JPS6150650B2 - - Google Patents

Info

Publication number
JPS6150650B2
JPS6150650B2 JP54037947A JP3794779A JPS6150650B2 JP S6150650 B2 JPS6150650 B2 JP S6150650B2 JP 54037947 A JP54037947 A JP 54037947A JP 3794779 A JP3794779 A JP 3794779A JP S6150650 B2 JPS6150650 B2 JP S6150650B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
oxide
laughing gas
laughing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54037947A
Other languages
Japanese (ja)
Other versions
JPS55129134A (en
Inventor
Osamu Nakaji
Seishiro Nakamura
Seisuke Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3794779A priority Critical patent/JPS55129134A/en
Priority to GB7935545A priority patent/GB2033885B/en
Priority to GB8036582A priority patent/GB2059934B/en
Priority to US06/084,830 priority patent/US4259303A/en
Publication of JPS55129134A publication Critical patent/JPS55129134A/en
Publication of JPS6150650B2 publication Critical patent/JPS6150650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

【発明の詳細な説明】 本発明は、余剰麻酔ガス中の笑気の処理方法お
よび処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for treating laughing gas in surplus anesthetic gas.

手術室に漏洩した麻酔ガスを長期間吸入するこ
とにより、手術室で働く医師、看護婦らに健康障
害が起こることが明らかにされている。そのた
め、米国のNational Institure for Occupational
Safety and Health(NIOSH)は手術室内の漏洩
麻酔ガス濃度を笑気25ppm、ハロセン0.5ppm以
下に抑えるように勧告している。このような情勢
から、最近、手術室の麻酔ガス汚染対策が注目さ
れるようになり、余剰麻酔ガスの排出装置を設置
する病院も少しづつ現われ始めた。この排出装置
は患者の呼気である余剰麻酔ガスをポンプで吸引
し、そのまま屋外へ排出する装置である。この排
出装置の使用は、手術室内の麻酔ガス濃度を低下
させるのには確かに有効であるが、他方、麻酔ガ
ス汚染を病院周辺地域へ拡散し、二次公害となる
恐れがある。したがつて、排出装置を用いて余剰
麻酔ガスを排出する際には、そのまま排出するの
ではなく、その中に含まれている麻酔ガスをでき
る限り除去または無毒化する必要がある。手術室
で主として使用されている麻酔ガスは笑気(亜酸
化窒素、N2O)とハロセン(1・1・1−トリフ
ロロ−2−ブロモ−2−クロロエタン)である。
ハロセンなど笑気以外の麻酔ガスは活性炭に良く
吸着されるので、余剰麻酔ガス排出装置に活性炭
キヤニスターを組み込むことによつて、比較的容
易に吸着除去することが可能である。これに対
し、笑気については現在、適当な実用的な除去方
法が知られていない。そのため、余剰麻酔ガス中
の笑気についてはそのまま屋外に排出せざるを得
ないのが現状である。
It has been revealed that inhaling anesthetic gas leaked into an operating room for a long period of time can cause health problems for doctors and nurses working in the operating room. Therefore, the US National Institute for Occupational
Safety and Health (NIOSH) recommends that the concentration of leaked anesthetic gas in the operating room be kept below 25 ppm of laughing gas and 0.5 ppm of halothane. Due to this situation, measures to prevent anesthetic gas contamination in operating rooms have recently attracted attention, and a small number of hospitals are beginning to install devices to remove excess anesthetic gas. This discharge device is a device that uses a pump to suck in excess anesthetic gas, which is exhaled air from a patient, and discharges it directly to the outdoors. Although the use of this evacuation device is certainly effective in reducing the concentration of anesthetic gas in the operating room, on the other hand, it may spread anesthetic gas contamination to the surrounding area of the hospital, resulting in secondary pollution. Therefore, when exhausting excess anesthetic gas using an exhaust device, it is necessary to remove or detoxify the anesthetic gas contained therein as much as possible, rather than exhausting it as is. The anesthetic gases mainly used in operating rooms are laughing gas (nitrous oxide, N 2 O) and halothane (1,1,1-trifluoro-2-bromo-2-chloroethane).
Since anesthetic gases other than laughing gas such as halothane are well adsorbed by activated carbon, they can be adsorbed and removed relatively easily by incorporating an activated carbon canister into the surplus anesthetic gas discharge device. On the other hand, there is currently no known practical method for removing laughing gas. Therefore, the current situation is that the laughing gas in the surplus anesthetic gas has no choice but to be discharged outdoors.

