JP4476884B2 - Titanium alloy with excellent formability and method for producing the same - Google Patents

Titanium alloy with excellent formability and method for producing the same Download PDF

Info

Publication number
JP4476884B2
JP4476884B2 JP2005192621A JP2005192621A JP4476884B2 JP 4476884 B2 JP4476884 B2 JP 4476884B2 JP 2005192621 A JP2005192621 A JP 2005192621A JP 2005192621 A JP2005192621 A JP 2005192621A JP 4476884 B2 JP4476884 B2 JP 4476884B2
Authority
JP
Japan
Prior art keywords
titanium alloy
ductility
alloy
test
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005192621A
Other languages
Japanese (ja)
Other versions
JP2007009283A (en
Inventor
智文 田中
義男 逸見
公輔 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005192621A priority Critical patent/JP4476884B2/en
Publication of JP2007009283A publication Critical patent/JP2007009283A/en
Application granted granted Critical
Publication of JP4476884B2 publication Critical patent/JP4476884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、プレート式熱交換器・燃料電池のセパレータなどのプレス成形加工品、携帯電話・モバイルパソコン・カメラなどの筐体など高度な成形性が要求される部材に用いるチタン合金に関するものである。   The present invention relates to a titanium alloy used for a member requiring high formability, such as a press heat-processed product such as a plate heat exchanger and a separator of a fuel cell, and a casing of a mobile phone, a mobile personal computer, a camera, and the like. .

チタン合金は、その他の汎用金属と比べ、低密度(軽量)・高強度であることから比強度に優れており、航空機材料や宇宙開発用材料を中心に需要が拡大している。加えて近年では自動車部品用材料、医療用材料、眼鏡用材料、ゴルフ用材料としても汎用されつつある。   Titanium alloys are superior in specific strength because of their low density (light weight) and high strength compared to other general-purpose metals, and demand is growing mainly for aircraft materials and space development materials. In addition, in recent years, it has been widely used as materials for automobile parts, medical materials, eyeglass materials, and golf materials.

ところでチタン合金は、常温で構成する組織の相によって、α型、β型、およびそれらが混在したα+β型に分類することができる。α型やα+β型のチタン合金は、六方晶からなるα型を有しており、室温での延性が低く、温間または熱間で加工されることが多い。一方、体心立方晶からなるβ型のチタン合金は、α型やα+β型のチタン合金と比べ、溶体化処理状態での延性が優れていることから、室温で成形加工することができる。さらにβ型チタン合金は、時効熱処理を施すことでさらに強度を高めることができるため、今後、さらなる用途への適用が期待されている。   By the way, titanium alloys can be classified into α-type, β-type, and α + β-type in which they are mixed depending on the phase of the structure formed at room temperature. α-type and α + β-type titanium alloys have an α-type composed of hexagonal crystals, have low ductility at room temperature, and are often processed warmly or hotly. On the other hand, β-type titanium alloys composed of body-centered cubic crystals have excellent ductility in the solution treatment state as compared with α-type and α + β-type titanium alloys, and can be molded at room temperature. Furthermore, since the β-type titanium alloy can be further strengthened by performing an aging heat treatment, it is expected to be applied to further uses in the future.

そこで特許文献1では、V:4.0〜10%(質量%を意味する、以下同じ)、Sn:2.0〜5.0%、Al:2.0〜4.0%を含み、さらにCr:6.0〜10%またはCr:5.0〜9.0%とFe:0.3〜3.5%を含み、残部がTiおよび不可避的不純物からなる時効熱処理後の強度と延性が優れたβ型チタン合金を開示している。   Therefore, Patent Document 1 includes V: 4.0 to 10% (meaning mass%, hereinafter the same), Sn: 2.0 to 5.0%, Al: 2.0 to 4.0%, Strength and ductility after aging heat treatment including Cr: 6.0 to 10% or Cr: 5.0 to 9.0% and Fe: 0.3 to 3.5%, the balance being Ti and inevitable impurities An excellent β-type titanium alloy is disclosed.

