動性物
質。
Figures 1 to 3 show conventional methods for reducing frost heaving force. Figure 1 is the thermal pile method, Figures 2 a and b are the frost heaving prevention pile method, and Figure 3 is the frost heaving prevention pile method. FIG. 2 is an explanatory diagram of the method. FIG. 4 is a longitudinal sectional view of an embodiment of the present invention, FIG. 5 is an explanatory diagram of its operation, and FIG.
Fig. 7 is an enlarged sectional view of the main part showing an embodiment of the pile member which constitutes the main part of the present invention, and Fig. 8 a, b and Fig. 9 a to f show another embodiment of the main part of the present invention. Enlarged cross-sectional view,
FIG. 10 is a conceptual diagram of an apparatus for testing the frost damage prevention pile according to the present invention, and FIG. 11 is a diagram showing the change over time in the amount of frost heave of the conventional steel pipe pile and the frost damage prevention pile according to the present invention. FIG. 12 is a diagram showing the change in frost heaving force over time. 5: permafrost layer, 6: active layer, 8: sand slurry, 10: frost damage prevention pile, 11, 11a: pile member,
12: Pile body, 13: Expandable member, 16: Fluid substance.

Claims (1)

【特許請求の範囲】[Claims] 1 凍着凍上力が作用する寒冷地に設置する杭に
おいて、通常の杭を複数本に切断した長さの杭体
にそれぞれ可伸縮部材を嵌装してその上下端部を
前記各杭体の上下端部より内側に水密に固定し、
前記各杭体と可伸縮部材とで形成する空間にそれ
ぞれ流動性物質を充填して杭部材を構成し、該杭
部材を活動層の厚さに対応して適宜連結したこと
を特徴とする凍害防止杭。
1. For piles to be installed in cold regions where freezing heaving forces act, a regular pile is cut into multiple lengths, each of which is fitted with an expandable member, and the upper and lower ends of each of the piles are Watertightly fixed inward from the upper and lower ends,
Freeze damage characterized in that the space formed by each of the pile bodies and the expandable member is filled with a fluid substance to form a pile member, and the pile members are connected as appropriate depending on the thickness of the active layer. Prevention pile.
JP58141184A 1983-06-03 1983-08-03 Frost damage preventive pile Granted JPS6033936A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58141184A JPS6033936A (en) 1983-08-03 1983-08-03 Frost damage preventive pile
US06/624,750 US4585681A (en) 1983-06-03 1984-06-26 Frost damage proofed pile
CA000457859A CA1210599A (en) 1983-06-03 1984-06-29 Frost damage proofed pile
KR1019840004343A KR930005272B1 (en) 1983-08-03 1984-07-21 Frost damage proofed pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141184A JPS6033936A (en) 1983-08-03 1983-08-03 Frost damage preventive pile

Publications (2)

Publication Number Publication Date
JPS6033936A JPS6033936A (en) 1985-02-21
JPH0132337B2 true JPH0132337B2 (en) 1989-06-30

Family

ID=15286104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141184A Granted JPS6033936A (en) 1983-06-03 1983-08-03 Frost damage preventive pile

Country Status (2)

Country Link
JP (1) JPS6033936A (en)
KR (1) KR930005272B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420961B1 (en) * 2013-01-04 2014-07-21 지에스건설 주식회사 Constructing method of zero friction pile
KR101420962B1 (en) * 2013-01-04 2014-07-21 지에스건설 주식회사 Zero friction pile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608728B2 (en) * 1978-08-18 1985-03-05 松下電器産業株式会社 displacement sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608728U (en) * 1983-06-29 1985-01-22 日本鋼管株式会社 Freeze damage prevention pile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608728B2 (en) * 1978-08-18 1985-03-05 松下電器産業株式会社 displacement sensor

Also Published As

Publication number Publication date
KR930005272B1 (en) 1993-06-17
KR850002857A (en) 1985-05-20
JPS6033936A (en) 1985-02-21

Similar Documents

Publication Publication Date Title
US6099208A (en) Ice composite bodies
FI81437C (en) Method for reducing stress in an underground refrigerated gas pipeline and a refrigerated gas pipeline
CA2942790C (en) Pile foundations for supporting power transmission towers
CN111676836A (en) Reinforcing construction method for corrugated steel of existing old small bridges and culverts
CA2502173C (en) Method of preventing frost heave stress concentrations in chilled buried pipelines
US4242012A (en) Method for constructing a multiseason ice platform
JP2005082976A (en) Semi-underground flat bottom cylindrical liquid storage tank and construction method of the same
JPH0132337B2 (en)
CA1174063A (en) Ice island construction
US6309142B1 (en) Structure for preventing frost heave damage to an underground structure and a method of installing the same
JPH0132336B2 (en)
JPS6310252B2 (en)
JP7333287B2 (en) Foundation reinforcement method and structure
JP3071381B2 (en) Pile used for foundation structure of permafrost zone and pile foundation using it
JPS6151102B2 (en)
JPS5985036A (en) Freeze preventing pile
JPS61261525A (en) Frost-damage preventor pile
JPS6010016A (en) Freezing damage preventive pile
CN214169052U (en) Be suitable for reinforced prestressed anchorage structure of frozen soil district freeze thawing foundation ditch
JPS6010018A (en) Freezing damage preventive pile
JPS6310253B2 (en)
KR910003024Y1 (en) Frost damage proofed pile
JPS61282520A (en) Pile for permanently frozen ground
JPH0553896B2 (en)
JPH0553895B2 (en)