余剰麻酔ガス中の笑気を無毒化処理するため
に、本発明者らは、触媒による分解を検討してき
た。すでに、本発明者らは、白金属糸の金属を成
分とする触媒が触媒活性が高く、二酸化窒素、一
酸化窒素の副生量も非常に少ないことを認め、さ
きに特許出願を行なつている(特願昭53−105739
号)。しかし、この触媒は、ハロセンに若干被毒
されやすい欠点が認められた。また、酸化第二
銅、酸化クロム等の金属酸化物を単独で用いる触
媒も笑気の分解触媒として有効であることを認
め、すでに特許出願を行なつている(特願昭53−
128235号)。しかし、酸化第二銅を成分とする触
媒は触媒活性は高いが、二酸化窒素、一酸化窒素
の副生量がやや多く、ハロセンにも被毒されやす
い傾向を有していた。また、酸化クロムを成分と
する触媒は、二酸化窒素、一酸化窒素の副生量は
少なく、一応の触媒活性を有しているが、なお、
触媒活性の点で不十分なところがあつた。
In order to detoxify laughing gas in surplus anesthetic gas, the present inventors have investigated decomposition using a catalyst. The inventors of the present invention have already recognized that the catalyst containing the metal of white metal thread as a component has high catalytic activity, and the amount of by-products of nitrogen dioxide and nitrogen monoxide is extremely small, and has previously filed a patent application. There (patent application 1973-105739)
issue). However, this catalyst was found to have the drawback of being slightly susceptible to poisoning by halothane. In addition, it has been recognized that catalysts using metal oxides such as cupric oxide and chromium oxide alone are effective as catalysts for decomposing laughing gas, and a patent application has already been filed (Japanese Patent Application No.
No. 128235). However, although the catalyst containing cupric oxide as a component has a high catalytic activity, it produces a rather large amount of nitrogen dioxide and nitrogen monoxide as by-products, and has a tendency to be easily poisoned by halothane. In addition, catalysts containing chromium oxide produce a small amount of nitrogen dioxide and nitrogen monoxide as by-products, and have a certain level of catalytic activity.
There were some areas where the catalyst activity was insufficient.

本発明者らは、上記の結果に基づき、さらに優
れた触媒を得るべく、検討を行なつた。すなわ
ち、笑気を分解する触媒として、以下の要求を満
足するものを求めた。
Based on the above results, the present inventors conducted studies in order to obtain an even more excellent catalyst. That is, we sought a catalyst for decomposing laughing gas that satisfies the following requirements.

(a)触媒活性が高く、低い温度で笑気を窒素と酸
素に分解すること。(b)笑気を窒素と酸素に分解す
る際、二酸化窒素、一酸化窒素のような有害な副
生物の生成量が少ないこと。(c)ハロセンなど笑気
とともに使用されることの多い、ハロゲン化炭化
水素化合物である麻酔剤によつて被毒されにくい
こと。(d)耐熱性が良く、触媒寿命が長いこと。(e)
安価であること。
(a) Has high catalytic activity and can decompose laughing gas into nitrogen and oxygen at low temperatures. (b) When laughing gas is decomposed into nitrogen and oxygen, the amount of harmful by-products such as nitrogen dioxide and nitric oxide produced is small. (c) It is less likely to be poisoned by anesthetics such as halothane, which are halogenated hydrocarbon compounds that are often used together with laughing gas. (d) Good heat resistance and long catalyst life. (e)
It must be cheap.