上記以外に、Ti―15V−3Cr−3Sn−3Al合金、Ti−15Mo−5Zr−3Al合金、Ti−3Al−8V−6Cr−4Mo−4Sn合金、Ti−13V−11Cr−3Al合金などもβ型チタン合金として知られている。これら合金は、上述のように時効熱処理前(溶体化処理後)に室温で成形加工できるものの、耐力(例えば0.2%耐力)が高いため加工時にスプリングバック現象が起こり易く、また一層高度な成形加工を行なうには延性が不十分であり、適用できる形状に限りがあった。そのため、高度な成形性が要求される部材(例えば、プレート式熱交換器・燃料電池のセパレータなどのプレス成形加工品、携帯電話・モバイルパソコン・カメラなどの筐体など)に用いる場合や、新規な用途で上記βチタン合金を用いる場合には、溶体化処理後において耐力が低く、延性が高く、優れた冷間加工性を有する成形性に優れた新規なβ型チタン合金の開発が望まれている。   Other than the above, Ti-15V-3Cr-3Sn-3Al alloy, Ti-15Mo-5Zr-3Al alloy, Ti-3Al-8V-6Cr-4Mo-4Sn alloy, Ti-13V-11Cr-3Al alloy, etc. are also β-type titanium. Known as an alloy. Although these alloys can be formed at room temperature before aging heat treatment (after solution treatment) as described above, their proof stress (for example, 0.2% proof stress) is high, so that a springback phenomenon is likely to occur during processing, and more sophisticated The ductility is insufficient to perform the forming process, and the applicable shapes are limited. Therefore, it is used for members that require high formability (for example, press-molded products such as plate heat exchangers and fuel cell separators, mobile phones, mobile PCs, cameras, etc.) and new When β-titanium alloys are used in various applications, it is desirable to develop a new β-type titanium alloy with low yield strength after solution treatment, high ductility, excellent cold workability, and excellent formability. ing.

そこで特許文献2では、重量%で、V:15〜25%、Al:2.5〜5%、Sn:0.5〜4%、酸素0.12%以下、残部Tiおよび不可避的不純物からなる冷間加工性に優れたβ型チタン合金を開示している。   Therefore, in Patent Document 2, V is 15 to 25%, Al is 2.5 to 5%, Sn is 0.5 to 4%, oxygen is 0.12% or less, the remainder is Ti, and unavoidable impurities. A β-type titanium alloy excellent in cold workability is disclosed.

特許文献3では、Moおよび/またはNb:0.5〜18重量%、V:13〜19重量%、Al:0.5〜6重量%、Sn:0.5〜6重量%を含有し、残部がTiおよび不可避的不純物からなる冷間加工性と延性に優れたβ型チタン合金を開示している。
特開2004−270009号公報 特許第2669004号公報 特許第2936754号公報
Patent Document 3 contains Mo and / or Nb: 0.5 to 18 wt%, V: 13 to 19 wt%, Al: 0.5 to 6 wt%, Sn: 0.5 to 6 wt%, A β-type titanium alloy having the balance of Ti and inevitable impurities and having excellent cold workability and ductility is disclosed.
JP 2004-270009 A Japanese Patent No. 2669004 Japanese Patent No. 2936754

上記特許文献2および3のβ型チタン合金では、冷間加工性を向上させるために比較的高価なVを多量に含有させなければならず、特許文献3のβ型チタン合金では、さらにMoやNbなどの比較的高価な原料も含有させなければならなかった。   In the β-type titanium alloys of Patent Documents 2 and 3, a relatively large amount of V must be contained in order to improve cold workability. In the β-type titanium alloy of Patent Document 3, Mo and A relatively expensive raw material such as Nb had to be included.

そこで本発明は、溶体化処理後において耐力が低く、延性が高く、優れた冷間加工性を有する成形性に優れた安価なβ型チタン合金を提供することを課題とするものである。   Accordingly, an object of the present invention is to provide an inexpensive β-type titanium alloy having low formability after solution treatment, high ductility, and excellent formability having excellent cold workability.

