JPS6150075B2 - - Google Patents

Info

Publication number
JPS6150075B2
JPS6150075B2 JP10295278A JP10295278A JPS6150075B2 JP S6150075 B2 JPS6150075 B2 JP S6150075B2 JP 10295278 A JP10295278 A JP 10295278A JP 10295278 A JP10295278 A JP 10295278A JP S6150075 B2 JPS6150075 B2 JP S6150075B2
Authority
JP
Japan
Prior art keywords
parallel
welded
welding
electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10295278A
Other languages
Japanese (ja)
Other versions
JPS5530345A (en
Inventor
Kazuhisa Ishibashi
Hisakazu Yasumuro
Tsuneo Imatani
Sadaki Matsui
Seishichi Kobayashi
Hiroshi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP10295278A priority Critical patent/JPS5530345A/en
Publication of JPS5530345A publication Critical patent/JPS5530345A/en
Publication of JPS6150075B2 publication Critical patent/JPS6150075B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接金属缶胴の製造方法および装置に
関し、さらに詳しくは缶胴状成形体の重ね合せ部
全体を線電極を介して同時に電気抵抗溶接するこ
とにより美麗かつ耐食性に優れた溶接部を備えた
溶接金属缶胴の高速連続生産に適した製造方法お
よび装置に関する。 従来の缶胴状成形体の重ね合せ部を溶接するこ
とによる溶接金属缶胴の製造方法は、回転ローラ
電極方式および平行電極方式に大別される。 回転ローラ電極方式には、米国特許明細書第
3761671号に記載されるような固定回転ローラ電
極を重ね合せ部の両面に直接接触せしめて加圧下
にシーム溶接する方式があるが、高速連続生産の
場合には、回転ローラ電極表面の汚損、損耗が激
しいので、通常は数時間毎に作業を停止して電極
を交換しなければならず、そのため生産性の低
下、保守要員の確保、さらに溶接部品質の不安定
性等の問題点を招いている。これを解決する手段
として米国特許明細書第2838651号に記載される
ような回転ローラ電極と重ね合せ部の間に被溶接
体と同期して走行する線状の電極を介挿して加圧
下にシーム溶接する方法が提案されている。この
場合は回転ローラ電極の寿命は長いけれども、線
状の電極は、溶接赤熱部において空気にさらされ
ている上に、十分に冷却することが困難であるた
め、汚損、損耗のため通常は1回しか使用でき
ず、従つて溶接された缶胴の長さ相当分の線状の
電極を必要とするという問題がある。 また以上の回転ローラ電極方式によつて溶接さ
れた金属缶胴の溶接部には次のような共通の欠点
が一般に認められる。(1)碁石状のナゲツトの発
生:シーム溶接法に通有の現象であつて、電源の
1サイクルにつき、温度の高い部分と低い部分が
夫々2回発生するために起るものである。そして
ナゲツトとナゲツトの中間を完全に溶接しようと
すると、ナゲツトの部分の温度が不必要に高くな
るため、厚い酸化膜が発達して、缶に内容物を充
填した場合、腐食や漏洩の原因となり易い。(2)ス
プラツシユの発生:ナゲツト部における過度の温
度上昇のため、溶融した金属が重ね合せ部の間隙
から飛び出して、重ね合せ部周縁に固着する現象
をいい、缶内面に発生したものは、保護塗装で完
全にカバーできないので、腐食、孔食および金属
の内容物中への溶出によるフレーバ悪化の原因と
なりやすい。(3)メタルはみ出し:缶端部の溶接部
より缶の高さ方向に突出した三角形状の小突起
と、缶円周方向にはみ出したものとがある。これ
らはシーム溶接が一種の熱間圧延に相当すること
に起因するものと思われる。前者は缶蓋を2重巻
締するさい、シーリングラバーを破損し易く、そ
のため密封能力が損われ、後者はブリキを使用す
る場合鉄の露出を生ずるので、何れも内容物の腐
食、漏洩、真空度の低下等を招きやすい。(4)黒色
の酸化膜の発生:重ね合せ部のローラ電極直上、
直下部とその周辺部は赤熱状態となるが、周辺部
は空気中にさらされているため酸化膜が発達す
る。これを防止するためには、高価な不活性ガス
を吹きつける等の特殊の操作を必要とする。この
酸化膜は多孔性のため防食機能を果すことができ
ないので保護塗料を溶接後塗装することによつて
カバーされなければならない。しかしこの酸化膜
は脆弱であり、かつ地鉄との密着性に劣るので、
2重巻締部において曲げられるさい保護塗膜と共
に地鉄から剥離し易い。従つてこの種の缶は耐食
性が要求される用途には適しない。さらに金属ブ
ランクがブリキ(錫メツキ鋼板)の場合は、黒色
酸化膜の発達に伴い、錫の酸化や地鉄中への拡散
が起こり、鉄露出を生ずる。鉄露出は内容物によ
る腐食を促進し、漏洩を招くおそれがある。さら
に溶接部近傍も加熱されるためその部分に錫のリ
フローが起こり、鉄−錫合金層が増え、腐食や硫
化黒変を起こし易い。(5)熱歪み:ローラ電極の直
上・直下及びその近傍の高温部が熱膨脹し、その
まま溶接されるので、溶接終了後の缶の溶接部附
近の領域に熱歪みが残る。これは製品の外観を損
ねる。 一方平行電極を使用する金属缶胴の製造法とし
ては、米国特許明細書第3069530号において、缶
胴状成形体を支承するマンドレルの下端に固定さ
れた重ね合せ部方向に伸びる第1の電極と、第1
の電極と平行に、かつ対向して押圧体の上端部に
固定された第2の電極の間に重ね合せ部を挿入し
て、押圧下に抵抗溶接する方法が提案されてい
る。そして明細書第6欄62行〜第7欄13行及び第
19〜21図に記載されているように、重ね合せ
部を構成する金属ブランクの側辺部の少なくとも
一方をエンボス加工して多数の小突起を設け、溶
接は先づ、この小突起の先端を溶融せしめること
により開始させる。従つてこの方法では溶接部に
スプラツシユが発生し易いという欠点を有する。
さらに固定電極が直接重ね合せ部と接触するた
め、電極が汚損・損耗し易く、高速連続製缶の場
合には、屡々電極の交換を必要とするという生産
性の見地からは致命的な欠陥を有する。 また、米国特許明細書第2854561号には、缶胴
状成形体の重ね合せ部の内面に平行に伸びる第1
の電極と、重ね合せ部の外面に接して重ね合せ部
に対し垂直方向に移動可能な第2の薄い板状電極
の各々を溶接電源に接続し、第2の板状電極の上
に設けられた押圧体により加圧して重ね合せ部全
体を同時に溶接する方法が提案されている。この
方法は電極の頻繁な交換を必要としないという利
点は有するが、次のような問題点を有する。電極
が強制冷却されていないため、溶接時の大電流に
よつて電極が高温となり、溶接部及び電極の表面
の酸化や熱膨脹による熱歪みが起こり易く、特に
第2の薄い板状電極は熱歪みを起こし易く、その
ため重ね合せ部に均一な加圧を与えることが困難
となり、局部的な溶融によるスプラツシユを発生
し易い。また高速連続生産の場合は第2の板状電
極を横方向に長大にしなければならないので設備
が大きくなる。 本発明は、以上述べたような従来技術の問題点
の解消を図るものである。すなわち本発明の目的
は、ナゲツト、スプラツシユ、メタルのはみ出
し、黒色酸化膜および熱歪みの発生のない美麗
で、かつ2重巻締部等において破れや、漏洩、腐
食等の起ることのない健全で耐食性に優れ、かつ
マルチビード加工やネツクイン加工に耐えうる溶
接部を有する重ね合せ溶接金属缶胴の製造方法及
び装置を提供することにある。 本発明の他の目的は、鉄露出がなく、かつリフ
ロー巾の狭い耐食性にすぐれた溶接部を有するブ
リキを素材とする重ね合せ溶接金属缶胴の製造方
法およびその装置を提供することにある。 本発明のさらに他の目的は、固定電極の交換に
よる作業中断のない生産性の高い高速連続製缶に
適した重ね合せ抵抗溶接缶胴の製造方法およびそ
の装置を提供することにある。 本発明の別の目的は、線電極の寿命の長い重ね
合せ抵抗溶接缶胴の製造方法およびその装置を提
供することにある。 本発明によれば、金属ブランクを缶胴状に成形
した成形体の側辺端縁部の重ね合せ部を抵抗溶接
することにより溶接金属缶胴を製造する方法にお
いて、冷媒により冷却された一対の対向する平行
電極の対向面上に置かれ、かつ対向する面が互に
平行な面である一対の線電極の上記平行な面の間
に上記重ね合せ部全体が位置するように上記成形
体を挿入する工程、上記平行電極の少なくとも一
方を上記対向面が近接するよう移動せしめること
により、上記重ね合せ部全体を同時に押圧した
後、上記平行電極に一定時間通電して上記重ね合
せ部を溶接する工程、上記平行電極の少なくとも
一方を移動して、押圧を解除した後、溶接金属缶
胴を上記線電極の間から送出する工程、および少
なくとも1回の溶接終了後毎に上記線電極を溶接
された上記重ね合せ部方向に平行に移行せしめる
工程を含むことを特徴とする溶接金属缶胴の製造
方法が提供される。 さらに本発明によれば、金属ブランクを缶胴状
に成形した成形体を側辺端縁部の重ね合せ部を抵
抗溶接することにより溶接金属缶胴を製造する装
置において、上記装置は平行電極および線電極よ
りなる溶接用電極を具備し、上記平行電極は上記
成形体の軸線方向に伸び、溶接電源に接続した一
対の対向する平行な電極よりなり、その内部には
冷却媒体が流れる冷却孔が貫通しており、かつ第
1の平行電極は上記成形体を支承するマンドレル
の周縁部に固設されており、第2の平行電極は上
記マンドレルの中心軸線に対し垂直方向に復動可
能の押圧体の先端部に固設されており、上記線電
極は上記平行電極の対向する面上に摺動可能に置
かれた1対の線状の電極よりなつていて、その対
向する面は互に平行であり、かつ線電極の上記対
向する面の巾は上記重ね合せ部の巾より大きいこ
とを特徴とする溶接用電極を具備する溶接金属缶
胴の製造装置が提供される。 以下本発明について詳細に説明する。 本発明に使用される金属ブランクの種類につい
ては特に制限はなく、アルミニウム板等も使用で
きるのであるが、中でも通常金属缶素材として使
用されうるブリキ、テインフリースチール、薄ニ
ツケルメツキ鋼板、燐酸塩処理鋼板、黒板又はこ
れらの塗装板等の板厚約0.14〜0.35mmの被覆又は
無被覆低炭素鋼板が好適に使用される。テインフ
リースチール、燐酸塩処理鋼板及び塗装板のよう
に表面に電気絶縁性皮膜が形成されているブラン
クの場合は、良好な溶接部を得るために、ブラン
クの少なくとも重ね合せ部となる部分の両面から
これらの皮膜を適当な手段、例えばバイト、ミリ
ングカツターやグラインダー等で、あるいは超音
波印加等により予め除去して鉄面を露出しておく
ことが好ましい。 所定の寸法に裁断された金属ブランクは円筒
形、四角形等の缶胴状に、通常は円筒形に成形さ
れた後、側辺の重ね合せ部を抵抗溶接されて缶胴
となる。広義の溶接は融接と鍛接を包含するが、
融接の場合は溶接部が一たん溶融してから急冷さ
れるので、気泡を含み易く、これが缶内容物の漏
洩の原因となり、また脆弱なデンドライト組織が
発達するので2重巻締加工時に破れ易い。従つて
本発明における溶接は、実質的に鍛接であるこ
と、すなわち固相接合であることが望ましい。 本発明における抵抗溶接法は、回転ローラ電極
を使用することなく、一対の平行電極により線電
極を介して缶胴成形体重ね合せ部を押圧、通電し
て、全重ね合せ部を同時に溶接するものである。 以下図面を参照しながら本発明について説明す
る。 第1図は本発明の一実施例を示す溶接金属缶胴
の製造装置の概略一部切断正面図を、第2図は、
第1図の2−2線に沿う縦断面図を、第3図と第
4図は、第1図の重ね合せ部近傍の一部拡大断面
図であつて、夫々重ね合せ部を押圧する直前の状
態および溶接終了後の状態を示す。 罐胴成形機(図示されない)によつて丸められ
た罐胴成形体1はマンドレル2を跨つて第2図の
右方から送り爪16によつて送られ、溶接ステー
シヨン3において静止し、同時に押えウイング9
によつてマンドレルに密着される。溶接ステーシ
ヨン3には一対の上下平行電極4a,4bがマン
ドレル2の軸線方向に平行に配設されている。平
行電極4a,4bは、罐胴成形体1の全長と等し
いか、あるいは僅かに長いのが好ましい。短かい
場合は、重ね合せ部の長さ方向端部に電流が流れ
ず、未溶接部となり、また長すぎる場合は、電流
の回り込み現象によつて、上記端部に過大電流が
流れて、スプラツシユを起こしやすいからであ
る。従つて罐胴成形体は、上下平行電極4a,4
bの直上、直下において静止することが必要であ
る。上部平行電極4aと下部平行電極4bの相対
向する面は互に平行している。上記相対向する面
には案内凹部である溝5a,5bがマンドレル2
の軸線方向に平行に相対向して、断面コ字形に穿
設されている。平行電極内部には案内凹部である
溝5a,5bにできるだけ近接して冷却孔6が貫
通し、その内部を冷水または冷却ブライン(例え
ば−30℃の)が環流して、平行電極および線電極
を冷却して、溶接時の線電極10a,10bの温
度上昇を防止している。必要に応じて、外部から
冷却空気を吹きつけると、線電極の冷却効果はよ
り改善される。また上下平行電極はその各々の上
下に接触して設けられた導板7を介して溶接電源
(第5図の22)と接続している。上部平行電極
4aはマンドレル2の下部に埋設されており、下
部平行電極4bは押圧体8の上端に固設されてい
る。平行電極は銅又は銅合金よりなることが望ま
しい。溝5a,5bには、一対の線電極10a,
10bが摺動可能に、かつ突出して嵌装されてい
る。各線電極10a,10bは、第2図の右方に
設けられた送り出しリール(第5図の29)から
供給され、溶接回数の増加とともに溝5a,5b
内を一方向に進行して、巻取りリール(第5図の
28)によつて巻きとられる。上部線電極10a
はマンドレルの先端に着設されたアイドラー14
で罐胴の進行方向と反対に向きを変えられてか
ら、マンドレル内を貫通する案内孔13内を通つ
て巻取られる。線電極10a,10bは少なくと
も対向する面10c,10dが互にマンドレル2
の軸線に平行な面であることが重要である。罐胴
成形体1の重ね合せ部1aは直接線電極と接触し
て押圧、通電されるのであるが、押圧力が不均一
であると、特に長さ方向に不均一であると、重ね
合せ部1aにおけるブランク端縁同士の接触面1
bにおける電気抵抗が重ね合せ部長手方向に不均
一となつて、電気抵抗の小さい部分に過大電流が
流れて局部的に溶融してスプラツシユが発生する
おそれがある。ところで罐胴成形体1の内面は、
重ね合せ部付近を除いてマンドレル2に密着して
おり、従つて、重ね合せ部1aもマンドレル2の
軸線方向に基本的に平行である。従つて重ね合せ
部と接触する線電極の面10c,10dは少くと
も溶接時にマンドレル2の軸線に平行でなければ
ならない。従つて押圧体9も、マンドレル2の中
心軸線に対し移動して、線電極の面10c,10
dが溶接時にマンドレル2の軸線に平行となつて
重ね合せ部を押圧するように構成される必要があ
る。同様にして重ね合せ部1aは巾方向にも均一
に押圧される必要がある。従つて上下線電極10
a,10bは巾方向にも平行であること、すなわ
ち間隔が実質的に一定であることが必要である。
この条件を満す範囲内で、線電極の相対向する面
10c,10dは平面でもよく、あるいは罐胴成
形体の形状に対応する曲面でもよい。また線電極
10aの溝5aと接する面と、重ね合せ部1aと
接する面10cが平行であることが、作業性及び
線電極製造の見地から好ましい。線電極10bに
ついても同様である。このような線電極は丸線の
軽度の平圧延によつて容易に作製することができ
る。 さらに溶接により重ね合せ部全体が十分にマツ
シユされて、重ね合せ接合部全体の厚さが罐胴成
形体の他の部分の厚さと実質的に等しいことが望
ましい。何となれば、重ね合せ部の巾方向の一部
のみが溶接されて、重ね合せ部の巾方向端部が未
溶接で残つたとすると、この部分の塗料による完
全な保護が困難であるため内容物等により侵蝕さ
れ易く、また2重巻締部においては重ね合せ接合
部のみが厚いため段差を生じて、巻締加工が不完
全となつて内容物の漏洩等を生ずるおそれがある
からである。そのためには、重ね合せ部1a全体
が溶接時に線電極の対向する面10c,10d上
に位置することが重要である。このようにするこ
とによつて、重ね合せ部全体が十分に第4図のよ
うにマツシユされることが可能となる。さらに溶
接時に重ね合せ部及びその近傍の大部分が冷媒に
より冷却された線電極10a,10bと接触して
いて、しかも大気に露出していないことが後述の
通電時間が極めて短時間であることと相まつて、
重ね合せ接合部及びその付近の無酸化溶接を可能
にしている。線電極10a,10bは銅又は銅合
金よりなるが、その硬度(ヴイツカース硬度)は
約70〜180であることが好ましい。約70より低い
と溶接時の押圧力により重ね合せ部と接触する部
分が局部的に変形し易いので、線電極の移動量を
大きくする必要が生じ、約180より高いと、線電
極と重ね合せ部のなじみが悪いため、線電極の平
行面に若干の起状がある場合、均一な押圧力が加
わり難いからである。 マンドレル2には、溶接完了した金属罐胴の溶
接部の内面をスプレー保護塗装するための塗料及
び空気を供給するための塗料供給管11および空
気供給管12が具備されている。またマンドレル
2は片持であるため押圧体8による押圧のよい上
方に撓むのを防止するためのマンドレルサポート
15が左右の押えウイング9の間隙に当るマンド
レル2の上部に設けられる。マンドレルサポート
15は常時はマンドレル2乃至罐胴成形体1と離
間して上方に位置するが、押圧体8が重ね合せ部
1aと接触する時に、下降してマンドレル2を罐
胴成形体1を介して押圧し、罐胴成形体が送出さ
れる時に上昇する。 第5図は本発明の溶接金属罐胴製造システムを
示す模式図である。 押圧体8はモータによつて駆動される駆動機構
18によつて上下に往復運動する。駆動機構18
としては、カム機構、クランク機構、シリンダー
機構等が採用されるが、第5図ではカム機構を例
示した。第4図から明らかのように、押圧体8の
上死点における下部線電極上面10dの位置は、
上部線電極下面10cより金属ブランクの板厚だ
け低い所にある。一方第3図から明らかのよう
に、押圧の初期における下部線電極上面10dの
位置は、上部線電極下面10cより金属ブランク
の板厚の2倍だけ低い位置にある。それ故押圧の
初期段階では、重ね合せ部1aの金属は低温のた
め変形抵抗が大きいことと相俟つて、線電極に衝
撃力が加わり易い。衝撃力が加わると、銅又は銅
合金よりなる線電極は、著しく変形したり、極端
な場合は破断することがある。これらの事故を防
ぐためと、設定押圧時間の確保を容易にするた
め、押圧体上部8a(下部平行電極4bおよび導
板7を具備する部分)と押圧体スライド部8bの
間に緩衝機構20(バネ、油圧、空圧等による)
が設けられる。また押圧体スライド部8bとカム
従動子8dの間に、スクリユー8cが設けられ、
押圧体スライド部8bの高さが調節できるように
構成されている。この高さ調節によつて、押圧力
および押圧時間の一定範囲内での調節が可能とな
る。 罐胴成形体1がマンドレルの溶接ステーシヨン
3に位置し静止すると、直ちに重ね合せ部の押圧
が開始するように、カム機構18と送り爪16は
同期がとれらている。通電は所定押圧力に達した
後に行なうことが望ましい。押圧不十分の時点で
通電すると、重ね合せ部の圧力が不均一になるた
め局部的に過熱して、スプラツシユを発生するお
それがあるからである。そのため押圧体8が所定
押圧力を与える位置まで上昇した時点でONする
近接スイツチ21が押圧体スライド部8bに隣接
して設けられ、近接スイツチ21のONと同時
に、溶接電源回路22より平行電極4a,4bが
付勢されるように構成されている。溶接電源回路
22の種類には特に制限はないが、通電時間が約
20msecより長い場合は、タイマー付商用周波数
電源が好適に使用される。また約40msecより短
い場合は、公知の電磁蓄勢式または静電蓄勢式電
源が好適に使用される。第5図には静電蓄勢式電
源を模式的に示した。近接スイツチ21がONす
ることによつてサイリスター22aがトリガーさ
れることにより、コンデンサー22bが放電し
て、トランス22cを介して下部平行電極4bを
付勢する。放電終了と同時にサイリスター22e
がトリガーされて直流電源22dよりコンデンサ
ー22bに充電が行なわれる。 通電(放電)が終了し、溶接完了後、直ちに下
部平行電極4bの下降が開始するようにカム機構
18の同期がとられている。通電中に押圧を解除
することは、スパークが発生し、溶接部の焼損の
おそれがあるので好ましくない。上記下降と同期
して、押えウイング9が開放され、送り爪16が
送り爪案内17上を摺動して、第2図の右方から
左方に移行して、溶接された罐胴成形体1を溶接
ステーシヨン3から、すなわち線電極の間から送
出する。引き続き、次の罐胴成形体1が溶接ステ
ーシヨン3に送入されて、前記と同様にして溶接
が行なわれる。 線電極は前述の如く通常丸線を軽度の平圧延す
ることによつて製造される。このさい平面部に極
く僅かな起伏が生ずることがあるが、数回の溶接
によつてこの起伏は消失する。さらに溶接回数が
増えるに従つて、線電極が重ね合せ部の形状にな
じみ、適正な押圧力が重ね合せ部全領域に加わる
ようになる。そして溶接回数が数10回になり、線
電極の変形が大きくなつて均一な押圧力が得られ
にくくなるまで、線電極10a,10bは、正常
な条件の下では、同一の部分を繰返して溶接に使
用できる。この間線電極の酸化はほとんど起らな
い。従つて線電極は、数10罐の溶接毎に罐胴の長
さだけ同一方向に移行せしめてもよいし、あるい
は、1罐または数罐の溶接毎に少しづつ同一方向
に移行せしめてもよい。使用後の線電極は補修し
て再使用するか、補修にたえない場合は、溶解し
て線電極に再生する。 前記線電極の移行は、押圧体8による押圧が解
除されて、再び次の押圧が開始するまでの間に行
なわれるのが、高速連続製罐の目的を達成する上
で望ましい。この1実施例を第5図によつて説明
する。 押圧体8の上昇により近接スイツチ21がON
となる毎に、信号がプリセツトカウンター23に
入力する。プリセツトカウンター23は予め設定
された計数値の信号を入力すると、次の信号が入
るまでの間のみON信号を出力し、次いで再び1
から計数を開始するように構成されている。上記
プリセツトカウンター23の出力はAND回路2
4に入力する。一方カム機構18の回転軸に固着
された回転板19に隣接して近接スイツチ25が
設けられている。回転板19は主として非磁性体
よりなるが、押圧体8による重ね合せ部の押圧が
解除されている期間のうちの設定時間tのみ近接
スイツチ25をONとするように、近接スイツチ
25に対向する面に磁性体19aが配設されてい
る。この設定時間tは、線電極の移行するに要す
る時間であり、線電極の1回当りの設定移行長さ
と、線電極の駆動装置であるピンチロール26の
周速とから定められる。近接スイツチ25の出力
はAND回路24に入力する。アンド回路24の
出力はピンチロール26の駆動機構を構成するク
ラツチ・ブレーキ回路27に接続しており、
AND回路24の出力がONのときクラツチが入
り、OFFになるとブレーキが働くようになつて
いる。従つてピンチロール26は設定時間tの間
のみ回転して、線電極を巻取りリール28の方向
に送り出す。巻取りリール28はトルクモータに
よつて駆動されるので、ピンチロール26が回転
している間のみ線電極を巻取る。 次に基質が低炭素鋼板である0.14〜0.35mm厚さ
の金属ブランクを素材とする場合の溶接条件につ
いて説明する。 重ね合せ部1aの巾は約0.1〜1.0mmであること
が好ましい。そして板厚が厚くなるに従つて、こ
の巾は上記範囲内で大きくなる。巾が約0.1mmよ
り小さくなると、罐胴の長手方向に沿つて均一な
重ね合せが困難となり、さらに重ね合せた後の押
圧状態で重ね合せ部がスリツプし易く、また溶接
強度も低下するからである。一方巾が約1.0mmよ
り大きくなることは、溶接強度の観点からは不必
要であり、逆に所要電流量や押圧力が増大して設
備を過大にするという不利益を生ずるからであ
る。 上記重ね合せ巾と、溶接ステーシヨン3におけ
るマンドレルの直径から、金属ブランクのマンド
レル進行方向と直角方向の寸法が定められる。ま
た溶接ステーシヨン3においてマンドレルの外側
に設けられ、その内面形状がマンドレルの外径に
対応する押えウイング9によつて罐胴成形体1の
外周をマンドレルに対して押圧することによつ
て、重ね合せ部1aは形成される。 溶接時重ね合せ部を押圧する圧力(押圧体8に
よる押圧荷重を重ね合せ部の全面積で割つた値)
は約15〜60Kg/mm2、好ましくは25〜45Kg/mm2である
ことが望ましい。圧力が15Kg/mm2より小さいと、
重ね合せ部における鋼同士の接触抵抗が不均一と
なり、局部的に過大電流が流れて、過熱してスプ
ラツシユを生じたり、黒色の酸化膜が生成したり
して溶接部の安定性が失なわれる。また十分なマ
ツシユが行なわれないので、溶接後もブランクの
端部がそのまま残つて溶接部に段差が生じたりす
るからである。 一方圧力が60Kg/mm2より高いと、線電極の変形
(凹み)が激しく、その移動量を大きくしなけれ
ばならないからである。 通電時間は約3〜80msecであること、より好
ましくは5〜30msecであることが望ましい。3
msecより短かい場合は、十分な溶接強度を得る
ためには、大きな溶接電流を必要とし、この場合
は極めて短時間に大電流が供給されるので、鋼界
面のみが局部的に溶解して、スプラツシユが発生
し易いからである。一方80msecより長くなる
と、熱が成形体の重ね合せ部近傍まで伝わり、こ
の部分の黒色酸化が著しくなる。また熱が線電極
にも逃げるので、電流効率が低下し線電極の損傷
も激しくなる。最適の通電時間は、板厚、重ね合
せ部巾、押圧力、電源電圧、波形等によつて定め
られる。板厚や、重ね合せ巾が大になるほど通電
時間は長くする必要がある。 溶接部の内面を保護塗膜によつてカバーする必
要がある場合は、マンドレル2の先端に延長して
設けられたガイド30に沿つて溶接金属罐胴1A
は左方に送られ、必要に応じ、塗料の濡れを良く
するため、予備加熱装置31(高周波加熱コイル
又はバーナ等の)によつて、約50〜300℃に再加
熱された後、塗料供給管11及び空気供給管12
の先端に設けられた保護塗料噴霧ノズル32(例
えばエアレスガス、この場合空気はスプレーパタ
ンを制御する)から、溶接部内面に保護塗料がス
プレーされる。次いで保護塗料は乾燥焼付炉、バ
ーナ、高周波加熱等によつて溶融あるいは熱硬化
して、溶接部内面及びその周縁部に無孔性の強固
な塗膜を形成する。 保護塗料としては、ポリエステル、変性ポリオ
レフイン、エポキシ、アクリル、ポリ塩化ビニ
ル、ポリアミド、酢酸ビニル、ポリビニルアセタ
ール、ポリエーテル、ポリカーボネート、エポキ
シエステル、フエノール、アミノ、アルキツド、
ポリウレタン樹脂およびケイ素樹脂などの一種以
上から得られる粉体塗料、分散型塗料、水素又は
溶剤系スラリー塗料および溶液型塗料などが目的
に応じ適宜使用される。以上の実施例ではスプレ
ー塗装方式について説明したが、ロールコートそ
の他の塗装方式を採用しても差支えない。 以上のようにして製造された溶接金属罐胴は、
底蓋を通常2重巻締法によつて固着された後、炭
酸飲料、無炭酸飲料、果汁、魚貝類、その他の食
品、およびエアゾール等の非食品等を充填された
後、密封される。 本発明の方法および装置によつて製造された重
ね合せ抵抗溶接罐胴は、溶接時に重ね合せ部とそ
の近傍の大部分が大気に露出していない上に、電
極が冷媒によつて十分に冷却されているので、特
別のイナートガス吹込装置などを設けなくても、
黒色酸化皮膜の生成のない美麗な溶接部が得られ
る。したがつて溶接部への保護塗料の密着性が優
れ、マルチビード加工、ネツクイン加工及び2重
巻締加工時に保護塗料が剥れて、その部分が侵蝕
されるというおそれがない。また金属ブランクと
してブリキを使用する場合も、溶接部に錫層が残
つており、鉄露出はほとんど認められない。さら
に溶接部周縁の錫の合金化も少ないので、溶接部
及びその付近の耐食性がすぐれている。 またローラ電極を使用せず、平行電極により線
電極を介して重ね合せ部全体を同時に溶接するの
で、碁石状のナゲツトを生成せず、溶接部の表面
は平坦美麗であつて、また熱歪は皆無である。ま
たスプラツシユやメタルの円周方向へのはみ出し
も殆んど起らないので、保護塗料後の耐食性(鉄
溶出量、硫化黒変、穿孔、内容品のフレーバ、罐
内圧変化等によつて評価される)も優れている。 さらに溶接時の押圧力を適当な値に定めて溶接
部を十分にマツシユすることによつて、溶接部の
厚さをブランク厚さ近傍まで減少させることがで
き、また溶接部の前後端にメタルはみ出しによる
突起が生ずることもないので、2重巻締加工のさ
い溶接部に段差が生じて、巻締加工が不完全とな
つたり、シーリングラバーが破損して、内容物の
漏洩や内圧変化が生ずるおそれもない。又平行電
極は溶接部と直接接触しないので半永久的に使用
できるので交換の必要は殆んどない。また線電極
は、溶接時に最も温度が上昇する重ね合せ部と接
触する部分が、大気と遮断されており、しかも近
傍の冷却孔を環流する冷却液によつて十分に冷却
されているので酸化は起らず、また変形も起こり
にくい。従つてブランクがテインフリースチール
の場合は勿論のこと、ブリキの場合でも、下記の
実施例に示されるように同一部分で数10回の溶接
を行なうことができるという、従来技術にはみら
れないすぐれた効果を有する。また溶接時間は極
めて短いので、毎分数100罐の高速製罐が容易に
実現できる。 本発明の構成は、以上に述べた実施例に限定さ
れるものでなく、例えば第6図に示されるよう
に、平行電極に設けられる案内凹部は縦断面形状
がL字形の凹部5a,5dであつてもよい。さら
に平行電極の対向する面は、単なる平面であつて
もよい。また第7図に示されるように、平行電極
の対向面に長さ方向に2本の小凸条33を設け、
その間に線電極を置いてもよい。また金属ブラン
クの罐胴状への成形は、所謂インバーテツドタイ
プの製罐方式によつて、溶接ステーシヨン3にお
いて、押えウイングによつて行なつてもよい。さ
らに上部平行電極はマンドレルの上部その他の周
縁部にあつてもよい。 以下実施例によつて、本発明の効果を一層明ら
かにする。 実施例 1 罐の内面となるべき面に、エポキシフエノール
系塗料で罐胴の継ぎ目部をマージン塗装(未塗装
部を残す)した後焼付し、外面となるべき面にも
マージン塗装・印刷した厚さ0.17mmのテインフリ
ースチール(電解クロム酸処理鋼板)から、
165.7mm×101.3mmのブランクを作成した。このブ
ランクの短辺の両端縁部約1mm巾の両面の電解ク
ロム処理被覆層を超音波印加法によつて剥離し
て、鉄面を完全に露出せしめた。次に、このブラ
ンクをロールフオーマーにより短辺が軸方向にな
るように円筒状に成形し、この成形体を溶接ステ
ーシヨンのマンドレル上に、重ね合わせ部が線電
極の中央に位置するように供給し、重ね合わせ巾
を0.3mmとつて固定した。次に、線電極を介して
平行電極で成形体の重ね合わせ部に圧力を加えた
(溶接圧力すなわち押圧力45Kg/mm2)後、15ミリ秒
通電して溶接を行つた。次に、上記罐胴内外面の
溶接部分を、高周波誘導加熱により表面温度を
200℃に予備加熱し、巾7mm、乾燥塗膜の厚みが
30〜50ミクロンになるように、ポリエステル系ス
ラリー塗料をエアレスガンによりスプレイ塗装し
た後、190℃の熱風乾燥炉中で4分間焼付けた
後、罐胴内面全体に塩ビ系塗料をエアレスガンに
よりスプレイ塗装し、焼付けを行つた。この罐胴
をフランジ加工し、塩ビ系塗料を内面に塗装した
アルミ製イージーオープン蓋を二重巻締して、コ
ーラを2℃で充填し、内面にエポキシフエノール
系塗料をベースコートし、さらに塩ビ系塗料を塗
装したテインフリースチール製蓋を二重巻締し
て、50℃で6カ月間保存した。 なお、上下平行電極の長さは共に102mmで、平
行電極に設けられた溝5a,5bは矩形断面で、
深さ0.6mm、巾2.0mmであつた。線電極は直径1.4mm
の軟銅線(JIS3102、導電率100.0以上)を軽度の
平圧延によつて、厚さ1mm、平坦部巾1mm、最大
巾1.6mmとしたものを使用した。圧延後の硬度は
Hv=95であつた。 また、重ね合わせ部に圧力を加える機構はカム
により行い、極力重ね合わせ部に衝撃が加わらな
いようにした。電源としては静電蓄勢式(コンデ
ンサー容量80000μF)のもの380ボルトに充電
し、溶接トランスを介して溶接部に電流を瞬時に
流して放電した。平行電極の冷却は、−30℃のブ
ラインによつて行い、溶接速度は450罐/minで
連続的に製罐を行つた。なお、線電極の移動は間
欠的に行い、一回の溶接毎に3mm移動させた。溶
接後の重ね合わせ巾は0.4mmであつた。得られた
罐胴の溶接部の表面は金属光沢を呈し、かつ平坦
美麗で、熱歪みや溶接部前後端の突起物やスプラ
ツシユの生成はなかつた。また、溶接部の厚さは
第8図の溶接線に垂直な断面顕微鏡写真(倍率
135、エツチング液5%ピツクラール、矢印の先
方部近傍が溶接部である)に示されるように、ブ
ランクの厚さとほとんど同じであり、また組織は
気孔の生成はなく、鍛接すなわち固体間接合が行
われたことを示している。溶接部が引張方向に垂
直になるようにして引張試験を行つたが、破断は
溶接部以外の箇所に発生した。さらに、罐胴側面
継目部の鉄のはみ出し量及びスプラツシユの有無
を調べた(以上試料数は10罐)。なお、はみ出し
量は溶接線に沿つてバラツキがあるので、その最
大の値を表1に示した。そして、はみ出し量は溶
接線に垂直な断面顕微鏡観察から求めた。さら
に、50℃6カ月間保存後開罐し、罐内面溶接部の
腐食状態を調べた(試料数100罐)。さらに、鉄溶
出量(内容物1000gに対する鉄溶出量mg:試料数
10罐の平均値)、及びフレーバー(パネル数10
人、5……優秀、4……良好、3……普通、2…
…不良、1……劣悪)を調べた。さらに、6カ月
以内に生じた漏洩罐数と穿孔罐数を調べた(試料
数各100罐)。 結果を表1に示す。 なお、比較例として対向面が平坦な平行電極の
みを介して、重ね合わせ部に圧力を加えて、溶接
を行う方法についての結果も表1に示す。比較例
の方法の場合は連続製罐が不可能なため、平行電
極を交換しながら製罐を行つた。 実験No.1は本発明の実施例であり、実験No.2
は比較例である。表から明らかなように、本発明
の方法は優れた特性を有していることがわかる。
The present invention relates to a method and apparatus for manufacturing a welded metal can body, and more particularly to a method and apparatus for manufacturing a welded metal can body, and more specifically, a method and apparatus for manufacturing a welded metal can body, and more specifically, a method and apparatus for producing a welded metal can body that is beautiful and has excellent corrosion resistance by simultaneously electrical resistance welding the entire overlapped portion of can body shaped bodies through a wire electrode. The present invention relates to a manufacturing method and apparatus suitable for high-speed continuous production of welded metal can bodies. Conventional methods for manufacturing welded metal can bodies by welding overlapping portions of can body-shaped molded bodies are broadly classified into rotating roller electrode methods and parallel electrode methods. The rotating roller electrode method is described in U.S. Patent Specification No.
There is a method, such as that described in No. 3761671, in which fixed rotating roller electrodes are brought into direct contact with both sides of the overlapping part and seam welded under pressure. Since the welding process is intense, it is usually necessary to stop work every few hours and replace the electrodes, which causes problems such as reduced productivity, lack of maintenance personnel, and unstable weld quality. . As a means to solve this problem, a linear electrode that runs in synchronization with the workpiece is inserted between the rotating roller electrode and the overlapping part as described in U.S. Patent No. 2,838,651, and the seam is welded under pressure. A welding method has been proposed. In this case, the rotating roller electrode has a long lifespan, but the linear electrode is exposed to the air at the red-hot part of the welding area and is difficult to cool sufficiently, so it usually has a long lifespan due to contamination and wear. There is a problem in that only one round can be used, and therefore a linear electrode corresponding to the length of the welded can body is required. Furthermore, the following common drawbacks are generally recognized in the welded parts of metal can bodies welded by the above-mentioned rotating roller electrode method. (1) Generation of nuggets in the shape of a gossamer: This is a common phenomenon in seam welding, and occurs because high temperature areas and low temperature areas occur twice per cycle of the power supply. If you try to completely weld the middle between the nuggets, the temperature at the nuggets will become unnecessarily high, which will cause a thick oxide film to develop and cause corrosion or leakage when the can is filled with contents. easy. (2) Occurrence of splash: This refers to the phenomenon in which molten metal splashes out from the gap between the overlapping parts due to an excessive temperature rise in the nugget part and sticks to the periphery of the overlapping part. Splash that occurs on the inner surface of the can is Since it cannot be completely covered with paint, it is likely to cause corrosion, pitting, and deterioration of flavor due to metal leaching into the contents. (3) Metal protrusion: There are small triangular protrusions that protrude from the welded part of the can end in the height direction of the can, and protrusions that protrude in the circumferential direction of the can. This seems to be due to the fact that seam welding corresponds to a type of hot rolling. The former tends to damage the sealing rubber when double-sealing the can lid, thereby impairing its sealing ability, while the latter exposes the iron when tinplate is used, which can lead to corrosion, leakage, and vacuum of the contents. It is easy to cause a decrease in the degree of deterioration. (4) Generation of black oxide film: directly above the roller electrodes at the overlapping part,