その結果、酸化第二銅と酸化クロムの混合物を
成分とする触媒が、触媒活性が高く、二酸化窒
素、一酸化窒素の副生物が少なく、ハロセンにも
被毒されにくいことを見い出し、本発明に到達し
た。すなわち、本発明は、(1)余剰麻酔ガス中の笑
気を、酸化第二銅と酸化クロムの混合物を主成分
とする触媒と250〜650℃の温度で接触させ、笑気
を窒素と酸素とに分解することを特徴とする余剰
麻酔ガス中の笑気の処理方法、および(2)酸化第二
銅と酸化クロムの混合物を主成分とする触媒が充
填された、笑気ガスを250〜650℃で窒素と酸素に
分解するための反応器からなる余剰麻酔ガス中の
笑気の処理装置である。さらに、本発明者らは、
酸化第二銅と酸化クロムの混合物に、酸化第二
鉄、酸化ニツケル、酸化コバルト、二酸化マンガ
ンの群のうち少なくともひとつを添加した混合物
を成分とする触媒、中でも、酸化第二銅と酸化ク
ロムおよび二酸化マンガンの混合物を成分とする
触媒が、触媒活性が高く、二酸化窒素、一酸化窒
素の副生量が少なく、また、ハロセンによつて被
毒されにくいうえ、耐熱性にもすぐれており、笑
気分解触媒として最適であることを見出した。
As a result, they discovered that a catalyst containing a mixture of cupric oxide and chromium oxide has high catalytic activity, produces less nitrogen dioxide and nitrogen monoxide byproducts, and is less likely to be poisoned by halothane. Reached. That is, the present invention (1) brings laughing gas in surplus anesthetic gas into contact with a catalyst mainly composed of a mixture of cupric oxide and chromium oxide at a temperature of 250 to 650°C, and converts the laughing gas into nitrogen and oxygen. (2) A method for treating laughing gas in surplus anesthetic gas, which is characterized by decomposing laughing gas into 250 ~ This is a device for processing laughing gas in surplus anesthetic gas, which consists of a reactor for decomposing it into nitrogen and oxygen at 650℃. Furthermore, the inventors
A catalyst comprising a mixture of cupric oxide and chromium oxide to which at least one of the group consisting of ferric oxide, nickel oxide, cobalt oxide, and manganese dioxide is added, especially cupric oxide and chromium oxide. The catalyst, which consists of a mixture of manganese dioxide, has high catalytic activity, produces a small amount of nitrogen dioxide and nitrogen monoxide as by-products, is less likely to be poisoned by halothane, and has excellent heat resistance. It was found that it is optimal as a gas decomposition catalyst.

本発明において用いられる触媒は、酸化第二銅
と酸化クロムの混合物であつて、その混合割合は
酸化第二銅1に対して、酸化クロム0.1〜10(重
量比)、さらに好ましくは0.2〜5の範囲にあるこ
とが好ましい。混合割合が0.1以上であると、二
酸化窒素、一酸化窒素の副生量が多くなる傾向に
あり、ハロセンに被毒され易くなる。一方、混合
割合が10以上であると、触媒活性が低下する傾向
にある。また、酸化第二銅と酸化クロムの混合物
に添加される、酸化第二鉄、酸化ニツケル、酸化
コバルト、二酸化マンガンからなる群から選ばれ
た成分は、酸化第二銅と酸化クロムからなる混合
物中における酸化第二銅1に対して、0.05〜20
(さらに好ましくは、0.2〜5)の範囲にあること
が望ましい。この範囲内にあることが、二酸化窒
素、一酸化窒素の副生およびハロセンによる被毒
が少ない点で効果的である。
The catalyst used in the present invention is a mixture of cupric oxide and chromium oxide, and the mixing ratio is 0.1 to 10 (weight ratio) of chromium oxide to 1 cup of cupric oxide, more preferably 0.2 to 5. It is preferable that it is in the range of . If the mixing ratio is 0.1 or more, the amount of by-products of nitrogen dioxide and nitrogen monoxide tends to increase, making it easier to be poisoned by halothane. On the other hand, if the mixing ratio is 10 or more, the catalyst activity tends to decrease. Furthermore, the component selected from the group consisting of ferric oxide, nickel oxide, cobalt oxide, and manganese dioxide, which is added to the mixture of cupric oxide and chromium oxide, is added to the mixture of cupric oxide and chromium oxide. 0.05-20 for 1 cupric oxide in
(More preferably, it is in the range of 0.2 to 5). Being within this range is effective in reducing poisoning by nitrogen dioxide, nitrogen monoxide by-products, and halothane.