本発明者は、上記課題を解決すべく、β型チタン合金に含有させる様々な元素の作用について鋭意研究を行なった。従来、Snはω相の生成を抑制する作用を有すると考えられており、また上記特許文献2や3でも認識されているように、多量に含有させると溶体化処理後において固溶硬化により素地の強度や変形抵抗を上昇させてしまうとされていた。しかし本発明のβ型チタン合金では、Snを含有させることで溶体化処理後の耐力を低下させることができ、延性も向上できることを見出した。   In order to solve the above-mentioned problems, the present inventor has intensively studied the action of various elements to be contained in the β-type titanium alloy. Conventionally, Sn is considered to have an action of suppressing the formation of ω phase, and as recognized in the above-mentioned Patent Documents 2 and 3, when contained in a large amount, the base material is formed by solid solution hardening after solution treatment. It was supposed to increase the strength and deformation resistance. However, it has been found that the β-type titanium alloy of the present invention can reduce the yield strength after the solution treatment and improve the ductility by containing Sn.

さらにFeやCrは、溶体化処理後の合金における素地の強度(耐力)を著しく高めてしまうことから、できるだけ少ない方が望ましいとされていた(例えば、特許文献2)。しかし本発明者らが研究を行なったところ、Vの一部をFeおよび/またはCrで代用しても合金の成形性が損なわれることはなく、Vの含有量を低減させることでかえってコストを削減できることを見出し、本発明を完成するに至った。   Furthermore, Fe and Cr are considered to be desirably as small as possible because they significantly increase the strength (proof strength) of the substrate in the alloy after the solution treatment (for example, Patent Document 2). However, as a result of a study by the present inventors, even if a part of V is substituted with Fe and / or Cr, the formability of the alloy is not impaired, and the cost can be reduced by reducing the V content. The present inventors have found that it can be reduced and have completed the present invention.

本発明のチタン合金は、
V:6〜13%(質量%を意味する、以下同じ)、
Sn:4〜20%、
Fe:0.3〜3.0%、
Cr:0.3〜4.5%を含み、残部がTiおよび不可避的不純物からなることを特徴としており、成形性に優れている。上記FeおよびCrの含有量は、下記式で表されるFe等量で1.5〜3.5%の範囲内にあることが好ましい。
Fe等量=[Fe]+[Cr]/1.5([ ]内は当該元素の含有質量%を示す)
The titanium alloy of the present invention is
V: 6 to 13% (meaning mass%, the same shall apply hereinafter),
Sn: 4-20%,
Fe: 0.3-3.0%
Cr: 0.3 to 4.5% is included, and the balance is composed of Ti and inevitable impurities, and is excellent in formability. The content of Fe and Cr is preferably in the range of 1.5 to 3.5% in terms of Fe equivalent expressed by the following formula.
Fe equivalent = [Fe] + [Cr] /1.5 (inside [] indicates the content% of the element)

また、さらにAlを0.3〜5.0%、および/またはCuを0.1%以上、3.0%未満含むことが好ましい。   Further, it is preferable that Al is contained in an amount of 0.3 to 5.0% and / or Cu is 0.1% or more and less than 3.0%.

上記チタン合金は、Feの含有量が0.3〜3.0%であるため、Feを0.2〜2%含有するスポンジチタン(以下、低級スポンジチタンとも称す)と、その他の添加元素とを溶製して製造することができる。   Since the titanium alloy has an Fe content of 0.3 to 3.0%, sponge titanium containing 0.2 to 2% of Fe (hereinafter also referred to as lower sponge titanium), and other additive elements, Can be manufactured by melting.

本発明のチタン合金は、溶体化処理後における延性が高く、かつ耐力が低く、優れた冷間加工性を有しているため、成形性に優れている。さらに本発明のチタン合金は、低級スポンジチタンを用いた製造が可能であるため、製造コストを削減することができる。   The titanium alloy of the present invention is excellent in formability because it has high ductility after solution treatment, low proof stress, and excellent cold workability. Furthermore, since the titanium alloy of the present invention can be manufactured using lower sponge titanium, the manufacturing cost can be reduced.

本発明のβ型チタン合金における合金元素の作用について説明する。   The action of the alloy element in the β-type titanium alloy of the present invention will be described.

