JPS6151019B2 - - Google Patents

Info

Publication number
JPS6151019B2
JPS6151019B2 JP5693183A JP5693183A JPS6151019B2 JP S6151019 B2 JPS6151019 B2 JP S6151019B2 JP 5693183 A JP5693183 A JP 5693183A JP 5693183 A JP5693183 A JP 5693183A JP S6151019 B2 JPS6151019 B2 JP S6151019B2
Authority
JP
Japan
Prior art keywords
bellows
alloy
expansion
contraction
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5693183A
Other languages
Japanese (ja)
Other versions
JPS59182943A (en
Inventor
Masayuki Kawachi
Shigenori Asami
Kenzaburo Sugizaki
Mutsuo Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Fuji Seiko Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Fuji Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, Fuji Seiko Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP5693183A priority Critical patent/JPS59182943A/en
Publication of JPS59182943A publication Critical patent/JPS59182943A/en
Publication of JPS6151019B2 publication Critical patent/JPS6151019B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Diaphragms And Bellows (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はAl合金ベローズに関するもので、特
に伸縮繰返し疲労強度を改善したものである。 一般にベローズは第1図に示すように薄肉円筒
1の周壁2を蛇腹状な成形3し、軸方向の伸縮又
は曲げを容易にしたもので、配管系の伸縮継手と
して熱膨脹による伸縮を吸収するのに用いられて
いる。また真空装置等に取付け、外部から気密を
破らずに内部のものを動かすのに用いられてい
る。このようにベローズには軸方向の繰返し伸縮
に対する耐久疲労性が要求されている。 従来ベローズには主としてオーステナイト系の
ステンレス鋼や燐青銅が用いられているが、最近
超高真空分野ではAl又はAl合金がガス又放出の
少ないところから配管に用いられるようになり、
また原子力分野でもAl又はAl合金が被爆による
残留放射能の低減が早いところから配管に用いら
れるようなつた。このような配管系や機器のベロ
ーズには同様の理由からAl又はAl合金を用いる
必要が生じ、一部で実用化されている。 Al又はAl合金ベローズとしては、純度99.5wt
%(以下wt%を単に%と略記)の純Al
(JIS1050)、Al―2.5%Mg―0.2%Cr合金
(JIS5052相当)、Al―1.2%Mn―0.1%Cu合金
(JIS3003相当)、Al―1.2%Mn―1.0%Mg合金
(JIS3004相当)、Al―0.6%Si―1.0%Mg―0.3%
Cu―0.2%Cr合金(JIS6061相当)が用いられて
いる。これ等は何れもベローズの蛇腹状成形性か
ら選定されたものであるが、材料の強度、特にベ
ローズの伸縮繰返しによる疲労強度が低い欠点が
あり、上述のオーステナイト系ステンレス鋼を用
いたベローズと同等の寿命を保持させるために
は、、ベローズの山数を相当数増す必要がある。
その結果ベローズの長さが長くなるばかりか、重
量が増大する欠点があつた。 本発明はそれに鑑み種々検討の結果、従来の
Al又はAl合金製ベローズと比較し約6倍以上オ
ーステナイト系ステンレス鋼製ベローズと比較し
てもほぼ同等の耐久疲労特性を示すAl合金製ベ
ローズを開発したもので、Cu4.0〜7.0%、Mn0.1
〜1.0%、Ti0.01〜0.5%、Zr0.01〜0.5%、V0.01
〜0.5%、残部Alと通常の不純物から構成される
熱処理型Al合金からなることを特徴とするもの
である。 即ち本発明ベローズは、AlにCuを添加して熱
処理により強度(引張張さ、耐力、疲労強度)を
向上せしめ、これにMnを添加して加工性を損な
うことなく、結晶粒を微細化すると同時にAlと
Mnの微細な金属間化合物を析出されて強度向上
に寄与せしめ、更にTi,Zr及びVを微量添加し
て加工性をあまり損なうことなく、結晶粒を一層
微細化すると共に、Alとの微細な金属間化合物
を析出させて、ベローズの伸縮繰返し疲労強度を
向上せしめた熱処理型Al合金からなる。 本発明ベローズにおいて、Al合金組成を上述
の如く限定したのは下記の理由によるものであ
る。 Cu含有量を4.0〜7.0%と限定したのは、4.0%
未満では十分な強度が得られず、7.0%を越える
と強度向上効果が飽和すると共に、大きな金属間
化合物を晶出し、成形加工性が困難となるためで
ある。Mn含有量を0.1〜1.0%と限定したのは、
0.1%未満では疲労強度の向上の効果が認められ
ず、1.0%を越えるとAlとMnの阻大な金属間化合
物を晶出し、加工性が低下するためである。また
Ti,Zr及びVの含有量をそれぞれ0.01〜0.5%と
限定したのは、これ等の何れかが0.01%未満では
疲労強度の改善が認められず、0.5%を越えると
晶出物が粗大化し、成形加工性が困難となるため
である。 本発明ベローズは以上の構成からなり、通常の
方法はにより所定寸法の薄肉円筒とし、その周壁
を所定の蛇腹状にバルジ加工により成形するが、
この間520〜540℃の温度で1分〜3時間の溶体化
処理、水焼入れ及び150〜190℃の温度で2〜48時
間の焼戻しを行なつて造られる。例えば薄肉円筒
を溶体化処理、水焼入れした後、周壁にバルジ加
工を行ない、しかる後焼戻しを施すか、又は薄肉
の円筒の周壁にバルジ加工を行なつた後、溶体化
処理、水焼入れ、焼戻しを施す。 このようにして造られた本発明ベローズは従来
のAl又はAlの合金製ベローズと比較し、約6倍
以上の耐久疲労特性を示す、また従来のオーステ
ナイト系ステンレス鋼製ベローズと比較し、ほぼ
同等以上の耐久疲労特性を示すもので、従来の
Al又はAl合金製ベローズと同一の耐久寿命とす
れば約60%以上のコンパクト化(長さにおいて)
が可能となる。 尚本発明ベローズを伸縮継手について説明した
が、これに限るものではなく、圧力スイツチ、バ
ツクレスバルブ等に使用しても同様の効果を奏す
るものである。 以下本発明を実施例について説明する。 実施例 (1) 第1表に示す材料を用いてベローズ外径55.5
mm、ベローズ内径43.5mm、ベローズ肉厚0.225
mm、長さ36mm、ベローズの山数16のベローズを作
成した。これ等のベローズについて機械的性質を
測定すると共に、伸縮による繰返し疲労試験によ
り破断するまでの繰返し数を測定した。これ等の
結果を第1表に併記した。 尚本発明ベローズ及び比較ベローズは直径55.5
mm、肉厚0.3mmの薄肉管に加工し、535℃の温度で
5分間溶体化して水焼入れし、これを冷間でバル
ジ加工により成形した後160℃の温度で24時間焼
戻した。また従来ベローズは直径55.5mm、肉厚
0.3mmの薄肉管に加工し、これにバルジ加工を行
なつてベローズを作成した。また試験条件はベロ
ーズ内部圧力1Kg/cm2G、伸縮繰返しスピード
90Cycle/min、試験温度室温、伸繰量10mmで行
なつた。
The present invention relates to an Al alloy bellows, and in particular has improved cyclic expansion and contraction fatigue strength. In general, bellows are made by forming the peripheral wall 2 of a thin cylinder 1 into a bellows-like shape 3 to make it easy to expand and contract or bend in the axial direction, as shown in Figure 1.Bellows are used as expansion joints in piping systems to absorb expansion and contraction due to thermal expansion. It is used in It is also attached to vacuum equipment and used to move things inside without breaking the airtightness from the outside. As described above, the bellows is required to have durability and fatigue resistance against repeated expansion and contraction in the axial direction. Traditionally, austenitic stainless steel and phosphor bronze have been mainly used for bellows, but recently in the ultra-high vacuum field, Al or Al alloys have been used for piping because they emit less gas or gas.
Also, in the nuclear power field, Al or Al alloys have come to be used for piping because they quickly reduce residual radioactivity from exposure. For the same reason, it has become necessary to use Al or an Al alloy for the bellows of such piping systems and equipment, and it has been put into practical use in some cases. Purity 99.5wt for Al or Al alloy bellows
% (hereinafter wt% is simply abbreviated as %) of pure Al
(JIS1050), Al-2.5%Mg-0.2%Cr alloy (JIS5052 equivalent), Al-1.2%Mn-0.1%Cu alloy (JIS3003 equivalent), Al-1.2%Mn-1.0%Mg alloy (JIS3004 equivalent), Al -0.6%Si-1.0%Mg-0.3%