上記の群のうち、1成分または2成分以上が酸
化第二銅と酸化クロムの混合物に加えられるが、
なかでも、二酸化マンガンが好ましい。本発明の
触媒は、上記酸化物をそのまま成型し、または担
体に担持させて用いられる。担体としては、アル
ミナ、シリカ、チタニア等があげられる。触媒成
分の担体への担持量は、各酸化物成分について
0.1〜30重量%であり、特に1〜30重量%が好ま
しい。
One or more components from the above group are added to the mixture of cupric oxide and chromium oxide,
Among these, manganese dioxide is preferred. The catalyst of the present invention is used by molding the above oxide as it is or by supporting it on a carrier. Examples of the carrier include alumina, silica, and titania. The amount of catalyst components supported on the carrier is determined for each oxide component.
It is 0.1 to 30% by weight, particularly preferably 1 to 30% by weight.

本発明において、余剰麻酔ガスは250〜650℃
で、0.2秒以上触媒に接触させることが必要であ
る。250℃以上では、笑気を窒素と酸素に十分分
解することが困難であり、また、650℃以上の高
温を病院等の施設で採用することは安全上からも
好ましくない。
In the present invention, the excess anesthetic gas is heated to a temperature of 250 to 650°C.
Therefore, it is necessary to contact the catalyst for 0.2 seconds or more. At temperatures above 250°C, it is difficult to sufficiently decompose laughing gas into nitrogen and oxygen, and it is not desirable from a safety standpoint to use high temperatures above 650°C in facilities such as hospitals.

次に、本発明の処理装置について説明する。第
1図は本発明の処理装置の概略を示すものであ
る。麻酔器のポツプ・オフ・バルブより排出され
る余剰麻酔ガスは余剰麻酔ガス排出装置によつて
空気とともに吸引される。この余剰麻酔ガスと空
気の混合気体が250〜650℃に加熱された反応器1
に導入され、その中に含まれる笑気が窒素と酸素
に分解される。
Next, the processing device of the present invention will be explained. FIG. 1 schematically shows a processing apparatus of the present invention. Excess anesthetic gas discharged from the pop-off valve of the anesthesia machine is sucked together with air by a surplus anesthetic gas exhaust device. Reactor 1 where this mixture of excess anesthetic gas and air is heated to 250-650℃
The laughing gas contained therein is decomposed into nitrogen and oxygen.

本発明の装置に用いられる反応器は、反応器の
使用温度に耐える材質で作られ、前記の触媒が充
填されて導入される気体と触媒との接触時間が
0.2秒以上であるように適宜形状、大きさ等が選
択されて製作される。特に、粒状の担体に担持さ
れた触媒をステンレス管等に充填した反応器が好
ましく使用できる。また、本発明の処理装置にお
いては、第1図に示すように、反応器の前部に反
応器に入る気体をあらかじめ加熱するために予熱
器3を置くことができる。さらにまた、本発明の
処理装置においては、第1図に示すように、エネ
ルギーを有効に利用するため、反応器から排出さ
れる高温の気体と反応器に導入される気体との間
で熱交換できるように熱交換器4を置くことがで
きる。さらにまた、本発明の処理装置において
は、反応器から排出される高温の気体を空気によ
つて希釈し、冷却するようにブロワー2を置くこ
とができる。
The reactor used in the apparatus of the present invention is made of a material that can withstand the operating temperature of the reactor, and is filled with the above-mentioned catalyst, and the contact time between the introduced gas and the catalyst is
The shape, size, etc. are selected and manufactured as appropriate so that the time is 0.2 seconds or more. In particular, a reactor in which a stainless steel tube or the like is filled with a catalyst supported on a granular carrier can be preferably used. Further, in the processing apparatus of the present invention, as shown in FIG. 1, a preheater 3 can be placed at the front of the reactor to preheat the gas entering the reactor. Furthermore, in the processing apparatus of the present invention, as shown in FIG. 1, in order to utilize energy effectively, heat exchange is performed between the high temperature gas discharged from the reactor and the gas introduced into the reactor. The heat exchanger 4 can be placed so that the Furthermore, in the processing apparatus of the present invention, the blower 2 can be installed to dilute and cool the high temperature gas discharged from the reactor with air.

また、本発明においては、ハロセンに被毒され
にくい触媒を使用しているものの、ハロセンによ
る触媒の劣化を防ぐため、余剰麻酔ガス排出装置
にハロセンを吸着除去するための活性炭キヤニス
ターを組み込み、本発明の処理装置に導入される
気体に含まれるハロセンをできる限り少なくする
ことが望ましい。
In addition, in the present invention, although a catalyst that is not easily poisoned by halothane is used, in order to prevent deterioration of the catalyst due to halothane, an activated carbon canister for adsorbing and removing halothane is incorporated into the surplus anesthetic gas discharge device. It is desirable to reduce the amount of halothane contained in the gas introduced into the processing equipment as much as possible.

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 粒状のアルミナ担体(水沢化学工業(株)製の商品
名ネオビードCBを900℃で3時間焼成したもの)
に、酸化第二銅として担体に対し5重量%、酸化
クロムとして担体に対して5重量%になるように
硝酸銅と硝酸クロムの混合水溶液を含浸させ、こ
れを乾燥させたのち600℃で5時間加熱して硝酸
塩をそれぞれ酸化物に変え、担体に対して酸化第
二銅が5重量%および酸化クロムが5重量%担持
された触媒を得た。この触媒を内径1.5cmのステ
ンレス管に長さ10cmに充填し反応器とした。この
反応器を電気炉に入れて500℃に加熱し、余剰麻
酔ガスの一組成である笑気と酸素の混合気体(笑
気:酸素=50:50容量%)を予熱器で500℃に加
熱したのち、50ml/minで反応器の入口より通じ
た。反応器の出口から出てきた気体を採取し、ガ
スクロマトグラフイーで笑気の濃度を測定したと
ころ0容量%であつた。したがつて、笑気の分解
率は100℃であつた。また、このとき反応器の出
口から出てきた気体に含まれる二酸化窒素と一酸
化窒素の合計の濃度は32ppmであつた。
Example 1 Granular alumina carrier (Neobead CB manufactured by Mizusawa Chemical Co., Ltd., baked at 900°C for 3 hours)
The sample was impregnated with a mixed aqueous solution of copper nitrate and chromium nitrate in an amount of 5% by weight of the cupric oxide and 5% by weight of the chromium oxide based on the carrier, and after drying, it was impregnated with a mixed aqueous solution of 5% by weight of the carrier at 600°C. The nitrates were converted into oxides by heating for a period of time to obtain a catalyst in which 5% by weight of cupric oxide and 5% by weight of chromium oxide were supported on the carrier. This catalyst was filled in a stainless steel tube with an inner diameter of 1.5 cm to a length of 10 cm to form a reactor. This reactor is placed in an electric furnace and heated to 500℃, and a mixture of laughing gas and oxygen (laughing gas: oxygen = 50:50 volume %), which is a component of surplus anesthetic gas, is heated to 500℃ in a preheater. After that, the flow was conducted from the inlet of the reactor at 50 ml/min. The gas coming out from the outlet of the reactor was collected and the concentration of laughing gas was measured by gas chromatography, and it was found to be 0% by volume. Therefore, the decomposition rate of laughing gas was 100°C. Furthermore, the total concentration of nitrogen dioxide and nitrogen monoxide contained in the gas coming out from the outlet of the reactor at this time was 32 ppm.

実施例 2 実施例1と同様の操作により、粒状アルミナ担
体に、担体に対し酸化ニツケルが13重量%、酸化
第二銅が7重量%および酸化クロムが2重量%担
持された触媒を得た。この触媒を実施例1と同様
にステンレス管に充填して反応器とし、この反応
器を480℃に加熱し、実施例1と同じ笑気と酸素
の混合気体を予熱器で480℃に加熱し、実施例1
と同様に反応器の入口より通じた。このとき、笑
気の分解率は100%また反応器の出口から出てき
た気体に含まれる二酸化窒素と一酸化窒素の合計
の濃度は5ppmであつた。また、上記の反応中に
笑気と酸素の混合気体にハロセン750mgを蒸気と
して加えたところ、笑気の分解率はわずかに100
%から97%に低下したのみであつた。このよう
に、この触媒は触媒活性が高く、二酸化窒素、一
酸化窒素の生成量が少なく、ハロセンにも被毒さ
れにくかつた。
Example 2 A catalyst in which 13% by weight of nickel oxide, 7% by weight of cupric oxide, and 2% by weight of chromium oxide were supported on a granular alumina carrier was obtained by the same operation as in Example 1. This catalyst was filled in a stainless steel tube to form a reactor in the same manner as in Example 1, and this reactor was heated to 480°C, and the same mixed gas of laughing gas and oxygen as in Example 1 was heated to 480°C in a preheater. , Example 1
It was communicated from the inlet of the reactor in the same way. At this time, the decomposition rate of laughing gas was 100%, and the total concentration of nitrogen dioxide and nitrogen monoxide contained in the gas coming out of the reactor outlet was 5 ppm. Additionally, when 750mg of halothane was added as vapor to the mixed gas of laughing gas and oxygen during the above reaction, the decomposition rate of laughing gas was only 100%.
% to 97%. As described above, this catalyst had high catalytic activity, produced small amounts of nitrogen dioxide and nitrogen monoxide, and was not easily poisoned by halothane.