Vは全率固溶型のβ相安定化元素であり、少なければ溶体化処理後の延性が著しく低下し、さらには冷間加工性も劣化する。そのため6%以上(好ましくは7%以上、さらに好ましくは8%以上)含有させる必要がある。しかし過剰に含有させても延性の向上はみられず、かえって原料コストが高くなる。そのためVの含有量の上限は13%(好ましくは12.5%、さらに好ましくは12%)に抑える必要がある。   V is an all-solid-solution type β-phase stabilizing element, and if it is less, ductility after solution treatment is significantly reduced, and cold workability is also deteriorated. Therefore, it is necessary to contain 6% or more (preferably 7% or more, more preferably 8% or more). However, even if contained excessively, the ductility is not improved, and the raw material cost is increased. Therefore, the upper limit of the content of V needs to be suppressed to 13% (preferably 12.5%, more preferably 12%).

Snは中性的元素であり、本発明のチタン合金では、溶体化処理後の延性を向上させる効果を有している。そのため4%以上(好ましくは5%より多く、さらに好ましくは6%よりも多く)含有させる必要がある。一方でSnはTiよりも高密度な元素であるため、多量に含有させるとTi本来が有する低密度の特性が損なわれてしまい、また過剰に含有させても延性の向上が見込められず、さらにはTi3Snが析出して延性が低下してしまい、かえって原料コストが高くなってしまう。そのためSnの含有量の上限は20%(好ましくは15%、さらに好ましくは12%)に抑える必要がある。 Sn is a neutral element, and the titanium alloy of the present invention has an effect of improving ductility after solution treatment. Therefore, it is necessary to contain 4% or more (preferably more than 5%, more preferably more than 6%). On the other hand, Sn is an element with a higher density than Ti, so if it is contained in a large amount, the low density characteristics inherent in Ti will be impaired, and even if it is excessively contained, no improvement in ductility can be expected. In this case, Ti 3 Sn precipitates and the ductility is lowered, which in turn increases the raw material cost. Therefore, the upper limit of the Sn content needs to be suppressed to 20% (preferably 15%, more preferably 12%).

Feは共析型のβ相安定化元素であり、少なすぎれば冷間加工により応力誘起マルテンサイト変態が生じ、チタン合金中に不安定なβ相が形成され、冷間加工時に割れを引き起こし易くなる。そのため、Feの含有量は0.3%以上(好ましくは0.5%以上、さらに好ましくは1.0%以上)とする必要がある。しかし、Feを多量に含有させると、固溶硬化により耐力が高くなりすぎ、冷間加工性が損なわれてしまう。そのため、Feの含有量の上限は3.0%(好ましくは2.5%、さらに好ましくは2.0%)に抑える必要がある。   Fe is a eutectoid β-phase stabilizing element. If it is too small, stress-induced martensitic transformation occurs due to cold working, and an unstable β-phase is formed in the titanium alloy, which easily causes cracking during cold working. Become. Therefore, the Fe content needs to be 0.3% or more (preferably 0.5% or more, more preferably 1.0% or more). However, when Fe is contained in a large amount, the yield strength becomes too high due to solid solution hardening, and cold workability is impaired. Therefore, the upper limit of the Fe content needs to be suppressed to 3.0% (preferably 2.5%, more preferably 2.0%).

Crは、Feと同様、共析型のβ相安定化元素であり、少量では冷間加工性が不十分となるため、0.3%以上(好ましくは0.5%以上、さらに好ましくは1.0%以上)含有させる必要がある。しかし過剰に含有させると、溶体化処理後の耐力が高くなり、冷間加工性が損なわれてしまう。そのため、Cr含有量の上限は4.5%(好ましくは4.0%、さらに好ましくは3.5%)に抑える必要がある。   Like Fe, Cr is a eutectoid β-phase stabilizing element, and cold workability is insufficient with a small amount, so 0.3% or more (preferably 0.5% or more, more preferably 1). (0.0% or more). However, if excessively contained, the yield strength after the solution treatment is increased, and the cold workability is impaired. Therefore, the upper limit of the Cr content needs to be suppressed to 4.5% (preferably 4.0%, more preferably 3.5%).