A Cu-0.2% Cr alloy (equivalent to JIS6061) is used. All of these were selected because of the bellows' bellows-like formability, but they have the disadvantage of low material strength, especially fatigue strength due to repeated expansion and contraction of the bellows, and are equivalent to the bellows made of austenitic stainless steel mentioned above. In order to maintain the service life of the bellows, it is necessary to increase the number of bellows by a considerable number.
As a result, not only the length of the bellows became longer, but also the weight increased. In view of this, the present invention was developed as a result of various studies.
We have developed an Al alloy bellows that has approximately 6 times the durability and fatigue properties as an austenitic stainless steel bellows, and has approximately the same durability and fatigue properties as an austenitic stainless steel bellows. .1
~1.0%, Ti0.01~0.5%, Zr0.01~0.5%, V0.01
It is characterized by being made of a heat-treated Al alloy consisting of ~0.5% Al, the balance being Al and normal impurities. In other words, the bellows of the present invention is produced by adding Cu to Al to improve its strength (tensile strength, yield strength, fatigue strength) through heat treatment, and by adding Mn to refine the crystal grains without impairing workability. At the same time with Al
A fine intermetallic compound of Mn is precipitated and contributes to strength improvement, and small amounts of Ti, Zr, and V are added to further refine the crystal grains without significantly impairing workability, and to improve the strength of the fine intermetallic compound with Al. Made of a heat-treated Al alloy that precipitates intermetallic compounds to improve the cyclic expansion and contraction fatigue strength of the bellows. In the bellows of the present invention, the Al alloy composition is limited as described above for the following reasons. The Cu content was limited to 4.0% to 7.0%, which is 4.0%.
If it is less than 7.0%, sufficient strength will not be obtained, and if it exceeds 7.0%, the strength improvement effect will be saturated and large intermetallic compounds will crystallize, making moldability difficult. The Mn content was limited to 0.1-1.0% because
This is because if it is less than 0.1%, the effect of improving fatigue strength is not recognized, and if it exceeds 1.0%, an enormous intermetallic compound of Al and Mn will crystallize, resulting in a decrease in workability. Also
The reason why the content of Ti, Zr, and V was limited to 0.01 to 0.5% each is because if any of these is less than 0.01%, no improvement in fatigue strength will be observed, and if it exceeds 0.5%, the crystallized substances will become coarse. This is because moldability becomes difficult. The bellows of the present invention has the above-mentioned structure, and the usual method is to form a thin-walled cylinder with predetermined dimensions and form the peripheral wall into a predetermined bellows shape by bulge processing.
During this time, it is produced by solution treatment at a temperature of 520 to 540°C for 1 minute to 3 hours, water quenching, and tempering at a temperature of 150 to 190°C for 2 to 48 hours. For example, after a thin-walled cylinder is solution-treated and water-quenched, the peripheral wall is bulged and then tempered, or the peripheral wall of a thin-walled cylinder is bulged and then solution-treated, water-quenched, and tempered. administer. The bellows of the present invention manufactured in this manner exhibits approximately 6 times more durability and fatigue characteristics than conventional bellows made of Al or Al alloy, and is approximately equivalent to that of conventional austenitic stainless steel bellows. It exhibits the above durability and fatigue properties, compared to conventional
Approximately 60% more compact (in terms of length) with the same durability life as Al or Al alloy bellows.
becomes possible. Although the bellows of the present invention has been described with reference to an expansion joint, it is not limited to this, and the same effect can be achieved even if the bellows is used in a pressure switch, a backless valve, etc. The present invention will be described below with reference to Examples. Example (1) Bellows outer diameter 55.5 using the materials shown in Table 1
mm, bellows inner diameter 43.5mm, bellows wall thickness 0.225
A bellows with a length of 36 mm and a number of bellows threads of 16 was created. The mechanical properties of these bellows were measured, and the number of repetitions until breakage was measured by a repeated fatigue test due to expansion and contraction. These results are also listed in Table 1. The bellows of the present invention and the comparative bellows have a diameter of 55.5
The tube was processed into a thin-walled tube with a wall thickness of 0.3 mm, solution-treated at a temperature of 535°C for 5 minutes, water quenched, formed by cold bulge processing, and then tempered at a temperature of 160°C for 24 hours. In addition, the conventional bellows has a diameter of 55.5 mm and a wall thickness of
It was processed into a 0.3 mm thin-walled tube, which was then subjected to bulge processing to create a bellows. The test conditions were a bellows internal pressure of 1 Kg/cm 2 G, and a repeated expansion and contraction speed.
The test was carried out at 90 cycles/min, at room temperature, and at a stretching amount of 10 mm.