比較例 実施例1と同様の操作により、粒状アルミナ担
体に、担体に対して酸化第二銅が10重量%担時さ
れた触媒を得た。この触媒を実施例1と同様にス
テンレス管に充填して反応器とし、この反応器を
490℃に加熱し、実施例1と同じ笑気と酸素の混
合気体を予熱器で490℃に加熱し、実施例1と同
様に反応器の入口より通じた。このとき笑気の分
解率は100%であつたが、反応器の出口から出て
きた気体に含まれる二酸化窒素と一酸化窒素の合
計の濃度は100ppmと高かつた。
Comparative Example By the same operation as in Example 1, a catalyst was obtained in which 10% by weight of cupric oxide was supported on a granular alumina carrier. This catalyst was packed into a stainless steel tube as in Example 1 to form a reactor.
The reactor was heated to 490°C, and the same mixed gas of laughing gas and oxygen as in Example 1 was heated to 490°C in a preheater and passed through the inlet of the reactor as in Example 1. At this time, the decomposition rate of laughing gas was 100%, but the total concentration of nitrogen dioxide and nitrogen monoxide contained in the gas coming out of the reactor outlet was as high as 100 ppm.

実施例 3 実施例1と同様の操作により、粒状アルミナ担
体に、担体に対し酸化第二銅が6重量%、酸化ク
ロムが6重量%および二酸化マンガンが1重量%
担持された触媒を得た。この触媒を実施例1と同
様にステンレス管に充填して反応器とし、この反
応器を480℃に加熱し、実施例1と同じ笑気と酸
素の混合気体を予熱器で480℃に加熱し、実施例
1と同様に反応器の入口より通じた。このとき笑
気の分解率は100%また反応器の出口から出てき
た気体に含まれる二酸化窒素と一酸化窒素の合計
の濃度は22ppmであつた。また、上記の反応中
に笑気と酸素の混合気体にハロセン750mgを蒸気
として加えたところ、笑気の分解率は100%から
99%にわずかに低下したにとどまつた。また、こ
の触媒を900℃で3時間熱処理したのち、同様の
実験を行なつた場合においても、笑気の合解率、
二酸化窒素、一酸化窒素の合計の濃度は変化しな
かつた。このように、この触媒は触媒は触媒活性
が高く、二酸化窒素、一酸化窒素の生成量が少な
く、ハロセン被毒されにくく、また耐熱性もすぐ
れていた。
Example 3 By the same operation as in Example 1, 6% by weight of cupric oxide, 6% by weight of chromium oxide, and 1% by weight of manganese dioxide were added to a granular alumina carrier based on the carrier.
A supported catalyst was obtained. This catalyst was filled into a stainless steel tube to form a reactor in the same manner as in Example 1, and this reactor was heated to 480°C, and the same mixed gas of laughing gas and oxygen as in Example 1 was heated to 480°C in a preheater. , and communicated from the inlet of the reactor as in Example 1. At this time, the decomposition rate of laughing gas was 100%, and the total concentration of nitrogen dioxide and nitrogen monoxide contained in the gas coming out of the reactor outlet was 22 ppm. In addition, when 750 mg of halothane was added as vapor to the mixed gas of laughing gas and oxygen during the above reaction, the decomposition rate of laughing gas decreased from 100% to 100%.
It only slightly decreased to 99%. In addition, even when similar experiments were conducted after heat-treating this catalyst at 900°C for 3 hours, the rate of synthesis of laughing gas was
The total concentration of nitrogen dioxide and nitric oxide did not change. As described above, this catalyst had high catalytic activity, produced small amounts of nitrogen dioxide and nitrogen monoxide, was resistant to halothane poisoning, and had excellent heat resistance.