またFeとCrの含有量は、上述のように各々独立して調節してもよいが、さらにFeとCrの含有量によって規定される前記Fe等量と合わせて調節することで、溶体化処理後の耐力を低下させ、かつ延性も向上させ、冷間加工性も向上させることができる。上記Fe等量の値としては、1.5%以上(好ましくは2.0%以上)、3.5%以下(好ましくは3.0%以下)とすることが望ましい。   Further, the contents of Fe and Cr may be adjusted independently as described above, but the solution treatment can be performed by adjusting together with the Fe equivalents defined by the contents of Fe and Cr. Later yield strength can be reduced, ductility can be improved, and cold workability can also be improved. The Fe equivalent value is desirably 1.5% or more (preferably 2.0% or more) and 3.5% or less (preferably 3.0% or less).

本発明のチタン合金は、上記主成分以外に、目的に応じて、Al、Cu、N、C、Siなどを含有させることができる。中でも溶体化処理後の延性を向上させる観点から、AlやCuを含有させることが好ましい。   The titanium alloy of the present invention can contain Al, Cu, N, C, Si, etc. in addition to the above main components depending on the purpose. Among these, Al and Cu are preferably contained from the viewpoint of improving ductility after the solution treatment.

Alは、Snと同様にω相の形成を抑制することができ、その効果はSnをよりも高く、さらに比較的安価で低密度(軽量)な元素である。そのためチタン合金に、0.3%以上(好ましくは0.5%以上、さらに好ましくは1.0%以上)含有させることで、溶体化処理後の延性を向上させることができる。しかしAlを過度に含有させると、溶体化処理後の耐力が高くなりすぎ、延性も低下し、冷間加工性も損なわれてしまう。そのためAl含有量の上限は5.0%(さらには4.5%、特に4.0%)に抑えることが好ましい。   Al, like Sn, can suppress the formation of the ω phase, and its effect is higher than that of Sn, and is a relatively inexpensive and low-density (light) element. Therefore, the ductility after the solution treatment can be improved by adding 0.3% or more (preferably 0.5% or more, more preferably 1.0% or more) to the titanium alloy. However, when Al is contained excessively, the yield strength after the solution treatment becomes too high, the ductility is lowered, and the cold workability is also impaired. Therefore, the upper limit of the Al content is preferably suppressed to 5.0% (more preferably 4.5%, particularly 4.0%).

Cuも0.1%以上(好ましくは0.2%以上、さらに好ましくは0.3%以上)含有させることで、溶体化処理後の延性を向上させ、耐力を低下させることができる。しかし過度に含有させると、冷間加工性が損なわれるため、Cuの添加量は3.0%未満(さらには2.5%未満)に抑えることが好ましい。   By containing Cu in an amount of 0.1% or more (preferably 0.2% or more, more preferably 0.3% or more), the ductility after the solution treatment can be improved and the yield strength can be reduced. However, since excessive cold workability is impaired, the addition amount of Cu is preferably suppressed to less than 3.0% (more preferably less than 2.5%).

本発明のβ型チタン合金は、溶体化処理後における延性が高く、耐力が低く、かつ優れた冷間加工性を有しており、成形性に優れている。そのため該βチタン合金を用いた合金製品では、形状(例えば板状、棒状、線状、管状など)に関係なく高度な成形性や冷間加工性が要求される用途などで活用することができる。   The β-type titanium alloy of the present invention has high ductility after solution treatment, low yield strength, excellent cold workability, and excellent formability. Therefore, alloy products using the β-titanium alloy can be used in applications that require high formability and cold workability regardless of the shape (for example, plate shape, rod shape, wire shape, tubular shape, etc.). .