【表】 第1表から明らかな如く本発明ベローズは従来
のAl又はAl合金製ベローズと比比較し、伸縮繰
返し疲労強度がはるかに優れており、従来のオー
ステナイト系ステレンス鋼製と比較し、ほぼ同等
以上の伸縮繰返し疲労強度を有することが判る。 実施例 (2) 第1表中、本発明品No.1、従来品No.15〜18を用
い、ベローズの弾性解析による応力計算式として
知られているEJMA(Standard of The
Expansion Joint Manufacturss Associa―
tion,Inc)の計算式を用いて伸縮による計算応
力を算出した。その結果を第2図に示す。またこ
れを実施例(1)と同様にしてベローズが破断するま
で疲労試験を行なつて確認した。その結果を第2
表に示す。
[Table] As is clear from Table 1, the bellows of the present invention has far superior expansion and contraction cyclic fatigue strength compared to conventional bellows made of Al or Al alloy, and almost superior to conventional austenitic stainless steel bellows. It can be seen that it has the same or higher cyclic fatigue strength. Example (2) Using the present invention product No. 1 and conventional products No. 15 to 18 in Table 1, EJMA (Standard of The
Expansion Joint Manufacturers Associa―
The calculated stress due to expansion and contraction was calculated using the formula of tion, Inc). The results are shown in FIG. Further, this was confirmed by conducting a fatigue test in the same manner as in Example (1) until the bellows broke. The result is the second
Shown in the table.

【表】【table】

【表】 第2図及び第2表から明らかなようにEJMA計
算応力値と実測値とは明確な対応をなし、本発明
品は従来のAl又はAl合金からなるベローズより
はるかに優れており、従来のオーステナイト系ス
テンレス鋼からなるベローズと比較しても、伸縮
量の大きい方では幾分劣るも、伸縮量の小さい方
では逆に優れていることが判る。 実施例 (3) 第1表に示す本発明品No.1の材料、従来品No.15
〜18の材料を用い、ベローズ直径55.5mm、ベロー
ズ内径43.5mm、肉厚0.225mmでベローズの山数と
長さを変えてベローズを作成し、実施例(1)と同一
方法で伸縮量10mmにおける伸縮繰返し疲労試験を
行ない、1×105回の繰返し数をクリヤーするた
めのベローズ数と長さを求めた。その結果を第3
表に示す。
[Table] As is clear from Figure 2 and Table 2, there is a clear correspondence between the EJMA calculated stress values and the actual measured values, and the product of the present invention is far superior to the conventional bellows made of Al or Al alloy. Even when compared with conventional bellows made of austenitic stainless steel, it can be seen that although it is somewhat inferior in terms of a large amount of expansion and contraction, it is conversely superior in terms of a small amount of expansion and contraction. Example (3) Material of the invention product No. 1 shown in Table 1, conventional product No. 15
~18 materials were used to create bellows with a bellows diameter of 55.5 mm, a bellows inner diameter of 43.5 mm, and a wall thickness of 0.225 mm, varying the number of bellows and the length. A repeated expansion/contraction fatigue test was conducted to determine the number and length of bellows required to pass 1×10 5 repetitions. The result is the third
Shown in the table.