The area immediately below and the surrounding area becomes red hot, but since the surrounding area is exposed to the air, an oxide film develops. To prevent this, special operations such as spraying with expensive inert gas are required. Because this oxide film is porous, it cannot perform the anticorrosion function, so it must be covered with a protective paint after welding. However, this oxide film is fragile and has poor adhesion to the base steel.
When the double seam part is bent, it is likely to peel off from the base metal along with the protective coating. Therefore, this type of can is not suitable for applications requiring corrosion resistance. Furthermore, if the metal blank is tinplate (tin-plated steel plate), as a black oxide film develops, tin oxidizes and diffuses into the base iron, resulting in iron exposure. Exposed iron may accelerate corrosion by the contents and may lead to leakage. Furthermore, since the vicinity of the welded part is also heated, tin reflow occurs in that part, increasing the iron-tin alloy layer and easily causing corrosion and sulfide blackening. (5) Thermal distortion: The high-temperature parts directly above, below, and in the vicinity of the roller electrode expand thermally and are welded as they are, so thermal distortion remains in the area near the welded part of the can after welding is completed. This spoils the appearance of the product. On the other hand, as a method for manufacturing a metal can body using parallel electrodes, U.S. Pat. , 1st
A method has been proposed in which an overlapping portion is inserted between a second electrode fixed to the upper end of a pressing body parallel to and facing the electrode, and resistance welding is performed under pressure. Then, as described in column 6, line 62 to column 7, line 13 and Figures 19 to 21 of the specification, at least one side of the metal blanks constituting the overlapping part is embossed to form a large number of A small protrusion is provided, and welding is started by first melting the tip of the small protrusion. Therefore, this method has the disadvantage that splashes are likely to occur in the welded area.
Furthermore, since the fixed electrodes come into direct contact with the overlapped parts, the electrodes are easily contaminated and worn out, and in the case of high-speed continuous can manufacturing, the electrodes often need to be replaced, which is a fatal defect from a productivity standpoint. have Further, in U.S. Patent No. 2,854,561, there is a first
and a second thin plate-like electrode that is in contact with the outer surface of the overlapping part and movable in a direction perpendicular to the overlapping part are connected to a welding power source, and the second thin plate-like electrode that is provided on the second plate-like electrode is A method has been proposed in which the entire overlapping portion is simultaneously welded by applying pressure using a pressing member. Although this method has the advantage of not requiring frequent exchange of electrodes, it has the following problems. Because the electrode is not forcedly cooled, the large current during welding causes the electrode to reach a high temperature, which tends to cause thermal distortion due to oxidation and thermal expansion of the welded part and the surface of the electrode.In particular, the second thin plate-shaped electrode is susceptible to thermal distortion. Therefore, it is difficult to apply uniform pressure to the overlapped portion, and splashes due to local melting are likely to occur. Furthermore, in the case of high-speed continuous production, the second plate-shaped electrode must be made longer in the lateral direction, which increases the size of the equipment. The present invention aims to solve the problems of the prior art as described above. In other words, the object of the present invention is to create a beautiful product without nuggets, splashes, protruding metal, black oxide film, or thermal distortion, and a sound product with no tearing, leakage, corrosion, etc. in double-seamed parts, etc. An object of the present invention is to provide a method and apparatus for manufacturing a lap welded metal can body that has a welded portion that is excellent in corrosion resistance and can withstand multi-bead processing and neck-in processing. Another object of the present invention is to provide a method and apparatus for manufacturing a lap welded metal can body made of tin plate, which has no exposed iron and a welded part with a narrow reflow width and excellent corrosion resistance. Still another object of the present invention is to provide a method and apparatus for manufacturing a lap resistance welded can body suitable for high-speed continuous can manufacturing with high productivity without interruption of work due to replacement of fixed electrodes. Another object of the present invention is to provide a method and apparatus for manufacturing a stacked resistance welded can body with a long wire electrode life. According to the present invention, in a method for manufacturing a welded metal can body by resistance welding the overlapping portions of the side edges of a molded body formed from a metal blank into a can body shape, a pair of metal can bodies cooled by a refrigerant are used. The molded body is placed so that the entire overlapped portion is located between the parallel surfaces of a pair of wire electrodes that are placed on the opposing surfaces of opposing parallel electrodes and whose opposing surfaces are parallel to each other. In the step of inserting, at least one of the parallel electrodes is moved so that the opposing surfaces approach each other to simultaneously press the entire overlapped portion, and then the parallel electrode is energized for a certain period of time to weld the overlapped portion. a step of moving at least one of the parallel electrodes to release the pressure, and then feeding the weld metal can body from between the wire electrodes; and a step of welding the wire electrodes after each weld at least once. There is provided a method for manufacturing a welded metal can body, comprising the step of moving the welded metal can body parallel to the direction of the overlapping portion. Further, according to the present invention, there is provided an apparatus for manufacturing a welded metal can body by resistance welding the overlapping portions of the side edges of a molded body formed from a metal blank into the shape of a can body, the above apparatus comprising parallel electrodes and A welding electrode made of a wire electrode is provided, the parallel electrode extends in the axial direction of the molded body, and is made of a pair of opposing parallel electrodes connected to a welding power source, and has a cooling hole therein through which a cooling medium flows. The first parallel electrode is fixed to the peripheral edge of the mandrel that supports the molded body, and the second parallel electrode is a pressing member that can move back and forth in a direction perpendicular to the central axis of the mandrel. The wire electrode is fixed to the tip of the body, and the wire electrode consists of a pair of wire electrodes slidably placed on the opposing surfaces of the parallel electrodes, and the opposing surfaces are mutually disposed. There is provided an apparatus for manufacturing a welded metal can body, which is equipped with welding electrodes that are parallel to each other, and the width of the opposing surfaces of the wire electrodes is larger than the width of the overlapping portion. The present invention will be explained in detail below. There are no particular restrictions on the type of metal blank used in the present invention, and aluminum plates, etc., can also be used, but among them, tinplate, which is commonly used as material for metal cans, stain-free steel, thin nickel-plated steel sheets, and phosphate-treated steel sheets. A coated or uncoated low carbon steel plate having a thickness of about 0.14 to 0.35 mm, such as a blackboard or a coated plate thereof, is preferably used. In the case of blanks with an electrically insulating film formed on their surfaces, such as stain-free steel, phosphate-treated steel plates, and painted plates, in order to obtain a good weld, at least both sides of the overlapping part of the blank should be Therefore, it is preferable to remove these films in advance using a suitable means such as a cutting tool, a milling cutter, a grinder, etc., or by applying ultrasonic waves to expose the iron surface. A metal blank cut to predetermined dimensions is formed into a cylindrical, square, or other can body shape, usually a cylindrical shape, and then the overlapped portions of the sides are resistance welded to form the can body. Welding in a broad sense includes fusion welding and forge welding, but
In the case of fusion welding, the welded part is once melted and then rapidly cooled, so it is easy to contain air bubbles, which can cause leakage of the contents of the can, and a fragile dendrite structure develops, which can cause breakage during the double seaming process. easy. Therefore, the welding in the present invention is preferably forge welding, that is, solid phase welding. The resistance welding method of the present invention is a method in which a pair of parallel electrodes presses and energizes the overlapped parts of the can body molded weights via a wire electrode, without using rotating roller electrodes, and welds all the overlapped parts at the same time. It is. The present invention will be described below with reference to the drawings. FIG. 1 is a schematic partially cutaway front view of a welded metal can body manufacturing apparatus showing an embodiment of the present invention, and FIG.
3 and 4 are partially enlarged sectional views of the vicinity of the overlapped portion in FIG. 1, respectively, immediately before pressing the overlapped portion. and the state after welding is completed. The can body molded body 1, which has been rolled by a can body forming machine (not shown), is fed by a feed pawl 16 from the right side in FIG. wing 9
is tightly attached to the mandrel. A pair of upper and lower parallel electrodes 4a and 4b are arranged in the welding station 3 in parallel to the axial direction of the mandrel 2. It is preferable that the parallel electrodes 4a, 4b have a length equal to or slightly longer than the entire length of the can body molded body 1. If it is too short, no current will flow to the lengthwise ends of the overlapping part, resulting in an unwelded part. If it is too long, an excessive current will flow to the ends due to the current wraparound phenomenon, resulting in a splash. This is because it is easy to cause Therefore, the can body molded body has upper and lower parallel electrodes 4a, 4
It is necessary to stand still directly above or below b. The opposing surfaces of the upper parallel electrode 4a and the lower parallel electrode 4b are parallel to each other. Grooves 5a and 5b, which are guide recesses, are formed on the opposing surfaces of the mandrel 2.
They are perforated parallel to each other in the axial direction, and have a U-shaped cross section. A cooling hole 6 penetrates inside the parallel electrode as close as possible to the guide grooves 5a and 5b, and cold water or cooling brine (for example, at -30°C) circulates inside the hole to cool the parallel electrode and the wire electrode. By cooling, the wire electrodes 10a, 10b are prevented from increasing in temperature during welding. If necessary, the cooling effect of the wire electrodes can be further improved by blowing cooling air from the outside. Further, the upper and lower parallel electrodes are connected to a welding power source (22 in FIG. 5) via conductive plates 7 provided in contact with each other above and below. The upper parallel electrode 4a is buried under the mandrel 2, and the lower parallel electrode 4b is fixed to the upper end of the pressing body 8. Preferably, the parallel electrodes are made of copper or a copper alloy. In the grooves 5a and 5b, a pair of wire electrodes 10a,
10b is fitted so as to be slidable and protrude. Each wire electrode 10a, 10b is supplied from a feed reel (29 in FIG. 5) provided on the right side of FIG. 2, and as the number of welding increases, the grooves 5a, 5b
The wire travels in one direction inside and is wound up by a take-up reel (28 in FIG. 5). Upper line electrode 10a
is the idler 14 attached to the tip of the mandrel.
After being turned in the direction opposite to the traveling direction of the can body, it is passed through a guide hole 13 passing through the mandrel and wound up. At least the opposing surfaces 10c and 10d of the line electrodes 10a and 10b are connected to the mandrel 2.
It is important that the plane be parallel to the axis of the plane. The overlapped portion 1a of the can body molded body 1 is directly pressed and energized by contacting the wire electrode, but if the pressing force is uneven, especially in the length direction, the overlapped portion 1a Contact surface 1 between blank edges in 1a
The electrical resistance at point (b) becomes non-uniform in the longitudinal direction of the overlapping length, and there is a risk that an excessive current will flow through the portion of low electrical resistance, causing local melting and splash. By the way, the inner surface of the can body molded body 1 is
It is in close contact with the mandrel 2 except for the vicinity of the overlapped portion, and therefore the overlapped portion 1a is also basically parallel to the axial direction of the mandrel 2. Therefore, the surfaces 10c and 10d of the wire electrodes that come into contact with the overlapping portion must be parallel to the axis of the mandrel 2 at least during welding. Therefore, the pressing body 9 also moves relative to the central axis of the mandrel 2 and presses the surfaces 10c and 10 of the wire electrodes.
d must be configured so that it is parallel to the axis of the mandrel 2 and presses the overlapping portion during welding. Similarly, the overlapping portion 1a needs to be pressed uniformly in the width direction as well. Therefore, the upper and lower line electrodes 10
It is necessary that a and 10b are also parallel to the width direction, that is, the distance between them is substantially constant.
Within the range that satisfies this condition, the opposing surfaces 10c and 10d of the wire electrodes may be flat or may be curved surfaces corresponding to the shape of the can body molded body. Further, it is preferable from the viewpoint of workability and wire electrode manufacturing that the surface of the wire electrode 10a in contact with the groove 5a and the surface 10c in contact with the overlapping portion 1a are parallel. The same applies to the line electrode 10b. Such a wire electrode can be easily produced by light flat rolling of a round wire. Furthermore, it is desirable that the entire overlapped portion be sufficiently matted by welding so that the thickness of the entire overlapped portion is substantially equal to the thickness of the other portions of the can body molded body. This is because if only a part of the width of the overlapped part is welded and the widthwise end of the overlapped part remains unwelded, it is difficult to completely protect this part with paint. This is because it is easily corroded by objects, etc., and in the case of double seams, only the overlapping joints are thick, creating a step, which may lead to incomplete seaming and leakage of contents. . For this purpose, it is important that the entire overlapping portion 1a be located on the opposing surfaces 10c and 10d of the wire electrodes during welding. By doing so, the entire overlapping portion can be sufficiently mashed as shown in FIG. 4. Furthermore, during welding, most of the overlapping part and its vicinity are in contact with the wire electrodes 10a, 10b cooled by the refrigerant, and are not exposed to the atmosphere, which means that the energization time described below is extremely short. Together,
This enables oxidation-free welding of overlap joints and their vicinity. The wire electrodes 10a, 10b are made of copper or a copper alloy, and preferably have a hardness (Witzkers hardness) of about 70 to 180. If it is lower than about 70, the part that contacts the overlapping part will be easily deformed locally due to the pressing force during welding, so it will be necessary to increase the amount of movement of the wire electrode. This is because if there are slight undulations on the parallel surfaces of the wire electrodes, it is difficult to apply a uniform pressing force because the parts do not fit together well. The mandrel 2 is equipped with a paint supply pipe 11 and an air supply pipe 12 for supplying paint and air for spraying and protective coating the inner surface of the welded portion of the metal can body after welding is completed. Further, since the mandrel 2 is cantilevered, a mandrel support 15 is provided at the upper part of the mandrel 2 in the gap between the left and right presser wings 9 to prevent it from bending upward when pressed by the pressing body 8. The mandrel support 15 is normally located above the mandrel 2 and the can body molded body 1, but when the pressing body 8 comes into contact with the overlapped portion 1a, it descends and supports the mandrel 2 through the can body molded body 1. The molded can body rises when it is fed out. FIG. 5 is a schematic diagram showing the welded metal can body manufacturing system of the present invention. The pressing body 8 is reciprocated up and down by a drive mechanism 18 driven by a motor. Drive mechanism 18
Although a cam mechanism, a crank mechanism, a cylinder mechanism, etc. are employed as the mechanism, a cam mechanism is illustrated in FIG. As is clear from FIG. 4, the position of the upper surface 10d of the lower wire electrode at the top dead center of the pressing body 8 is
It is located at a location lower than the lower surface 10c of the upper line electrode by the thickness of the metal blank. On the other hand, as is clear from FIG. 3, the position of the upper surface 10d of the lower line electrode at the initial stage of pressing is lower than the lower surface 10c of the upper line electrode by twice the thickness of the metal blank. Therefore, at the initial stage of pressing, the metal of the overlapped portion 1a is at a low temperature and thus has a large deformation resistance, and this combined with the fact that impact force is likely to be applied to the wire electrode. When an impact force is applied, a wire electrode made of copper or a copper alloy may be significantly deformed or, in extreme cases, may break. In order to prevent these accidents and to easily ensure the set pressing time, a buffer mechanism 20 ( (by spring, hydraulic pressure, pneumatic pressure, etc.)
will be provided. Further, a screw 8c is provided between the pressing body sliding portion 8b and the cam follower 8d,
The height of the pressing body sliding portion 8b is configured to be adjustable. This height adjustment makes it possible to adjust the pressing force and pressing time within a certain range. The cam mechanism 18 and the feed pawl 16 are synchronized so that when the can body molded body 1 is positioned at the welding station 3 of the mandrel and comes to rest, pressing of the overlapping portion immediately begins. It is desirable that the current be applied after a predetermined pressing force is reached. This is because if the current is applied when the pressing force is insufficient, the pressure on the overlapped portions will become uneven, leading to local overheating, which may cause splash. Therefore, a proximity switch 21 that is turned ON when the pressing body 8 rises to a position where a predetermined pressing force is applied is provided adjacent to the pressing body sliding portion 8b. , 4b are energized. There are no particular restrictions on the type of welding power supply circuit 22, but the energization time is approximately
If the time is longer than 20 msec, a commercial frequency power supply with a timer is preferably used. If the time is shorter than about 40 msec, a known electromagnetic energy storage type or electrostatic energy storage type power source is suitably used. FIG. 5 schematically shows an electrostatic storage type power source. When the proximity switch 21 is turned on, the thyristor 22a is triggered, thereby discharging the capacitor 22b and energizing the lower parallel electrode 4b via the transformer 22c. Thyristor 22e at the same time as the discharge ends.
is triggered, and the capacitor 22b is charged by the DC power supply 22d. The cam mechanism 18 is synchronized so that the lower parallel electrode 4b immediately starts descending after the energization (discharge) is finished and the welding is completed. It is not preferable to release the pressure while the current is being applied because sparks are generated and there is a risk of burnout of the welded portion. In synchronization with the above-mentioned lowering, the presser wing 9 is released, the feed pawl 16 slides on the feed pawl guide 17, and the welded can body formed body moves from the right side to the left side in Fig. 2. 1 from the welding station 3, ie between the wire electrodes. Subsequently, the next can body molded body 1 is fed into the welding station 3 and welded in the same manner as described above. As mentioned above, wire electrodes are usually manufactured by lightly flat rolling a round wire. At this time, slight undulations may occur on the flat surface, but these undulations disappear after several weldings. Furthermore, as the number of times of welding increases, the wire electrode adapts to the shape of the overlapping part, and an appropriate pressing force is applied to the entire area of the overlapping part. Under normal conditions, the wire electrodes 10a and 10b are welded repeatedly on the same part until the number of welds reaches several tens and the deformation of the wire electrode becomes large and it becomes difficult to obtain a uniform pressing force. Can be used for During this time, almost no oxidation of the wire electrode occurs. Therefore, the wire electrode may be moved in the same direction by the length of the can body every time several tens of cans are welded, or it may be moved little by little in the same direction every time one or several cans are welded. . After use, wire electrodes can be repaired and reused, or if they cannot be repaired, they can be melted and recycled into wire electrodes. In order to achieve the purpose of high-speed continuous can manufacturing, it is preferable that the wire electrodes be moved between the time when the pressing force by the pressing body 8 is released and the next pressing starts again. This embodiment will be explained with reference to FIG. Proximity switch 21 is turned on due to the rise of pressing body 8
A signal is input to the preset counter 23 each time. When the preset counter 23 receives a signal with a preset count value, it outputs an ON signal only until the next signal is input, and then turns ON again.
It is configured to start counting from. The output of the preset counter 23 mentioned above is sent to the AND circuit 2.
Enter 4. On the other hand, a proximity switch 25 is provided adjacent to a rotating plate 19 fixed to the rotating shaft of the cam mechanism 18. The rotary plate 19 is mainly made of a non-magnetic material, and is opposed to the proximity switch 25 so that the proximity switch 25 is turned ON only for a set time t during the period when the pressing body 8 is not pressing the overlapping portion. A magnetic body 19a is arranged on the surface. The set time t is the time required for the line electrode to move, and is determined from the set length of the line electrode's movement each time and the circumferential speed of the pinch roll 26, which is a drive device for the line electrode. The output of the proximity switch 25 is input to an AND circuit 24. The output of the AND circuit 24 is connected to a clutch/brake circuit 27 that constitutes the drive mechanism of the pinch roll 26.
When the output of the AND circuit 24 is ON, the clutch is engaged, and when it is OFF, the brake is engaged. Therefore, the pinch roll 26 rotates only for a set time t to feed the wire electrode in the direction of the take-up reel 28. Since the take-up reel 28 is driven by a torque motor, it takes up the wire electrode only while the pinch roll 26 is rotating. Next, the welding conditions will be explained when the substrate is a metal blank of 0.14 to 0.35 mm thick, which is a low carbon steel plate. The width of the overlapping portion 1a is preferably about 0.1 to 1.0 mm. As the plate thickness increases, this width increases within the above range. If the width is smaller than approximately 0.1 mm, it will be difficult to overlap the can uniformly along the length of the can body, and the overlapped portion will easily slip when pressed after overlapping, and the welding strength will also decrease. be. On the other hand, it is unnecessary for the width to be larger than about 1.0 mm from the viewpoint of welding strength, and on the contrary, the required current amount and pressing force increase, resulting in the disadvantage of making the equipment too large. From the overlapping width and the diameter of the mandrel at the welding station 3, the dimension of the metal blank in the direction perpendicular to the direction of movement of the mandrel is determined. Further, in the welding station 3, the outer periphery of the can body formed body 1 is pressed against the mandrel by a presser wing 9, which is provided on the outside of the mandrel and whose inner surface shape corresponds to the outer diameter of the mandrel. A portion 1a is formed. Pressure to press the overlapping part during welding (value obtained by dividing the pressing load by the pressing body 8 by the total area of the overlapping part)
is approximately 15 to 60 Kg/mm 2 , preferably 25 to 45 Kg/mm 2 . If the pressure is less than 15Kg/ mm2 ,
The contact resistance between the steels in the overlapping area becomes uneven, causing excessive current to flow locally, causing overheating, causing splashes, and forming a black oxide film, resulting in a loss of stability in the weld. . Furthermore, since sufficient mashing is not performed, the edges of the blank remain as they are even after welding, resulting in a step in the welded area. On the other hand, if the pressure is higher than 60 Kg/mm 2 , the wire electrode will be severely deformed (indented) and the amount of movement must be increased. It is desirable that the current application time be approximately 3 to 80 msec, more preferably 5 to 30 msec. 3
If it is shorter than msec, a large welding current is required to obtain sufficient welding strength, and in this case, a large current is supplied in an extremely short period of time, so only the steel interface is locally melted. This is because splashes are likely to occur. On the other hand, when the time is longer than 80 msec, the heat is transmitted to the vicinity of the overlapped part of the molded bodies, and black oxidation in this part becomes significant. Heat also escapes to the wire electrodes, resulting in lower current efficiency and severe damage to the wire electrodes. The optimum energization time is determined by the plate thickness, width of the overlapped portion, pressing force, power supply voltage, waveform, etc. The larger the board thickness and overlap width, the longer the energization time needs to be. If it is necessary to cover the inner surface of the welded part with a protective coating, the welded metal can body 1A is attached along a guide 30 extending from the tip of the mandrel 2.
is sent to the left and, if necessary, is reheated to approximately 50 to 300°C by a preheating device 31 (such as a high-frequency heating coil or burner) to improve wetting of the paint, and then the paint is supplied. Pipe 11 and air supply pipe 12
The protective paint is sprayed onto the inner surface of the weld from a protective paint spray nozzle 32 (e.g., airless gas, in which case the air controls the spray pattern) provided at the tip of the weld. Next, the protective coating is melted or thermally hardened using a drying oven, burner, high frequency heating, etc., to form a strong, non-porous coating on the inner surface of the welded part and its periphery. Protective coatings include polyester, modified polyolefin, epoxy, acrylic, polyvinyl chloride, polyamide, vinyl acetate, polyvinyl acetal, polyether, polycarbonate, epoxy ester, phenol, amino, alkyd,
Powder coatings, dispersion-type coatings, hydrogen- or solvent-based slurry coatings, solution-type coatings, etc. obtained from one or more of polyurethane resins and silicone resins are used as appropriate depending on the purpose. In the above embodiments, a spray coating method has been described, but roll coating or other coating methods may also be used. The welded metal can body manufactured as described above is
After the bottom lid is usually secured by a double seaming method, carbonated drinks, non-carbonated drinks, fruit juice, fish and shellfish, other foods, non-food items such as aerosols, etc. are filled, and the bottom lid is sealed. In the overlap resistance welded can body manufactured by the method and apparatus of the present invention, most of the overlap part and its vicinity are not exposed to the atmosphere during welding, and the electrodes are sufficiently cooled by the refrigerant. Because of this, there is no need to install a special inert gas blowing device.
Beautiful welds with no black oxide film can be obtained. Therefore, the adhesion of the protective paint to the welded portion is excellent, and there is no fear that the protective paint will peel off during multi-bead processing, neck-in processing, and double seaming processing, and that part will be eroded. Also, when tinplate is used as a metal blank, a tin layer remains in the welded area, and almost no iron is exposed. Furthermore, since there is little alloying of tin around the weld, the corrosion resistance of the weld and its vicinity is excellent. In addition, since the entire overlapping part is welded simultaneously using a parallel electrode and a wire electrode without using a roller electrode, no gossel-like nuggets are generated, the surface of the welded part is flat and beautiful, and there is no thermal distortion. There are none. In addition, since there is almost no splash or protrusion of metal in the circumferential direction, the corrosion resistance after the protective coating is evaluated based on the amount of iron eluted, black sulfide, perforation, flavor of the contents, changes in can internal pressure, etc. ) is also excellent. Furthermore, by setting the pressing force during welding to an appropriate value and sufficiently mashing the weld, the thickness of the weld can be reduced to near the blank thickness, and the front and rear ends of the weld can be made of metal. Since protrusions do not occur due to protrusion, there is no risk of uneven welding during double seaming, resulting in incomplete seaming or damage to the sealing rubber, resulting in leakage of contents or changes in internal pressure. There is no possibility that this will occur. Furthermore, since the parallel electrodes do not come into direct contact with the welding area, they can be used semi-permanently and there is almost no need to replace them. In addition, the part of the wire electrode that comes into contact with the overlapping part, where the temperature rises the most during welding, is isolated from the atmosphere and is sufficiently cooled by the cooling fluid that circulates through the nearby cooling hole, so oxidation is prevented. This does not occur, and deformation is unlikely to occur. Therefore, not only when the blank is made of stain-free steel, but even when the blank is made of tinplate, welding can be performed several dozen times on the same part, as shown in the example below, which is unprecedented in the prior art. It has excellent effects. Furthermore, since the welding time is extremely short, high-speed can manufacturing of several hundred cans per minute can be easily achieved. The configuration of the present invention is not limited to the embodiments described above. For example, as shown in FIG. It may be hot. Further, the opposing surfaces of the parallel electrodes may be simply flat surfaces. Further, as shown in FIG. 7, two small protrusions 33 are provided in the length direction on the opposing surfaces of the parallel electrodes,
A wire electrode may be placed between them. Further, the metal blank may be formed into the shape of a can body by a so-called inverted type can manufacturing method using a presser wing at the welding station 3. Further, the upper parallel electrode may be on the top of the mandrel or other peripheral portions. The effects of the present invention will be further clarified by Examples below. Example 1 The seam part of the can body was painted with epoxyphenol paint on the surface that was to become the inner surface of the can (leaving an unpainted area), and then baked, and the surface that was to be the outer surface was also painted and printed with a thickness of margin. Made of 0.17mm stain-free steel (electrolytic chromic acid treated steel plate),
A blank of 165.7 mm x 101.3 mm was created. The electrolytic chromium-treated coating layer on both sides of the short edges of this blank, approximately 1 mm wide, was peeled off by ultrasonic application to completely expose the iron surface. Next, this blank is formed into a cylindrical shape using a roll former with the short side oriented in the axial direction, and this formed body is fed onto the mandrel of the welding station so that the overlapping part is located in the center of the wire electrode. Then, the overlapping width was set to 0.3 mm and fixed. Next, pressure was applied to the overlapping portion of the molded bodies with a parallel electrode via a wire electrode (welding pressure, that is, a pressing force of 45 kg/mm 2 ), and then current was applied for 15 milliseconds to perform welding. Next, the surface temperature of the welded parts on the inner and outer surfaces of the can body was increased by high-frequency induction heating.
Preheated to 200℃, width 7mm, dry coating thickness.
After spray painting polyester slurry paint with an airless gun to a thickness of 30 to 50 microns, baking it in a hot air drying oven at 190℃ for 4 minutes, spray painting PVC paint on the entire inner surface of the can body with an airless gun. I did the baking. This can body is flanged, double-sealed with an aluminum easy-open lid whose inner surface is coated with PVC paint, filled with cola at 2°C, the inner surface is base coated with epoxy phenol paint, and the inner surface is coated with PVC paint. The container was double-sealed with a paint-coated stain-free steel lid and stored at 50°C for 6 months. The length of both the upper and lower parallel electrodes is 102 mm, and the grooves 5a and 5b provided in the parallel electrodes have a rectangular cross section.
It was 0.6 mm deep and 2.0 mm wide. Wire electrode is 1.4mm in diameter
Annealed copper wire (JIS 3102, electrical conductivity 100.0 or higher) was lightly rolled to a thickness of 1 mm, a flat part width of 1 mm, and a maximum width of 1.6 mm. The hardness after rolling is
Hv=95. In addition, the mechanism that applies pressure to the overlapped portion is implemented by a cam to avoid applying impact to the overlapped portion as much as possible. The power source was an electrostatic storage type (capacitor capacity 80,000 μF), which was charged to 380 volts and discharged by instantaneously passing current through the welding part via a welding transformer. The parallel electrodes were cooled with brine at -30°C, and cans were manufactured continuously at a welding speed of 450 cans/min. Note that the wire electrode was moved intermittently, and was moved by 3 mm for each welding. The overlapping width after welding was 0.4 mm. The surface of the welded part of the obtained can body had a metallic luster, was flat and beautiful, and there was no thermal distortion or formation of protrusions or splashes at the front and rear ends of the welded part. In addition, the thickness of the weld is determined by the cross-sectional micrograph perpendicular to the weld line in Figure 8 (magnification
135, etching solution 5% Pickleral, the welded area is near the tip of the arrow), the thickness is almost the same as that of the blank, and the structure is free of pores, indicating that forge welding, or solid-to-solid bonding, has been performed. This indicates that the A tensile test was conducted with the welded part perpendicular to the tensile direction, but fracture occurred at a location other than the welded part. Furthermore, the amount of iron protruding from the side seam of the can body and the presence or absence of splash were examined (the number of samples was 10 cans). Note that since the amount of protrusion varies along the weld line, the maximum value is shown in Table 1. The amount of protrusion was determined by microscopic observation of a cross section perpendicular to the weld line. Furthermore, after storage at 50°C for 6 months, the cans were opened and the corrosion state of the welded parts on the inside of the cans was examined (100 samples). Furthermore, iron elution amount (iron elution amount mg per 1000 g of content: number of samples
average value of 10 cans), and flavor (number of panels 10)
Person, 5...excellent, 4...good, 3...average, 2...
…Poor, 1…Poor) was investigated. Furthermore, the number of leaked cans and perforated cans that occurred within six months was investigated (100 cans each). The results are shown in Table 1. As a comparative example, Table 1 also shows the results of a method in which welding was performed by applying pressure to the overlapped portions only through parallel electrodes with flat opposing surfaces. In the case of the method of the comparative example, since continuous can manufacturing was not possible, can manufacturing was performed while replacing the parallel electrodes. Experiment No. 1 is an example of the present invention, and Experiment No. 2
is a comparative example. As is clear from the table, it can be seen that the method of the present invention has excellent properties.

【表】 実施例 2 罐の内面となるべき面に、エポキシフエノール
系塗料を罐胴のつぎ目部分をマージン塗装した後
焼付し、外面となるべき面にもマージン塗装、印
刷した厚さ0.23mm、錫メツキ量251b/B・B(錫層
厚約0.6μm)の電気メツキブリキ板から、234mm
×85mmのブランクを作成した。次に、このブラン
クをロールフオーマーにより円筒状に成形し、実
施例1と同じ手段により、押圧力(35Kg/mm2)15
msec通電して、連続に450罐/minの速度で溶接
を行つた。なお、電源としては静電蓄勢式(コン
デンサー容量80000μF)のものを350ボルトに充
電して溶接トランスを介して溶接部に電流を瞬時
に流して放電した。次に、上記罐胴内外面の溶接
部分を、高周波誘導加熱により表面温度を190℃
に予備加熱し、巾6mm、乾燥塗膜の厚みが40〜60
ミクロンになるように、粉体塗装ガンにより、エ
ポキシフエノール系粉体塗料をスプレイし、180
℃の熱風乾燥炉中で4分間焼付けた。この罐胴を
フランジ加工し、内面にエポキシフエノール系塗
料を塗装したブリキ製蓋を二重巻締してから、ま
ぐろ水煮を充填し、上記と同じブリキ蓋を二重巻
締して、レトルト殺菌を行い、50℃で6カ月間保
存した。なお、実験に使用した装置及びその他の
条件については実施例1と同じで行つた。 得られた罐胴から、側面継目部の鉄のはみ出し
量及びスプラツシユの有無、溶接端縁部罐高さ方
向の鉄のはみ出し量、及び溶接部近傍の錫のリフ
ロー巾を調べた(以上試料数は各10罐)。さら
に、溶接空罐にチオシアン酸アンモニウム2%水
溶液300mlを注入し、罐を陽極とし、直径6mmの
カーボン棒を陰極として極間電圧2ボルトで電解
した時、罐内面に赤色反応を呈する迄に要する時
間を測定して、赤色呈色反応値(秒)を求めた
(試料数10罐)。 さらに、50℃で6カ月間保存後開罐し、罐内面
の黒点発生の状態を調べた(〇……黒点なし、×
……非常にあり)。さらに、硫化黒変、漏洩状態
(罐内圧の変化mmHgで示す)、及び6カ月以内に
生じた穿孔罐数を調べた(以上の試料数各100
罐)。 結果を表2に示す。 なお、比較例として、一方が回転駆動可能な二
つの固定ロール電極間に、線電極を介して重ね合
わせ部を供給して圧力を加え、重ね合わせ部に交
流電流を流して、連続的に順次溶接する方法につ
いて行つた。なお、比較例で作成した罐胴の、内
外面溶接部の補正は、前記と同じ塗料及び方法で
行つた。 実験No.3は本発明の実施例であり、実験No.4
は比較例である。表から明らかなように、本発明
の方法は優れた特性を有していることがわかる。
[Table] Example 2 The seam part of the can body was painted with epoxy phenol paint on the surface that was to become the inner surface of the can with a margin, and then baked, and the surface that was to be the outer surface was also painted with a margin and printed to a thickness of 0.23 mm. , 234mm from an electroplated tin plate with a tin plating amount of 251b/B・B (tin layer thickness approximately 0.6μm)
A blank of ×85 mm was created. Next, this blank was formed into a cylindrical shape using a roll former, and by the same means as in Example 1, a pressing force (35 kg/mm 2 ) of 15
Welding was performed continuously at a speed of 450 cans/min by applying current for msec. The power source was an electrostatic storage type (capacitor capacity: 80,000 μF), which was charged to 350 volts and discharged by instantaneously passing current through the welding area through the welding transformer. Next, the surface temperature of the welded parts on the inner and outer surfaces of the can body was raised to 190℃ using high-frequency induction heating.
Preheat to 6 mm in width and dry coating thickness of 40 to 60 mm.
Spray epoxy phenol powder paint with a powder coating gun so that it is 180 microns.
It was baked for 4 minutes in a hot air drying oven at . This can body is flanged, a tin lid with an epoxyphenol paint applied to the inside is double-sealed, the tuna boiled in water is filled, the same tin lid as above is double-sealed, and the retort is placed. It was sterilized and stored at 50°C for 6 months. The apparatus and other conditions used in the experiment were the same as in Example 1. From the obtained can body, the amount of iron protruding from the side seam and the presence or absence of splash, the amount of iron protruding from the welded edge in the can height direction, and the reflow width of tin near the weld were investigated (the number of samples was (10 cans each). Furthermore, when 300 ml of 2% ammonium thiocyanate aqueous solution was injected into a welded empty can and electrolysis was carried out at a voltage of 2 volts between the electrodes using the can as an anode and a carbon rod with a diameter of 6 mm as a cathode, it took until a red reaction appeared on the inner surface of the can. The time was measured and the red color reaction value (seconds) was determined (10 cans of samples). Furthermore, after storing at 50℃ for 6 months, the can was opened and the condition of black spots on the inner surface of the can was examined (〇...no black spots, ×
...Very likely). In addition, we investigated sulfide blackening, leakage status (indicated by change in can internal pressure in mmHg), and the number of perforations that occurred within 6 months (100 samples each).
can). The results are shown in Table 2. As a comparative example, an overlapping part was supplied between two fixed roll electrodes, one of which can be driven to rotate, through a wire electrode, pressure was applied, and an alternating current was passed through the overlapping part. I talked about how to weld. The inner and outer welded parts of the can body prepared in the comparative example were corrected using the same paint and method as described above. Experiment No. 3 is an example of the present invention; Experiment No. 4
is a comparative example. As is clear from the table, the method of the present invention has excellent properties.

【表】 実施例 3 実施例2と同じ板厚0.23mmのブリキ板を使用し
て、同じ手段により溶接罐胴(202径、200ml)
を、連続的に450罐/minの速度で作成した。溶
接条件は、押圧力35Kg/mm2、通電時間15msec、重
ね合わせ巾0.3mmで行い、線電極の移動は、20罐
毎に約100mmずつ移動した。なお、電源容量及び
電圧は実施例1と同じで行つた。次に、上記罐胴
内外面の溶接部分を、高周波誘導加熱により表面
温度を200℃に予備加熱し、巾7mm、乾燥塗膜の
厚みが40〜60ミクロンになるように、エポキシフ
エノール系スラリー塗料をロール塗装した後、
180℃の熱風乾燥炉中で4分間焼付けた。 次に、この罐胴をフランジ加工し、内面に塩ビ
系塗料を塗装したアルミ製イージーオープン蓋を
二重巻締して、リンゴユースを90℃で充填し、内
面にエポキシフエノール系塗料を塗装したブリキ
製蓋を二重巻締し、50℃で6カ月保存した。な
お、実験に使用した装置及び条件については実施
例2と同じで行つた。 得られた罐胴から、側面継目部のはみ出し量及
びスプラツシユの有無、溶接端縁部罐高さ方向へ
のはみ出し量、及び溶接部近傍の錫のリフロー巾
を調べた(以上試料数は各10罐)。 さらに、50℃で6カ月保存後開罐し、罐内面溶
接部の腐食状態、鉄溶出量、フレーバー、罐内圧
の変化、及び6カ月以内に生じた穿孔罐数を調べ
た(以上試料数各100罐)。 結果を表3に示す。 なお、比較例は実施例2に記載の比較例と同じ
方法及び条件で行つた。 実験No.5は本発明の実施例であり、実験No.6
は比較例である。表から明らかなように、本発明
の方法は優れた特性を有している。
[Table] Example 3 A can body (202 diameter, 200ml) was welded using the same method as in Example 2, using the same tin plate with a thickness of 0.23 mm.
was produced continuously at a rate of 450 cans/min. The welding conditions were a pressing force of 35 Kg/mm 2 , a current application time of 15 msec, and an overlap width of 0.3 mm, and the wire electrode was moved by about 100 mm every 20 cans. Note that the power supply capacity and voltage were the same as in Example 1. Next, the welded parts on the inner and outer surfaces of the can body are preheated to a surface temperature of 200℃ using high-frequency induction heating, and epoxyphenol slurry paint is applied so that the width is 7 mm and the dry coating thickness is 40 to 60 microns. After the roll is painted,
It was baked for 4 minutes in a hot air drying oven at 180°C. Next, this can body was flanged, an aluminum easy-open lid whose inner surface was coated with PVC paint was double-sealed, Apple Youth was filled at 90°C, and the inner surface was coated with epoxy phenol paint. The tin lid was double-sealed and stored at 50°C for 6 months. The equipment and conditions used in the experiment were the same as in Example 2. From the obtained can body, we investigated the amount of protrusion of the side seam, the presence or absence of splash, the amount of protrusion of the welded edge in the can height direction, and the reflow width of tin near the welded part (the number of samples was 10 for each). can). Furthermore, after storage at 50°C for 6 months, the cans were opened and the corrosion state of the welded parts inside the cans, the amount of iron leached, the flavor, the changes in the internal pressure of the cans, and the number of perforations that had occurred within 6 months were investigated. 100 cans). The results are shown in Table 3. Note that the comparative example was conducted using the same method and conditions as the comparative example described in Example 2. Experiment No. 5 is an example of the present invention, and Experiment No. 6
is a comparative example. As is clear from the table, the method of the present invention has excellent properties.

【表】 実施例 4 板厚0.23mmのブリキ板を用いて、実施例2と同
じ手段及び溶接条件により溶接罐胴(301径、5
号罐)を、連続的に450罐/minの速度で作成し
た後、同じ手段によりさけ水煮を充填し、50℃で
6カ月間保存した。 得られた罐胴から、罐胴内面溶接部の赤色呈色
反応を調べた。さらに、50℃で6カ月間保存後開
罐し、罐内面の硫化黒変の発生を調べた。なお、
比較例として、溶接部の冷却を25℃の水によつて
行つた場合と、冷却を行わなかつた場合について
行つた。比較例について、他の条件は前記と同じ
方法によつて行つた。結果を表4に示す。 実験No.7およびNo.8は本発明の実施例であ
り、実験No.9は比較例である。表から明らかな
ように、本発明の方法は優れた特性を有している
ことがわかる。
[Table] Example 4 Using a tin plate with a thickness of 0.23 mm, a welded can body (301 diameter, 5
Cans) were produced continuously at a rate of 450 cans/min, filled with salmon water boiled in the same manner, and stored at 50°C for 6 months. The resulting can body was examined for red color reaction at the welded portion of the inner surface of the can body. Furthermore, after storage at 50°C for 6 months, the can was opened and the occurrence of black sulfide on the inside of the can was examined. In addition,
As a comparative example, welded parts were cooled with water at 25°C and cases where no cooling was performed. Regarding the comparative example, the other conditions were the same as described above. The results are shown in Table 4. Experiments No. 7 and No. 8 are examples of the present invention, and Experiment No. 9 is a comparative example. As is clear from the table, the method of the present invention has excellent properties.

【表】 実施例 5 板厚0.23mmの電気メツキブリキ板を用いて、実
施例2と同じ手段によりブランク(234mm×85
mm)を作成して、円筒状に成形し、溶接ステーシ
ヨンで重ね合わせて固定した後、線電極を介して
平行電極で成形体の重ね合わせ部に圧力を加え
(溶接圧力40Kg/mm2)、表5に示す溶接時間(通電
時間)、電圧により連続的に溶接を行い、溶接罐
胴(30.1径、5号罐)を得た。電源は、実施例2
と同じものを用いた。なお、線電極を1回の溶接
毎に2mm移動させた。次に、上記罐胴内外面の溶
接部分を、実施例1と同じ手段により補正塗装
し、この罐胴をフランジ加工し、内面にエポキシ
フエノール系塗料を塗装たブリキ製蓋を二重巻締
してから、まぐろ水煮を充填し、上記と同じブリ
キ蓋を二重巻締して、レトルト殺菌を行い、50℃
で6カ月間保存した。なお、実験に使用した装置
及びその他の条件については、実施例1と同じで
行つた。 得られた罐胴から、内面溶接部の状態、スプラ
ツシユの有無及び赤色呈色反応を調べた(以上試
料数各10罐)。 さらに、50℃で6カ月間保存後開罐し、罐内面
溶接部の腐食状態及び硫化黒変の発生状態を調べ
た(以上試料数各100罐)。結果を表5に示す。 表から明らかなように、本発明の方法は優れた
特性を有していることがわかる。
[Table] Example 5 Using an electroplated tin plate with a thickness of 0.23 mm, a blank (234 mm x 85
mm), formed into a cylindrical shape, overlapped and fixed at a welding station, and then applied pressure to the overlapped part of the molded bodies with a parallel electrode via a wire electrode (welding pressure 40Kg/mm 2 ), Welding was performed continuously using the welding time (current application time) and voltage shown in Table 5 to obtain a welded can body (30.1 diameter, No. 5 can). The power source is Example 2
The same one was used. Note that the wire electrode was moved 2 mm for each welding. Next, the welded parts on the inner and outer surfaces of the can body were corrected by the same method as in Example 1, the can body was flanged, and a tin lid whose inner surface was coated with epoxy phenol paint was double-sealed. Then, fill with boiled tuna, double-seal the same tin lid as above, perform retort sterilization, and heat to 50℃.
It was stored for 6 months. The apparatus and other conditions used in the experiment were the same as in Example 1. The condition of the inner welded part, presence or absence of splash, and red color reaction were examined from the resulting can bodies (10 cans each). Furthermore, after storing at 50°C for 6 months, the cans were opened and the corrosion state of the welded parts on the inner surface of the can and the occurrence of black sulfide discoloration were examined (100 samples each). The results are shown in Table 5. As is clear from the table, the method of the present invention has excellent properties.

【表】 実施例 6 板厚0.23mmの電気メツキブリキ板を用いて、実
施例2と同じ手段によりブランク(165.7mm×
101.3mm)を作成して、円筒状に成形し、溶接ス
テーシヨンで重ね合わせて固定した後、線電極を
介して平行電極で成形体の重ね合わせ部に圧力を
加え(溶接圧力35Kg/mm2)、表6に示す溶接圧力、
電圧により連続的に溶接を行い、溶接罐胴(202
径、200ml)を得た。電源は実施例1と同じもの
を用いた。なお、実験に使用した装置及びその他
の条件については、実施例1と同じで行つた。 得られた罐胴から、側面継目部の鉄のはみ出し
量及びスプラツシユの有無、溶接部の板厚、及び
溶接状態を調べた(試料数各10罐)。結果を表6
に示す。 表から明らかなように、本発明の方法は優れた
特性を有していることがわかる。
[Table] Example 6 Using an electroplated tin plate with a thickness of 0.23 mm, a blank (165.7 mm x
101.3mm), formed into a cylindrical shape, overlapped and fixed at a welding station, and then applied pressure to the overlapping part of the molded bodies with a parallel electrode via a wire electrode (welding pressure 35Kg/mm 2 ) , welding pressure shown in Table 6,
The welding can body (202
diameter, 200 ml). The same power source as in Example 1 was used. The apparatus and other conditions used in the experiment were the same as in Example 1. The obtained can bodies were examined for the amount of iron protruding from the side joints, the presence or absence of splash, the thickness of the welded parts, and the welding condition (10 samples each). Table 6 shows the results.
Shown below. As is clear from the table, the method of the present invention has excellent properties.

【表】 実施例 7 板厚0.23mmの黒板と、板厚0.23mmの錫メツキ量
251b/B.B.の電気メツキブリキ板より、165.7mm×
101.3mmのブランクを多数切断し、実施例3の本
発明の手段を用い、罐胴を作製した。ただし、線
電極は溶接毎に移動することなく、同じ位置にお
いて繰返し溶接を行い、各回毎の溶接の可否及び
線電極の変形(厚さで表示)等を調べた。結果を
表7に示した。 表7より明らかのように、黒板、ブリキ何れの
場合も、溶接回数が40回になつても、線電極の損
傷・酸化等による溶接不良は起らなかつた。すな
わち、黒板の場合は溶接回数40回後も溶接部は平
坦美麗で金属光択があり、ブリキの場合はリフロ
ーブリキ特有の光沢は消失するが、白色を呈し、
黒色の酸化膜の生成は皆無であつた。線電極は溶
接回数の増加とともに僅かに厚さが減少し、ブリ
キの場合は若干の錫の付着がみられるものの、溶
接強度に及ぼす悪影響は全くみられなかつた。
[Table] Example 7 Blackboard with a board thickness of 0.23 mm and the amount of tin plating on the board thickness 0.23 mm
From 251b/BB electroplated tin plate, 165.7mm×
A large number of 101.3 mm blanks were cut and can bodies were produced using the method of the present invention in Example 3. However, the wire electrode was not moved for each welding, but welding was performed repeatedly at the same position, and the feasibility of welding each time and the deformation of the wire electrode (expressed in thickness) were examined. The results are shown in Table 7. As is clear from Table 7, no welding defects due to wire electrode damage, oxidation, etc. occurred even after 40 weldings on either blackboard or tinplate. In other words, in the case of a blackboard, the welded part remains flat and beautiful even after 40 welding cycles, and has a metallic luster, while in the case of tinplate, although the luster characteristic of reflow tinplate disappears, it remains white.
There was no formation of a black oxide film. The thickness of the wire electrode decreased slightly as the number of welding increases, and in the case of tin, some tin adhesion was observed, but no adverse effect on welding strength was observed.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例である装置の一部切
断正面図を、第2図は第1図の2−2線に沿う縦
断面図を、第3図は第1図の重ね合せ部近傍の溶
接直前の拡大断面図を、第4図は第1図の重ね合
せ部近傍の溶接終了直後の拡大断面図を、第5図
は本発明を実施するためのシステムの模式図を、
第6図は1実施例である平行電極の軸線方向に垂
直な縦断面図を、第7図は他の実施例である平行
電極の縦断面図を、第8図は本発明による溶接部
とその近傍の顕微鏡写真を示す。 1……成形体、1a……重ね合せ部、2……マ
ンドレル、4a,4b……平行電極、5a,5b
……案内凹部、6……冷却孔、8……押圧体、1
0a,10b……線電極、11……塗料供給管、
12……空気供給管。
Fig. 1 is a partially cutaway front view of a device that is an embodiment of the present invention, Fig. 2 is a longitudinal sectional view taken along line 2-2 in Fig. 1, and Fig. 3 is a superimposition of Fig. 1. FIG. 4 is an enlarged sectional view immediately before welding near the overlapping portion of FIG. 1, FIG. 5 is a schematic diagram of a system for carrying out the present invention, and FIG.
FIG. 6 is a longitudinal cross-sectional view perpendicular to the axial direction of a parallel electrode according to one embodiment, FIG. 7 is a vertical cross-sectional view of a parallel electrode according to another embodiment, and FIG. 8 is a longitudinal cross-sectional view of a parallel electrode according to the present invention. A microscopic photograph of the vicinity is shown. DESCRIPTION OF SYMBOLS 1... Molded object, 1a... Overlapping part, 2... Mandrel, 4a, 4b... Parallel electrode, 5a, 5b
...Guiding recess, 6...Cooling hole, 8...Press body, 1
0a, 10b... wire electrode, 11... paint supply pipe,
12...Air supply pipe.

Claims (1)

【特許請求の範囲】 1 金属ブランクを缶胴状に成形した成形体の側
辺端縁部の重ね合せ部を抵抗溶接することにより
溶接金属缶胴を製造する方法において、冷媒によ
り冷却された一対の対向する平行電極の対向面上
に置かれ、かつ対向する面が互に平行な面である
一対の線電極の上記平行な面の間に上記重ね合せ
部全体が位置するように上記成形体を挿入する工
程、上記平行電極の少なくとも一方を上記対向面
が近接するよう移動せしめることにより、上記重
ね合せ部全体を同時に押圧した後、上記平行電極
に一定時間通電して上記重ね合せ部を溶接する工
程、上記平行電極の少なくとも一方を移動して、
押圧を解除した後、溶接金属缶胴を上記線電極の
間から送出する工程、および少なくとも1回の溶
接終了後毎に上記線電極を溶接された上記重ね合
せ部方向に平行に移行せしめる工程を含むことを
特徴とする溶接金属缶胴の製造方法。 2 金属ブランクの基体が低炭素鋼板である特許
請求の範囲第1項記載の溶接金属缶胴の製造方
法。 3 金属ブランクの厚さが約0.14〜0.35mmである
特許請求の範囲第1項記載の溶接金属缶胴の製造
方法。 4 重ね合せ部の巾が約0.1〜1.0mmである特許請
求の範囲第1項記載の溶接金属缶胴の製造方法。 5 重ね合せ部を押圧する圧力が約15〜60Kg/mm2
である特許請求の範囲第1項記載の溶接金属缶胴
の製造方法。 6 通電時間が約3〜80msecである特許請求の
範囲第1項記載の溶接金属缶胴の製造方法。 7 重ね合せ部における線電極に冷却気体を吹き
つける特許請求の範囲第1項記載の溶接金属缶胴
の製造方法。 8 金属ブランクを缶胴状に成形した成形体の側
辺端縁部の重ね合せ部を抵抗溶接することにより
溶接金属缶胴を製造する装置において、上記装置
は平行電極および線電極よりなる溶接用電極を具
備し、上記平行電極は上記成形体の軸線方向に伸
び、溶接電源に接続した一対の対向する平行な電
極よりなり、その内部には冷却媒体が流れる冷却
孔が貫通しており、かつ第1の平行電極は上記成
形体を支承するマンドレルの周縁部に固設されて
おり、第2の平行電極は上記マンドレルの中心軸
線に対し垂直方向に復動可能の押圧体の先端部に
固設されており、上記線電極は上記平行電極の対
向する面上に摺動可能に置かれた1対の線状の電
極よりなつていて、その対向する面は互に平行で
あり、かつ線電極の上記対応する面の巾は上記重
ね合せ部の巾より大きいことを特徴とする溶接用
電極を具備する溶接金属缶胴の製造装置。 9 平行電極の対向する面には、その軸線に垂直
な縦断面形状が、コ字形である案内凹部が設けら
れている特許請求の範囲第8項記載の溶接金属缶
胴の製造装置。 10 平行電極の対向する面には、その軸線に垂
直な縦断面形状が、L字形である案内凹部が設け
られている特許請求の範囲第8項記載の溶接金属
缶胴の製造装置。 11 線電極の平行電極と接する面と、重ね合せ
部と接する面が平行である特許請求の範囲第8項
記載の溶接金属缶胴の製造装置。 12 線電極の硬度(ヴイツカース)が約70〜
180である特許請求の範囲第8項記載の溶接金属
缶胴の製造装置。 13 マンドレルが溶接金属缶胴の溶接部内面を
被覆保護するための被覆保護塗料の供給管および
空気供給管を具備する特許請求の範囲第8項記載
の溶接金属缶胴の製造装置。
[Scope of Claims] 1. In a method for manufacturing a welded metal can body by resistance welding overlapping portions of side edges of a molded body formed from a metal blank into a can body shape, a pair of metal can bodies cooled by a refrigerant are provided. The molded body is arranged so that the entire overlapped portion is located between the parallel surfaces of a pair of wire electrodes, the opposing surfaces of which are parallel to each other. The step of inserting at least one of the parallel electrodes so that the opposing surfaces approach each other simultaneously presses the entire overlapped portion, and then energizes the parallel electrode for a certain period of time to weld the overlapped portion. moving at least one of the parallel electrodes,
After the pressure is released, the weld metal can body is sent out from between the wire electrodes, and the wire electrode is moved parallel to the direction of the welded overlapping portion after each welding is completed at least once. A method for manufacturing a welded metal can body, comprising: 2. The method for manufacturing a welded metal can body according to claim 1, wherein the base of the metal blank is a low carbon steel plate. 3. The method of manufacturing a welded metal can body according to claim 1, wherein the metal blank has a thickness of about 0.14 to 0.35 mm. 4. The method for manufacturing a welded metal can body according to claim 1, wherein the width of the overlapping portion is about 0.1 to 1.0 mm. 5 The pressure to press the overlapping part is approximately 15-60Kg/mm 2
A method for manufacturing a welded metal can body according to claim 1. 6. The method for manufacturing a welded metal can body according to claim 1, wherein the energization time is about 3 to 80 msec. 7. The method for manufacturing a welded metal can body according to claim 1, wherein cooling gas is blown onto the wire electrodes in the overlapped portion. 8. In an apparatus for manufacturing a welded metal can body by resistance welding the overlapping parts of the side edges of a molded body formed from a metal blank into the shape of a can body, the above-mentioned apparatus is a welding type consisting of parallel electrodes and wire electrodes. comprising a pair of parallel electrodes extending in the axial direction of the molded body and connected to a welding power source, each of which has a cooling hole through which a cooling medium flows, and The first parallel electrode is fixed to the peripheral edge of the mandrel that supports the molded body, and the second parallel electrode is fixed to the tip of the pressing body that can move back and forth in a direction perpendicular to the central axis of the mandrel. The line electrodes are comprised of a pair of linear electrodes slidably placed on opposing surfaces of the parallel electrodes, the opposing surfaces being parallel to each other and An apparatus for manufacturing a welded metal can body equipped with a welding electrode, wherein the width of the corresponding surface of the electrode is larger than the width of the overlapping portion. 9. The welded metal can body manufacturing apparatus according to claim 8, wherein the opposing surfaces of the parallel electrodes are provided with guide recesses whose vertical cross-sectional shape perpendicular to the axis is U-shaped. 10. The welded metal can body manufacturing apparatus according to claim 8, wherein the opposing surfaces of the parallel electrodes are provided with guide recesses whose vertical cross-sectional shape perpendicular to the axis is L-shaped. 11. The welded metal can body manufacturing apparatus according to claim 8, wherein the surface of the wire electrode in contact with the parallel electrode and the surface in contact with the overlapping portion are parallel. 12 The hardness (Witzkaas) of the wire electrode is approximately 70~
180. The welded metal can body manufacturing apparatus according to claim 8, wherein the welded metal can body is 180. 13. The welded metal can body manufacturing apparatus according to claim 8, wherein the mandrel is provided with a coating protection paint supply pipe and an air supply pipe for coating and protecting the inner surface of the welded part of the welded metal can body.
JP10295278A 1978-08-25 1978-08-25 Production of welded metal can barrel and device thereof Granted JPS5530345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10295278A JPS5530345A (en) 1978-08-25 1978-08-25 Production of welded metal can barrel and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10295278A JPS5530345A (en) 1978-08-25 1978-08-25 Production of welded metal can barrel and device thereof

Publications (2)

Publication Number Publication Date
JPS5530345A JPS5530345A (en) 1980-03-04
JPS6150075B2 true JPS6150075B2 (en) 1986-11-01

Family

ID=14341141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10295278A Granted JPS5530345A (en) 1978-08-25 1978-08-25 Production of welded metal can barrel and device thereof

Country Status (1)

Country Link
JP (1) JPS5530345A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931598B2 (en) * 1980-03-08 1984-08-02 東洋製罐株式会社 New welded can and manufacturing method
JPS6049425B2 (en) * 1980-06-12 1985-11-01 東洋製罐株式会社 Tein-free steel welded can with coated seams
JPS5756173A (en) * 1980-09-19 1982-04-03 Daiwa Can Co Ltd Electric resistance seaming and welding method of lateral joint of hollow cylindrical body
JPS57174468A (en) * 1981-04-18 1982-10-27 Hokkai Can Co Ltd Welded can body
JPS6092088A (en) * 1983-10-24 1985-05-23 Nippon Kokan Kk <Nkk> Electric resistance seam welding method
JPS60111782A (en) * 1983-11-21 1985-06-18 Toyo Kohan Co Ltd Production of welded can body
JPS617079A (en) * 1984-06-21 1986-01-13 Toyo Seikan Kaisha Ltd Production of welded can body
JPS62248579A (en) * 1986-09-12 1987-10-29 Toyo Seikan Kaisha Ltd Tin free steel made welded can with coated seam

Also Published As

Publication number Publication date
JPS5530345A (en) 1980-03-04

Similar Documents

Publication Publication Date Title
US3949896A (en) Seamed article
US4106167A (en) Frictional method and machine for seaming tubular sections
US4352001A (en) Method and apparatus for producing welded metallic can body
JP4818755B2 (en) Steel plate for welding can
DK152180B (en) EQUIPMENT FOR SEMI-OR-AUTOMATIC ELECTRICAL RESISTANCE AND LENGTH SEWING OF DAZE TOPICS.
EP0023753B1 (en) Method and apparatus of making welded metallic can bodies
JPS6150075B2 (en)
JPS61206576A (en) Welding method of lap joint of can body made of metallic plate and the like
US3798406A (en) Process for welding metal coated sheet structures
KR890003098B1 (en) Method of making welded can body
JPS6124258B2 (en)
US2078546A (en) Method of making can bodies
JP3212136B2 (en) Can body having a welding can body
JPS625711B2 (en)
JPS6311109B2 (en)
CA1177419A (en) Method of producing container bodies and container bodies produced thereby
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
Spinella Resistance Welding of Aluminum Alloys
USRE32251E (en) Method of electric welding tinfree cans
JP2583472B2 (en) Thermoplastic resin film striped coated metal plate and method for producing the same
JP3153001B2 (en) Can body having a welding can body
CN114193107A (en) Method for manufacturing metal composite material by adopting high-frequency welding
JP4980411B2 (en) Welding method for Ni-plated steel sheet
JPH0244889B2 (en)
JPS6150074B2 (en)