上記β型チタン合金の製造は、特には限定されないが、好ましくはスポンジチタンを主原料とし、該スポンジチタンをその他の添加元素と共にアーク溶解法、電子ビーム溶解法、プラズマアーク溶解などの方法(好ましくはアーク溶解法)にて溶製させて製造することができる。通常Feは、溶体化後処理後のチタン合金の硬度が高くなるなどの理由から、少なく設定する必要があるため、Fe含有量を0.05%以下程度に抑えた高純度なスポンジチタンを用いて製造している。それに対して本発明のチタン合金では、Feの含有量を高くすることで、その作用を積極的に活用することとしているので、Feを0.2〜2%含有する低級スポンジチタンを用いることができ、製造コストを削減することができる。   The production of the β-type titanium alloy is not particularly limited, but it is preferable to use sponge titanium as a main raw material, and the sponge titanium together with other additive elements such as arc melting method, electron beam melting method, plasma arc melting method (preferably Can be manufactured by melting by an arc melting method. Usually, Fe needs to be set to a small value because the hardness of the titanium alloy after the solution treatment is increased, and therefore, high purity sponge titanium with a Fe content of about 0.05% or less is used. Manufactured. On the other hand, in the titanium alloy of the present invention, the action is positively utilized by increasing the content of Fe. Therefore, it is necessary to use lower sponge titanium containing 0.2 to 2% of Fe. Manufacturing costs can be reduced.

また得られた鋳塊物は、冷間加工・成形した後、時効熱処理(例えば450〜600℃で4〜12時間処理した後に空冷または水冷するなど)に付して強度を向上させてもよい。   In addition, the obtained ingot may be subjected to aging heat treatment (for example, air cooling or water cooling after treatment at 450 to 600 ° C. for 4 to 12 hours) after cold working / molding to improve the strength. .

表1に示す種類の元素を含み、残部がTiおよび不可避不純物からなる原料をアーク溶融法にて溶製させてチタン合金の鋳塊物(直径50mm×15mm:重量約120g)を得た。得られた鋳塊物を、厚みが10mmになるまで1200℃で熱間圧延し、次いで1000℃で再度熱間圧延した後、表面に形成されたスケールを除去し、厚みを4mmに揃えた。その後、板厚が1.2mmになるまで冷間加工を行い、大気炉にて850℃で10分間保持して溶体化処理を施し、空冷した後、表面に形成されたスケールを除去して厚みを1.0mmに揃えて供試材を製造した。得られた供試材の端部を一部切り出し、成分分析を行ない、得られた結果を表1に記載した。   A raw material containing the elements shown in Table 1 and the balance being Ti and inevitable impurities was melted by an arc melting method to obtain an ingot of titanium alloy (diameter 50 mm × 15 mm: weight about 120 g). The obtained ingot was hot-rolled at 1200 ° C. until the thickness reached 10 mm, and then hot-rolled again at 1000 ° C., and then the scale formed on the surface was removed to make the thickness 4 mm. Thereafter, cold working is performed until the plate thickness reaches 1.2 mm, and a solution treatment is performed by holding in an atmospheric furnace at 850 ° C. for 10 minutes. After air cooling, the scale formed on the surface is removed to remove the thickness. Was prepared to 1.0 mm to prepare a specimen. A part of the end portion of the obtained test material was cut out, component analysis was performed, and the obtained results are shown in Table 1.

(冷間加工性の評価)
供試材から幅20mm×長さ100mmの板片を切り出し、切り出した板片の厚みが0.2mmになるまで再度冷間加工(冷間加工率80%)し、その際の耳割れの程度を目視にて確認し、下記する基準に従って冷間加工性を評価して結果を表1に記載した。
○:耳割れがみられなかったもの
△:1mm未満の耳割れがみられたもの
×:1mm以上の耳割れがみられたもの
(Evaluation of cold workability)
A 20 mm wide × 100 mm long plate piece was cut out from the test material, and cold-worked again (cold working rate 80%) until the thickness of the cut-out plate piece reached 0.2 mm. Was visually confirmed, the cold workability was evaluated according to the following criteria, and the results are shown in Table 1.
○: Ear cracks were not observed. Δ: Ear cracks less than 1 mm were observed. ×: Ear cracks greater than 1 mm were observed.

(破断伸びと0.2%耐力の試験方法)
供試材からゲージ長25.0mm,厚さ1.0mmの試験片を切り出し、JIS Z 2241の試験法に準じて破断伸びと0.2%耐力を測定し、結果を表1に記した。
(Test method for breaking elongation and 0.2% proof stress)
A test piece having a gauge length of 25.0 mm and a thickness of 1.0 mm was cut out from the test material, the elongation at break and 0.2% proof stress were measured according to the test method of JIS Z 2241. The results are shown in Table 1.