実施例 4 実施例1と同様の操作により、粒状アルミナ担
体に、担体に対して酸化第二銅が5重量%、酸化
クロムが5重量%および二酸化マンガンが3重量
%担持された触媒を得た。この触媒を内径8cmの
ステンレス管に長さ75cmに充填し、反応器とし
た。この反応器を電熱ヒーターで540℃に加熱
し、笑気と空気の混合気体(笑気:空気=27:74
容量%)を15/minで反応器の入口より導入し
た。このとき笑気の分解率は98%であつた。そし
て反応器の出口から出てきた気体に含まれる二酸
化窒素と一酸化窒素の合計の濃度は6ppmであつ
た。また、この実験を1回の反応時間約3時間で
くり返し行ない、反応時間の合計が約50時間の後
も笑気の分解率が低下する傾向はまつたく観察さ
れなかつた。
Example 4 By the same operation as in Example 1, a catalyst was obtained in which 5% by weight of cupric oxide, 5% by weight of chromium oxide, and 3% by weight of manganese dioxide were supported on a granular alumina carrier. . This catalyst was filled in a stainless steel tube with an inner diameter of 8 cm and a length of 75 cm to form a reactor. This reactor was heated to 540℃ with an electric heater, and a mixed gas of laughing gas and air (laughing gas: air = 27:74
% by volume) was introduced from the inlet of the reactor at 15/min. At this time, the decomposition rate of laughing gas was 98%. The total concentration of nitrogen dioxide and nitrogen monoxide contained in the gas coming out of the reactor outlet was 6 ppm. Furthermore, this experiment was repeated with each reaction time being about 3 hours, and even after a total reaction time of about 50 hours, no tendency for the decomposition rate of laughing gas to decrease was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、余剰麻酔ガス中の笑気の処理装置の
概略図であり、 1……反応器、2……ブロアー、3……予熱
器、4……熱交換器、を表わす。
FIG. 1 is a schematic diagram of a processing device for laughing gas in surplus anesthetic gas, and shows 1...reactor, 2...blower, 3...preheater, 4...heat exchanger.

Claims (1)

【特許請求の範囲】 1 余剰麻酔ガス中の笑気を、酸化第二銅と酸化
クロムの混合物を主成分とする触媒と250〜650℃
の温度で接触させ、笑気を窒素と酸素とに分解す
ることを特徴とする余剰麻酔ガス中の笑気の処理
方法。 2 該触媒は、酸化第二鉄、酸化ニツケル、酸化
コバルト、二酸化マンガンからなる群から選ばれ
た少なくともひとつをさらに添加した混合物であ
る特許請求の範囲第1項記載の余剰麻酔ガス中の
笑気の処理方法。 3 該触媒は、酸化第二銅、酸化クロムおよび二
酸化マンガンの混合物を主成分とする触媒である
特許請求の範囲第2項記載の余剰麻酔ガス中の笑
気の処理方法。 4 酸化第二銅と酸化クロムの混合物を主成分と
する触媒が充填された、笑気ガスを250〜650℃で
窒素と酸素に分解するための反応器からなる余剰
麻酔ガス中の笑気の処理装置。 5 該触媒は、酸化第二鉄、酸化ニツケル、酸化
コバルト、二酸化マンガンからなる群から選ばれ
た少なくともひとつをさらに添加した混合物であ
る特許請求の範囲第4項記載の余剰麻酔ガス中の
笑気の処理装置。 6 該触媒は、酸化第二銅、酸化クロムおよび二
酸化マンガンの混合物を主成分とする触媒である
特許請求の範囲第5項記載の余剰麻酔ガス中の笑
気の処理装置。
[Claims] 1. Converting laughing gas in excess anesthetic gas to a catalyst containing a mixture of cupric oxide and chromium oxide at 250 to 650°C.
A method for processing laughing gas in surplus anesthetic gas, which comprises bringing the laughing gas into contact at a temperature of 100 to 1000 ml, and decomposing the laughing gas into nitrogen and oxygen. 2. Laughing gas in excess anesthetic gas according to claim 1, wherein the catalyst is a mixture further containing at least one selected from the group consisting of ferric oxide, nickel oxide, cobalt oxide, and manganese dioxide. processing method. 3. The method for treating laughing gas in surplus anesthetic gas according to claim 2, wherein the catalyst is a catalyst whose main component is a mixture of cupric oxide, chromium oxide, and manganese dioxide. 4. A reactor for decomposing laughing gas into nitrogen and oxygen at 250 to 650°C, which is filled with a catalyst mainly composed of a mixture of cupric oxide and chromium oxide. Processing equipment. 5. Laughing gas in excess anesthetic gas according to claim 4, wherein the catalyst is a mixture further containing at least one selected from the group consisting of ferric oxide, nickel oxide, cobalt oxide, and manganese dioxide. processing equipment. 6. The apparatus for treating laughing gas in surplus anesthetic gas according to claim 5, wherein the catalyst is a catalyst whose main component is a mixture of cupric oxide, chromium oxide, and manganese dioxide.
JP3794779A 1978-10-17 1979-03-29 Treating method and treating apparatus of laughing gas in excess anesthetic gas Granted JPS55129134A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3794779A JPS55129134A (en) 1979-03-29 1979-03-29 Treating method and treating apparatus of laughing gas in excess anesthetic gas
GB7935545A GB2033885B (en) 1978-10-17 1979-10-12 Method for treating waste anaesthetic gas
GB8036582A GB2059934B (en) 1978-10-17 1979-10-12 System for treating waste anaesthetic gas
US06/084,830 US4259303A (en) 1978-10-17 1979-10-15 Method of and system for treating waste anesthetic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3794779A JPS55129134A (en) 1979-03-29 1979-03-29 Treating method and treating apparatus of laughing gas in excess anesthetic gas

Publications (2)

Publication Number Publication Date
JPS55129134A JPS55129134A (en) 1980-10-06
JPS6150650B2 true JPS6150650B2 (en) 1986-11-05

Family

ID=12511738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3794779A Granted JPS55129134A (en) 1978-10-17 1979-03-29 Treating method and treating apparatus of laughing gas in excess anesthetic gas

Country Status (1)

Country Link
JP (1) JPS55129134A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637826A (en) * 1986-06-30 1988-01-13 Ebara Res Co Ltd Removing method for nitrous oxide in gas mixture
JP4573320B2 (en) * 2000-09-08 2010-11-04 昭和電工株式会社 Nitrous oxide decomposition catalyst, production method thereof, and decomposition method of nitrous oxide
JP6253029B2 (en) 2015-01-21 2017-12-27 大陽日酸株式会社 Anesthesia mounting kit

Also Published As

Publication number Publication date
JPS55129134A (en) 1980-10-06

Similar Documents

Publication Publication Date Title
US4259303A (en) Method of and system for treating waste anesthetic gas
US6846471B2 (en) Catalyst for decomposing nitrous oxide, process for producing the same and method for decomposing nitrous oxide
EP1322400B1 (en) Process and apparatus for treating waste anesthetic gas
CA2588443C (en) Treatment method and treatment apparatus for gas containing nitrous oxide
EP0643613B1 (en) A process for the conversion of n2o
US20060008401A1 (en) Decomposition catalyst for nitrous oxide, process for producing the same and process for decomposing nitrous oxide
AU2001292271A1 (en) Process and apparatus for treating waste anesthetic gas
US20030181324A1 (en) Decomposition catalyst for nitrous oxide, prcocess for producing the same and process for decomposing nitrous oxide
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JP3688314B2 (en) Ammonia decomposition method
JPS6145486B2 (en)
IE64035B1 (en) Method by reduction of nitrogen oxide
JPS6145487B2 (en)
JPS6150650B2 (en)
CN113019423B (en) Catalyst for oxidizing ammonia gas by ozone, preparation method and application thereof
JPS6227844B2 (en)
CN110314654A (en) A kind of organic waste-gas adsorbant and preparation method thereof, organic waste gas treatment method
JPS6223541Y2 (en)
EP2619132B1 (en) Method for generating nitric oxide
JP2004236744A (en) Processing method for surplus anesthetic gas
JP2001269542A (en) Catalytic treatment device for nitrous oxide gas
JPH04122419A (en) Organic halide compound decomposing method and decomposing catalyst
JPH07171343A (en) Removal of harmful substance from nitrogen trifluoride gas
CN107792855A (en) The removal methods of benzene in a kind of carbon dioxide