【表】 第3表から明らかなように、本発明ベローズに
よれば、耐久疲労寿命が格段に優れているため、
ベローズとしてコンパクトな設計が可能であるこ
とが判る。 このように本発明ベローズによれば、従来の
Al又はAl合金製ベローズと比較し伸縮繰返しに
よる耐久疲労強度がはるかに優れ、ベローズの寿
命を向上するばかりか、ベローズの軽量化、コン
パクト化を可能にする等工業上顕著な効果を奏す
るものである。
[Table] As is clear from Table 3, the bellows of the present invention has a significantly superior durability fatigue life.
It can be seen that a compact design as a bellows is possible. In this way, according to the bellows of the present invention, the conventional bellows
Compared to Al or Al alloy bellows, it has far superior durability and fatigue strength due to repeated expansion and contraction, and not only improves the life of the bellows, but also has remarkable industrial effects such as making it possible to make the bellows lighter and more compact. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般のベローズの構成を示す側断面
図、第2図は本発明ベローズと従来ベローズの伸
縮繰返し疲労試験における疲労曲線を示す。
FIG. 1 is a side sectional view showing the structure of a general bellows, and FIG. 2 shows fatigue curves of the bellows of the present invention and a conventional bellows in an expansion/contraction cyclic fatigue test.

Claims (1)

【特許請求の範囲】[Claims] 1 Cu4.0〜7.0wt%、Mn0.1〜1.0wt%、Ti0.01
〜0.5wt%、Zr0.01〜0.5wt%、V0.01〜0.5wt%、
残部Alと通常の不純物から構成される熱処理型
Al合金からなることを特徴とするAl合金製ベロ
ーズ。
1 Cu4.0~7.0wt%, Mn0.1~1.0wt%, Ti0.01
~0.5wt%, Zr0.01~0.5wt%, V0.01~0.5wt%,
Heat treatment type consisting of balance Al and normal impurities
Al alloy bellows characterized by being made of Al alloy.
JP5693183A 1983-04-01 1983-04-01 Al alloy bellows Granted JPS59182943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5693183A JPS59182943A (en) 1983-04-01 1983-04-01 Al alloy bellows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5693183A JPS59182943A (en) 1983-04-01 1983-04-01 Al alloy bellows

Publications (2)

Publication Number Publication Date
JPS59182943A JPS59182943A (en) 1984-10-17
JPS6151019B2 true JPS6151019B2 (en) 1986-11-07

Family

ID=13041252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5693183A Granted JPS59182943A (en) 1983-04-01 1983-04-01 Al alloy bellows

Country Status (1)

Country Link
JP (1) JPS59182943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456713U (en) * 1987-10-02 1989-04-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053352B2 (en) * 1995-04-14 2000-06-19 株式会社神戸製鋼所 Heat-treated Al alloy with excellent fracture toughness, fatigue properties and formability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456713U (en) * 1987-10-02 1989-04-10

Also Published As

Publication number Publication date
JPS59182943A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
US8562763B2 (en) High strength α+β type titanuim alloy
EP0657558B1 (en) Fe-base superalloy
CN1540018A (en) Co-Ni-base alloy
US4610733A (en) High strength weldable aluminum base alloy product and method of making same
JPH0457734B2 (en)
JPS6151019B2 (en)
US3640777A (en) Heat treatment of high-chromium alloys to improve ductility
US5160389A (en) Flexible tube for automotive exhaust systems
JPH04358036A (en) Alpha plus beta ti alloy
EP1308529B1 (en) Titanium aluminum intermetallic compound based alloy and method of fabricating a product from the alloy
USRE33092E (en) High strength weldable aluminum base alloy product and method of making same
JPS63161137A (en) High tensile aluminum alloy having excellent heat resistance
JPS6220272B2 (en)
JPS6311643A (en) High strength aluminum alloy having superior heat resistance
JPS6326192B2 (en)
JPH01242743A (en) Heat-resistant titanium alloy
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
US20060039819A1 (en) Metastable beta-titanium alloy
JP4476884B2 (en) Titanium alloy with excellent formability and method for producing the same
KR101957559B1 (en) Ti-Fe based hypereutectic alloy
JPH0791614B2 (en) Aluminum alloy cylinder
JPH04224643A (en) Shape memory alloy and its manufacture
JPH04218649A (en) Manufacture of ti-al intermetallic compound type alloy
JPS62230949A (en) Aluminum alloy excellent in strength at high temperature