試験No.1〜18は本発明で規定した要件を満たすチタン合金であり、No.19〜28は本発明で規定したいずれかの要件を欠く比較例である。   Test No. Nos. 1 to 18 are titanium alloys that satisfy the requirements defined in the present invention. 19 to 28 are comparative examples lacking any of the requirements defined in the present invention.

Vが本発明の規定量よりも多いチタン合金(試験No.19)では、耳割れは認められないものの、耐力(0.2%耐力)が750MPa以上と本発明のチタン合金よりも高く、延性(破断伸び)も19.0%程度であった。逆にVの含有量が少ないものでは、本発明のチタン合金よりも耐力が高く、延性も低くて耳割れが生じていた(試験No.20)。   In the titanium alloy (Test No. 19) in which V is greater than the specified amount of the present invention, no cracks are observed, but the proof stress (0.2% proof stress) is 750 MPa or higher, which is higher than that of the titanium alloy of the present invention. (Elongation at break) was also about 19.0%. On the contrary, in the case where the content of V is small, the yield strength is higher than that of the titanium alloy of the present invention, the ductility is low, and the ear cracks are generated (Test No. 20).

Snについては、含有量が増加するにつれて耐力が低下し、延性も増大していた(試験No.2および4〜6)。しかしSnが、本発明の規定量以外の合金(試験No.21および28)では、耐力が高く、延性も低くて耳割れが生じていた。   About Sn, yield strength fell and ductility also increased as content increased (test No. 2 and 4-6). However, alloys with Sn other than the specified amount of the present invention (test Nos. 21 and 28) had high yield strength, low ductility, and ear cracks.

FeやCrの含有量については、本発明で規定した範囲外のものでは、耐力が高く、延性も低くかった(Feでは試験No.22および23、Crでは試験No.24および25)。中でもCrを過剰に含有させた合金(試験No.25)以外は耳割れが生じていた(試験No.22〜24)。   Regarding the content of Fe and Cr, those outside the range specified in the present invention had high proof stress and low ductility (Test Nos. 22 and 23 for Fe and Test Nos. 24 and 25 for Cr). In particular, ear cracks occurred (test Nos. 22 to 24) except for an alloy containing excessive Cr (test No. 25).

またFeとCrの含有量が上記規定を満たし、Fe等量が3.5%以上の合金(試験No.8および11)でも全ての比較例と比べ、耐力が低く、冷間加工性、延性においては、同等かそれ以上の特性を示しているが、Fe等量を1.5〜3.5%の範囲内に調節することで、耐力を低下させることができ、さらに延性も向上させることができた(試験No.1〜7、9、10、12〜18)。   Further, even in alloys (test Nos. 8 and 11) in which the Fe and Cr contents satisfy the above requirements and the Fe equivalent is 3.5% or more, the proof stress is low compared to all the comparative examples, and the cold workability and ductility are low. Shows the same or better characteristics, but by adjusting the Fe equivalent within the range of 1.5 to 3.5%, the proof stress can be reduced and the ductility can be improved. (Test Nos. 1 to 7, 9, 10, 12 to 18).

また上記基本となる元素以外にAlを含有させることで、耐力を低下させることができ、延性を向上させることができた(試験No.12〜15)。しかし過剰に含有させると、延性が損なわれ、耐力が向上してしまい、耳割れが生じていた(試験No.26)。   Moreover, by including Al in addition to the basic element, the yield strength could be reduced and the ductility could be improved (Test Nos. 12 to 15). However, when it contained excessively, ductility was impaired, proof stress improved, and the ear crack had arisen (test No. 26).

またCuの含有も、耐力を低下させ、延性も向上させることができるものの(試験No.16および17)、過剰に含有させると、延性が損なわれ、耐力が向上してしまい、耳割れが生じていた(試験No.27)。   Also, Cu can reduce the yield strength and improve the ductility (Test Nos. 16 and 17). However, if it is excessively contained, the ductility is impaired, the yield strength is improved, and the ear cracks are generated. (Test No. 27).

さらにAlとCuを同時に含有させることで、いずれか単独で含有させるよりも、耐力を低下させることができ、延性も向上させることができた(試験No.18)。   Furthermore, by containing Al and Cu at the same time, the yield strength could be reduced and the ductility could be improved as compared with the case of containing either of them alone (Test No. 18).

Figure 0004476884
Figure 0004476884

Claims (5)

V:6〜13%(質量%を意味する、以下同じ)、
Sn:4〜20%、
Fe:0.3〜3.0%、
Cr:0.3〜4.5%を含み、残部がTiおよび不可避的不純物からなることを特徴とする成形性に優れたチタン合金。
V: 6 to 13% (meaning mass%, the same shall apply hereinafter),
Sn: 4-20%,
Fe: 0.3-3.0%
Cr: A titanium alloy having excellent formability characterized by containing 0.3 to 4.5% and the balance being made of Ti and inevitable impurities.
上記FeおよびCrの含有量が、下記式で表されるFe等量で1.5〜3.5%の範囲内にある請求項1に記載のチタン合金。
Fe等量=[Fe]+[Cr]/1.5([ ]内は当該元素の含有質量%を示す)。
The titanium alloy according to claim 1, wherein the content of Fe and Cr is in the range of 1.5 to 3.5% in terms of Fe equivalent expressed by the following formula.
Fe equivalent = [Fe] + [Cr] /1.5 (inside [] represents the content mass% of the element).
さらにAl:0.3〜5.0%を含む請求項1または2に記載のチタン合金。   The titanium alloy according to claim 1 or 2, further comprising Al: 0.3 to 5.0%. さらにCu:0.1%以上、3.0%未満を含む請求項1〜3のいずれか1項に記載のチタン合金。   Furthermore, Cu: 0.1% or more and less than 3.0%, The titanium alloy of any one of Claims 1-3. 請求項1〜4のいずれか1項に記載のチタン合金を、
Feを0.2〜2%含有するスポンジチタンと、その他の添加元素とを溶製して製造することを特徴とするチタン合金の製造方法。
The titanium alloy according to any one of claims 1 to 4,
A method for producing a titanium alloy, which comprises producing sponge titanium containing 0.2 to 2% of Fe and other additive elements.
JP2005192621A 2005-06-30 2005-06-30 Titanium alloy with excellent formability and method for producing the same Expired - Fee Related JP4476884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192621A JP4476884B2 (en) 2005-06-30 2005-06-30 Titanium alloy with excellent formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192621A JP4476884B2 (en) 2005-06-30 2005-06-30 Titanium alloy with excellent formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007009283A JP2007009283A (en) 2007-01-18
JP4476884B2 true JP4476884B2 (en) 2010-06-09

Family

ID=37748162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192621A Expired - Fee Related JP4476884B2 (en) 2005-06-30 2005-06-30 Titanium alloy with excellent formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4476884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088757A (en) * 2021-03-02 2021-07-09 许铎 Titanium-based alloy implant containing aluminum, vanadium and copper and preparation method thereof

Also Published As

Publication number Publication date
JP2007009283A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
CA2861163C (en) Titanium alloy with improved properties
JP4118832B2 (en) Copper alloy and manufacturing method thereof
JP5085908B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP4189687B2 (en) Magnesium alloy material
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP5183911B2 (en) Titanium alloy plate excellent in bendability and stretchability and manufacturing method thereof
JP5112723B2 (en) Titanium alloy material excellent in strength and formability and manufacturing method thereof
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP4666271B2 (en) Titanium plate
KR20130059399A (en) Titanium material
JP2018518594A (en) Beta titanium alloy sheet for high temperature applications
JP2011046995A (en) Titanium alloy sheet having excellent press formability, method for producing the same, and titanium alloy sheet for heat exchanger
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP4259828B2 (en) Manufacturing method of high strength copper alloy
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP5305067B2 (en) Stress buffer material made of aluminum alloy
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP4388503B2 (en) Pure titanium plate excellent in formability and manufacturing method thereof
JP4476884B2 (en) Titanium alloy with excellent formability and method for producing the same
JP2018070944A (en) Copper alloy sheet material and manufacturing method therefor
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees