JPS6124258B2 - - Google Patents

Info

Publication number
JPS6124258B2
JPS6124258B2 JP10294878A JP10294878A JPS6124258B2 JP S6124258 B2 JPS6124258 B2 JP S6124258B2 JP 10294878 A JP10294878 A JP 10294878A JP 10294878 A JP10294878 A JP 10294878A JP S6124258 B2 JPS6124258 B2 JP S6124258B2
Authority
JP
Japan
Prior art keywords
welded
welding
metal
electrode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10294878A
Other languages
Japanese (ja)
Other versions
JPS5538209A (en
Inventor
Hisakazu Yasumuro
Kazuhisa Ishizaki
Tsuneo Imatani
Sadaki Matsui
Seishichi Kobayashi
Hiroshi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP10294878A priority Critical patent/JPS5538209A/en
Publication of JPS5538209A publication Critical patent/JPS5538209A/en
Publication of JPS6124258B2 publication Critical patent/JPS6124258B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、缶胴側面にインパルス―線溶接した
継目を有する溶接金属缶の改良に関する。 本明細書において、インパルス―線溶接継目缶
とは、金属缶胴側面継目部の全長を同時的に電気
抵抗溶接した缶体を云う。 従来、素材金属板から四角形に切り出した材料
金属板(金属ブランク)の相対する辺をわずかに
重ね合わせ、缶胴状に成形し、該成形体の重ね合
わせ部を、電気抵抗溶接して作つた、缶胴側面に
溶接継ぎ目を有する缶体は知られている。これら
の従来の缶体における継目部の溶接方法は、回転
ローラ電極方式および平行電極方式に大別され
る。 回転ローラ電極方式には米国特許明細書第
3761671号に記載されるような固定回転ローラ電
極を重ね合せ部の両面に直接接触せしめて加圧下
にシーム溶接する方式があるが、高速連続性産の
場合には、回転ローラ電極表面の汚損、損耗が激
しいので、通常は数時間毎に作業を停止して電極
を交換しなければならず、そのため生産性の低
下、保守要員の確保、さらに溶接部品質の不安定
性等の問題点を招いている。これを解決する手段
として米国特許明細書第2838651号に記載される
ような回転ローラ電極と重ね合せ部の間に被溶接
体と同期して走行する線状の電極を介挿して加圧
下にシーム溶接する方法が提案されている。この
場合は回転ローラ電極の寿命は長いけれども、線
状の電極は、溶接赤熱部において空気にさらされ
ている上に、十分に冷却することが困難であるた
め、汚損、損耗のため通常は1回しか使用でき
ず、従つて溶接された缶胴の長さ相当分の線状の
電極を必要とするという問題がある。 また以上の回転ローラ電極方式によつて溶接さ
れた金属缶胴の溶接部には次のような共通の欠点
が一般に認められる。(1)碁石状のナゲツトの発
生:回転ローラ電極溶接法に通有の現象であつ
て、熱影響の差異により、材料金属の組織が継目
の長さ方向に沿つて周期的に変化する現象を云
い、これは、電源の1サイクルにつき高い温度に
加熱される部分と低い温度に加熱される部分が
夫々2回周期的に発生するために起るものであ
る。そしてナゲツトとナゲツトの中間を完全に溶
接しようとすると、ナゲツトの部分の温度が不必
要に高くなるため、厚い酸化膜が発達して、缶に
内容物を充填した場合、腐食や漏洩の原因となり
易い。(2)スプラツシユの発生:ナゲツト部におけ
る過度の温度上昇のため、溶融した金属が重ね合
わせ部の間隙から飛び出して、重ね合せ部周縁に
固着する現象をいい、缶内面に発生したものは、
保護塗装で完全にカバーできないので、腐食、孔
食および金属の内容物中への溶出によるフレーバ
悪化の原因となりやすい。(3)メタルはみ出し:缶
端部の溶接部より缶の高さ方向に突出した三角形
状の小突起と、缶円周方向にはみ出したものとが
ある。これらはシーム溶接が一種の熱間圧延に相
当することに起因するものと思われる。前者は缶
蓋を2重巻締するさい、シーリングラバーを破損
し易く、そのため密封能が損われ、後者はブリキ
(スズメツキ鋼板)を使用する場合鉄の露出を生
ずるので、何れも内容物の腐食、漏洩、真空度の
低下等を招きやすい。(4)黒色の酸化膜の発生:重
ね合せ部のローラ電極直上、直下部とその周辺部
は赤熱状態となるが、周辺部は空気中にさらされ
ているため酸化膜が発達する。これを防止するた
めには、高価な不活性ガスを吹きつける等の特殊
の操作を必要とする。この酸化膜は多孔性のため
防食機能を果すことができないので、保護塗料を
溶接後塗装することによつてカバーされなければ
ならない。しかしこの酸化膜は脆弱であり、かつ
地鉄との密着性に劣るので2重巻締部において曲
げられるさい保護塗膜と共に地鉄から剥離し易
い。従つて、この種の缶は耐食性が要求される用
途には適しない。さらに金属ブランクがブリキ
(錫メツキ鋼板)の場合は、黒色酸化膜の発達に
伴ない、錫の酸化や地鉄中への拡散が起こり、鉄
露出を生ずる。鉄露出は内容物による腐食を促進
し、漏洩を招くおそれがある。さらに溶接部近傍
も加熱されるためその部分に錫のリフローが起こ
り、鉄―錫合金属が増え、腐食や硫化黒変を起こ
し易い。(5)熱歪み:ローラ電極の直上―直下及び
その近傍の高温部が熱膨脹し、そのまま溶接され
るので、溶接終了後の缶の溶接部付近の領域に熱
歪みが残る。これは製品の外観を損ねる。 一方平行電極を使用する金属缶胴の製造法とし
ては、米国特許明細書第3069530号において、缶
胴状成形体を支承するマンドレルの下端に固定さ
れた重ね合せ部方向に伸びる第1の電極と、第1
の電極と平行に、かつ対向して押圧体の上端部に
固定された第2の電極の間に重ね合せ部を挿入し
て、押圧下に抵抗溶接する方法が提案されてい
る。該提案によれば重ね合せ部を構成する金属ブ
ランクの側辺部の少なくとも一方をエンボス加工
して多数の小突起を設け、溶接は先ず、この小突
起の先端を溶融せしめることによつて開始させ
る。従つてこの方法では溶接部にスプラツシユが
発生し易いという欠点を有する。さらに固定電極
が直接重ね合せ部と接触するため、電極が汚損、
損耗し易く、高速連続製缶の場合には、屡々電極
の交換を必要とするという生産性の見地からは致
命的な欠陥を有する。 また米国特許明細書第2854561号には、缶胴状
成形体の重ね合せ部の内面に平行に伸びる第1の
電極と、重ね合せ部の外面に接して重ね合せ部に
対し垂直方向に移動可能な第2の薄い板状電極の
各々を溶接電源に接続し、第2の板状電極の上に
設けられた押圧体により加圧して重ね合せ部全体
を同時に溶接する方法が提案されている。この方
法は電極の頻繁な交換を必要としないという利点
は有するが、次のような問題点を有する。電極が
強制冷却されていないため、溶接時の大電流によ
つて電極が高温となり、溶接部及び電極の表面の
酸化や熱膨脹による熱歪みが起こり易く、特に第
2の薄い板状電極は熱歪みを起こし易く、そのた
め重ね合せ部に均一な加圧を与えることが困難と
なり、局部的な溶融によるスプラツシユを発生し
易い。また高速連続生産の場合は第2の板状電極
を横方向に長大にしなければならないので設備が
大きくなる。 本発明は、以上述べたような従来技術の問題点
の解消を図るものである。すなわち本発明の目的
は、黒色酸化膜および熱歪みの発生のない美麗
で、かつ2重巻締部等において破れや、漏洩、腐
食等の起ることのない健全で耐食性にすぐれか
つ、マルチビード加工、ネツクイン加工に耐え得
る溶接部を有する重ね合せ溶接金属缶を提供する
ことにある。 本発明の他の目的は、鉄露出がなく、かつリフ
ロー巾の狭い耐食性にすぐれた溶接部を有するブ
リキを素材とする重ね合せ溶接金属缶を提供する
ことにある。 上記本発明の目的は、缶胴側面にインパルス―
線溶接した継目を有する金属缶において、該継目
部の長さ方向における厚さの均一度を、厚さが最
大である部分の板厚tmaxと最小である部分の板
厚tminの比(tmax/tmin)で表わしたとき、該
均一度が 1<tmax/tmin<1.05 の範囲にあり、そして継目部における缶円周方向
の金属の延び出し量Mcが、金属ブランク板厚t
に対し Mc<1×t の関係を満足することを特徴とする本発明の溶接
金属缶によつて達成される。 上記本発明のインパルス―線溶接金属缶におい
ては、缶胴側面の継目部の、厚さが最大である部
分の板厚tmax及び金属の高さ方向の延び出し量
Mhが、金属ブランク板厚tに対し、それぞれ tmax<1.7×t Mh<0.5×t の関係を有し、溶接の熱の影響を受けた部分の最
大巾Wが0.2mmより大で0.8mmより小であることが
好ましい。 上記本発明の溶接金属缶の、継目部の缶円周方
向の金属の延び出し量というのは、該継目部にお
いて、重ね合わされた金属ブランクの端部を越え
て延び出した金属の該端部より缶円周方向(即ち
継目の長さ方向に対し直角方向)に測定した長さ
を云い、本発明書においては、継目部が電気低抗
溶接される際に受ける熱間圧延に基づくと考えら
れる通常のメタルはみ出しと、ナゲツト部におけ
る過度の加熱によるスプラツシユの両方の延び出
しの長さを含めて意味する。 添付図面の第8図は、上記延び出し量の定義を
説明する為の継目部の模式図であり、第8図のA
は溶接前の継目を形成する為の重ね合わせを示
し、第8図のB―1は溶接後の、通常のはみ出
し、そして第8図のB―2はスプラツシユを示
す。 第8図のAにおいてE,E′は、缶胴状に成形
されたブランクの重ね合わせ部1aの各端部を示
し、第8図のB―1及びB―2におけるE,
E′は溶接後の該各端部を示す。そして第8図の
B―1及びB―2において斜線を施した部分が延
び出し(はみ出し及びスプラツシユ)であり、延
び出し量はその先端P,P′と端部E,E′との距離
Mcで表わされる。 以上に述べた第8図においては、説明の便の為
に溶接後の、重ね合わせ端部の段差を拡大して模
式的に示してあるが、本発明の缶体は、継目部の
この段差が殆んど無くなるまで押圧して溶接され
たものも含む。 本発明者等は、研究の結果、従来最も普通に行
われている回転ローラ電極法による溶接金属缶の
継目部は、ナゲツトの発生により、その長さ方向
に沿つて、板厚が周期的に変化しており、この板
厚の変化が、前記ローラ電極方法による溶接金属
缶の各種欠陥の主原因であることを見出した。
又、従来提案された平行電極方法による溶接金属
缶においては、缶円周方向への金属の延び出し
(はみ出し及びスプラツシユを含む)量が大き
く、この延び出し量が一定限界を越えると、内容
物による延び出し金属の腐食及び溶出或いは硫化
黒変、黒点及び錆の発生等の欠陥の原因となるこ
とも見出した。本発明は、これらの発見に基づい
てなされたものである。 本発明の溶接金属缶は、前記特定の継目部板厚
の均一度(tmax/tmin)及び延び出し量Mcの要
件を具有することにより、これを満足しない従来
のローラ電極方法による溶接缶及びインパルス―
線溶接缶に比べ、次の利点を有する。 (1) tmax/tminの要件により、溶接部に酸化膜
が発生及び発達するのを抑制し、塗料との密着
性及び濡れ性が改善され、缶内容物に対する耐
食性が優れ、錆、硫化黒変及び黒点の発生が無
く、内容物の保存性が良好であり、長期間保存
後も穿孔缶を生じない。 (2) Mcの要件により、補正塗料によるカバレー
ジが容易で、内容物による延び出し金属の腐
食、溶出が起らず、硫化黒変、黒点、錆の発生
がなく、内容物の保存性が良好である。 又、本発明の好ましい態様においては、tmax
の値をブランクの板厚の1.7倍より小とすること
により、補正塗料による継目のカバレージが一層
容易となり、又、缶の高さ方向の金属の延び出し
量をブランクの板厚の1/2より小とすることによ
り、シーリングラバーの損傷を防止し、従つて漏
洩のない缶を得ることができる。更に、熱影響部
の巾を0.8mmより小さくすることにより、材料金
属中にデンドライト組織が発達することを抑制
し、二重巻締等の加工による破損を防止し、気泡
による腐食の発達を阻止することができる。板材
がブリキである場合には、錫のリフローにより、
黒色酸化、錫の酸化、地鉄中への錫の拡散が発生
及び発達するのを抑制し、内容物による腐食を阻
止することができ、又、硫化黒変や腐食の原因と
なる鉄―錫合金層の増加を抑制することができ
る。 本発明に使用される金属ブランクの種類につい
ては特に制限はなく、アルミニウム板等も使用で
きるのであるが、中でも通常金属缶素材として使
用されうるブリキ、テインフリースチール、薄ニ
ツケルメツキ鋼板、燐酸塩処理鋼板、黒板又はこ
れらの塗装板等の板厚約0.14〜0.35mmの被覆又は
無被覆低炭素鋼板が好適に使用される。テインフ
リースチール、燐酸塩処理鋼板及び塗装板のよう
に表面に電気絶縁性皮膜が形成されているブラン
クの場合は、良好な溶接部を得るために、ブラン
クの少なくとも重ね合せ部となる部分の両面から
これらの皮膜を適当な手段、例えばバイト、ミリ
ングカツターやグラインダー等であるいは超音波
印加等により予め除去して鉄面を露出しておくこ
とが好ましい。本発明の缶は、次のようにして製
造することができる。 所定の寸法に裁断された金属ブランクは円筒
形、四角形等の缶胴状に、通常は円筒形に成形さ
れた後、側辺の重ね合せ部を抵抗溶接されて缶胴
となる。広義の溶接は融接と鍛接を包含するが、
融接の場合は溶接部が一たん溶融してから急冷さ
れるので、気泡を含み易く、これが缶内容物の漏
洩の原因となり、また脆弱なデンドライト組織が
発達するので2重巻締加工時に破れ易い。従つて
本発明における溶接は、実質的に鍛接であるこ
と、すなわち固相接合であることが望ましい。 本発明における抵抗溶接法は、回転ローラ電極
を使用することなく、一対の平行電極により線電
極を介して缶胴成形体重ね合せ部を押圧、通電し
て、全重ね合せ部を同時に溶接するものである。 以下図面を参照しながら本発明の缶の製造方法
について説明する。 第1図は本発明の一実施例を示す溶接金属缶胴
の製造装置の概略一部切断正面図を、第2図は、
第1図の2―2線に沿う縦断面図を、第3図と第
4図は、第1図の重ね合せ部近傍の一部拡大断面
図であつて、夫々重ね合せ部を押圧する直前の状
態および溶接終了後の状態を示す。 缶胴成形機(図示されない)によつて丸められ
た缶胴成形体1はマンドレル2を跨つて第2図の
右方から送り爪16によつて送られ、溶接ステー
シヨン3において静止し、同時に押えウイング9
によつてマンドレルに密着される。溶接ステーシ
ヨン3には一対の上下平行電極4a,4bがマン
ドレル2の軸線方向に平行に配設されている。平
行電極4a,4bは、缶胴成形体1の全長と等し
いか、あるいは僅かに長いのが好ましい。短かい
場合は、重ね合せ部の長さ方向端部に電流が流れ
ず、未溶接部となり、また長すぎる場合は、電流
の回り込み現象によつて、上記端部に過大電流が
流れて、スプラツシユを起こしやすいからであ
る。従つて缶胴成形体は、上下平行電極4a,4
bの直上、直下において静止することが必要であ
る。上部平行電極4aと下部平行電極4bの相対
向する面は互に平行している。上記相対向する面
には案内凹部である溝5a,5bがマンドレル2
の軸線方向に平行に相対向して、断面コ字形に穿
設されている。平行電極内部には案内凹部である
溝5a,5bにできるだけ近接して冷却孔6が貫
通し、その内部を冷水または冷却ブライン(例え
ば−30℃の)が環流して、平行電極および線電極
を冷却して、溶接時の線電極10a,10bの温
度上昇を防止している。必要に応じて、外部から
冷却空気を吹きつけると、線電極の冷却効果はよ
り改善される。また上下平行電極はその各々の上
下に接触して設けられた導板7を介して溶接電源
(第5図の22)と接続している。上部平行電極
4aはマンドレル2の下部に埋設されており、下
部平行電極4bは押圧体8の上端に固設されてい
る。平行電極は銅又は銅合金よりなることが望ま
しい。溝5a,5bには、一対の線電極10a,
10bが摺動可能に、かつ突出して嵌装されてい
る。各線電極10a,10bは、第2図の右方に
設けられて送り出しリール(第5図の29)から
供給され、溶接回数の増加とともに溝5a,5b
内を一方向に進行して、巻取りリール(第5図の
28)によつて巻きとられる。上部線電極10a
はマンドレルの先端に着設されたアイドラー14
は缶胴の進行方向と反対に向きを変えられてか
ら、マンドレル内を貫通する案内孔18内を通つ
て巻取られる。線電極10a,10bは少なくと
も対向する面10c,10dが互にマンドレル2
の軸線に平行な面であることが重要である。缶胴
成形体1の重ね合せ部1aは直接線電極と接触し
て押圧、通電されるのであるが、押圧力が不均一
であると、特に長さ方向に不均一であると、重ね
合せ部1aにおけるブランク端縁同士の接触面1
bにおける電気抵抗が重ね合せ部長手方向に不均
一となつて、電気抵抗の小さい部分に過大電流が
流れて局部的に溶融してスプラツシユが発生する
おそれがある。ところで缶胴成形体1の内面は、
重ね合せ部附近を除いてマンドレル2に密着して
おり、従つて、重ね合せ部1aもマンドレル2の
軸線方向に基本的に平行である。従つて重ね合せ
部と接触する線電極の面10c,10dは少くと
も溶接時にマンドレル2の軸線に平行でなければ
ならない。従つて押圧体9も、マンドレル2の中
心軸線に対し移動して、線電極の面10c,10
dが溶接時にマンドレル2の軸線に平行となつ
て、重ね合せ部を押圧するように構成される必要
がある。同様にして重ね合せ部1aは巾方向にも
均一に押圧される必要がある。従つて上下線電極
10a,10bは巾方向にも平行であること、す
なわち間隔が実質的に一定であることが必要であ
る。この条件を満す範囲内で、線電極の相対向す
る面10c,10dは平面でもよく、あるいは缶
胴成形体の形状に対応する曲面でもよい。また線
電極10aの溝5aと接する面と重ね合せ部1a
と接する面10cが平行であることが、作業性及
び線電極製造の見地から好ましい。線電極10b
についても同様である。このような線電極は丸線
の軽度の平圧延によつて容易に作製することがで
きる。 さらに溶接により重ね合せ部全体が十分にマツ
シユされて、重ね合せ接合部全体の厚さが缶胴成
形体の他の部分の厚さと実質的に等しいことが望
ましい。何となれば、重ね合せ部の巾方向の一部
のみが溶接されて、重ね合せ部の巾方向端部が未
溶接で残つたとすると、この部分の塗料による完
全な保護が困難であるため内容物等により侵蝕さ
れ易く、また2重巻締部においては重ね合せ接合
部のみが厚いため段差を生じて、巻締加工が不完
全となつて内容物の漏洩等を生ずるおそれがある
からである。そのためには、重ね合せ部1a全体
が溶接時に線電極の対向する面10c,10d上
に位置することが重要である。このようにするこ
とによつて、重ね合せ部全体が十分に第4図のよ
うにマツシユされることが可能となる。さらに溶
接時に重ね合せ部及びその近傍の大部分が冷媒に
より冷却された線電極10a,10bと接触して
いて、しかも大気に露出していないことが後述の
通電時間が極めて短時間であることと相まつて、
重ね合せ接合部及びその附近の無酸化溶接を可能
にしている。線電極10a,10bは銅又は銅合
金よりなるが、その硬度(ヴイツカース硬度)は
約70〜180であることが好ましい。約70より低い
と溶接時の押圧力により重ね合せ部と接触する部
分が局部的に変形し易いので、線電極の移動量を
大きくする必要が生じ、約180より高いと、線電
極と重ね合せ部のなじみが悪いため、線電極の平
行面に若干の起伏がある場合、均一な押圧力が加
わり難いからである。 マンドレル2には、溶接完了した金属缶胴の溶
接部の内面をスプレー保護塗装するための塗料及
び空気を供給するための塗料供給管11および空
気供給管12が具備されている。またマンドレル
2は片持であるため押圧体8による押圧のさい上
方に撓むのを防止するためのマンドレルサポート
15が左右の押えウイング9の間隙に当るマンド
レル2の上部に設けられる。マンドレルサポート
15は常時はマンドレル2乃至缶胴成形体1と離
間して上方に位置するが、押圧体8が重ね合せ部
1aと接触する時に、下降してマンドレル2を缶
胴成形体1を介して押圧し、缶胴成形体が送出さ
れる時に上昇する。 第5図は本発明の溶接金属缶胴製造システムを
示す模式図である。 押圧体8はモータによつて駆動される駆動機構
18によつて上下に往復運動する。駆動機構18
としては、カム機構、クランク機構、シリンダー
機構等が採用されるが、第5図ではカム機構を例
示した。第4図から明らかのように、押圧体8の
上死点における下部線電極上面10dの位置は、
上部線電極下面10cより金属ブランクの板厚だ
け低い所にある。一方第3図から明らかなよう
に、押圧の初期における下部線電極上面10dの
位置は、上部線電極下面10cより金属ブランク
の板厚の2倍だけ低い位置にある。それ故押圧の
初期段階では、重ね合せ部1aの金属は低温のた
め変形抵抗が大きいことと相俟つて、線電極に衝
撃力が加わり易い。衝撃力が加わると、銅又は銅
合金よりなる線電極は、著るしく変形したり、極
端な場合は破断することがある。これらの事故を
防ぐためと、設定押圧時間の確保を容易にするた
め、押圧体上部8a(下部平行電極4bおよび導
体を具備する部分)と押圧体スライド部8bの間
に緩衝機構20(バネ、油圧、空圧等による)が
設けられる。また押圧体スライド部8bとカム従
動子8dの間に、スクリユー8cが設けられ、押
圧体スライド部8bの高さが調節できるように構
成されている。この高さ調節によつて、押圧力お
よび押圧時間の一定範囲内での調節が可能とな
る。 缶胴成形体1がマンドレルの溶接ステーシヨン
3に位置し静止すると、直ちに重ね合せ部の押圧
が開始するように、カム機構18と送り爪16は
同期がとられている。通電は所定押圧力に達した
後に行なうことが望ましい。押圧不十分の時点で
通電すると、重ね合せ部の圧力が不均一になるた
め局部的に過熱して、スプラツシユを発生するお
それがあるからである。そのため押圧体8が所定
押圧力を与える位置まで上昇した時点でONする
近接スイツチ21が押圧体スライド部8bに隣接
して設けられ、近接スイツチ21のONと同時
に、溶接電源回路22より平行電極4a,4bが
付勢されるように構成されている。溶接電源回路
22の種類には特に制限はないが、通電時間が約
20msecより長い場合は、タイマー付商用周波数
電源が好温に使用される。また約40msecより短
い場合は、公知の電磁蓄勢式または静電蓄勢式電
源が好適に使用される。第5図には静電蓄勢式電
源を模式的に示した。 近接スイツチ21がONすることによつてサイ
リスター22aがトリガーされることにより、コ
ンデンサー22bが放電して、トランス22cを
介して下部平行電極4a,4bを付勢する。放電
終了と同時にサイリスター22eがトリガーされ
て直流電源22dよりコンデンサー22bに充電
が行なわれる。 通電(放電)が終了し、溶接完了後、直ちに下
部平行電極4bの下降が開始するようにカム機構
18の同期がとられている。通電中に押圧を解除
することは、スパークが発生し、溶接部の焼損の
おそれがあるので好ましくない。上記下降と同期
して、押えウイング9が開放され、送り爪16が
送り爪案内17上を摺動して、第2図の右方から
左方に移行して、溶接された缶胴成形体1を溶接
ステーシヨン3から、すなわち線電極の間から送
出する。引き続き、次の缶胴成形体1が、溶接ス
テーシヨン3に送入されて、前記と同様にして溶
接が行なわれる。 線電極は前述の如く通常丸線を軽度の平圧延す
ることによつて製造される。このさい平面部に極
く僅かな起伏が生ずることがあるが、数回の溶接
によつてこの起伏は消失する。さらに溶接回数が
増えるに従つて、線電極が重ね合せ部の形状にな
じみ、適正な押圧力が重ね合せ部全領域に加わる
ようになる。そして溶接回数が数10回になり、線
電極の変形が大きくなつて均一な押圧力が得られ
にくくなるまで、線電極10a,10bは、正常
な条件の下では、同一の部分を繰返して溶接に使
用できる。この間線電極の酸化はほとんど起らな
い。従つて線電極は、数10缶の溶接毎に缶胴の長
さだけ同一方向に移行せしめてもよいし、あるい
は、1缶または数缶の溶接毎に少しづつ同一方向
に移行せしめてもよい。使用後の線電極は補修し
て再使用するか、補修にたえない場合は、溶解し
て線電極に再生する。 前記線電極の移行は、押圧体8による押圧が解
除されて、再び次の押圧が開始するまでの間に行
なわれるのが、高速連続製缶の目的を達成する上
で望ましい。この1実施例を第5図によつて説明
する。 押圧体8の上昇により近接スイツチ21がON
となる毎に、信号がプリセツトカウンター23に
入力する。プリセツトカウンター23は予め設定
された計数値の信号を入力すると、次の信号が入
るまでの間のみON信号を出力し、次いで再び1
から計数を開始するように構成されている。上記
プリセツトカウンター23の出力はAND回路2
4に入力する。一方カム機構18の回転軸に固着
された回転板19に隣接して近接スイツチ25が
設けられている。回転板19は主として非磁性体
よりなるが、押圧体8による重ね合せ部の押圧が
解除されている期間のうちの設定時間tのみ近接
スイツチ25をONとするように、近接スイツチ
25に対向する面に磁性体19aが配設されてい
る。この設定時間tは、線電極の移行するに要す
る時間であり、線電極の1回当りの設定移行長さ
と、線電極の駆動装置であるピンチロール26の
周速とから定められる。近接スイツチ25の出力
はAND回路24に入力する。AND回路24の出
力はピンチロール26の駆動機構を構成するクラ
ツチ・ブレーキ回路27に接続しており、AND
回路24の出力がONのときクラツチが入り、
OFFになるとブレーキが働くようになつてい
る。従つてピンチロール26は設定時間tの間の
み回転して、線電極を巻取りリール28の方向に
送り出す。巻取りリール28はトルクモータによ
つて駆動されるので、ピンチロール26が回転し
ている間のみ線電極を巻取る。 次に基質が低炭素鋼板である0.14〜0.35mm厚さ
の金属ブランクを素材とする場合の溶接条件につ
いて説明する。 重ね合せ部1aの巾は約0.1〜1.0mmであること
が好ましい。そして板厚が厚くなるに従つて、こ
の巾は上記範囲内で大きくなる。巾が約0.1mmよ
り小さくなると、缶胴の長手方向に沿つて均一な
重ね合せが困難となり、さらに重ね合せた後の押
圧状態で重ね合せ部がスリツプし易く、また溶接
強度も低下するからである。一方巾が約1.0mmよ
り大きくなることは、溶接強度の観点からは不必
要であり、逆に所要電流量や押圧力が増大して設
備を過大にするという不利益を生ずるからであ
る。 上記重ね合せ巾と、溶接ステーシヨン3におけ
るマンドレルの直径から、金属ブランクのマンド
レル進行方向と直角方向の寸法が定められる。ま
た溶接ステーシヨン3においてマンドレルの外側
に設けられ、その内面形状がマンドレルの外径に
対応する押えウインク9によつて缶胴成形体1の
外周をマンドレルに対して押圧することによつ
て、重ね合せ部1aは形成される。 溶接時重ね合せ部を押圧する圧力(押圧体8に
よる押圧荷重を重ね合せ部の全面積で割つた値)
は約15〜60Kg/mm2、好ましくは25〜45Kg/mm2であ
ることが望ましい。圧力が15Kg/mm2より小さい
と、重ね合せ部における鋼同士の接触抵抗が不均
一となり、局部的に過大電流が流れて、過熱して
スプラツシユを生じたり、黒色の酸化膜が生成し
たりして溶接部の安定性が失なわれる。また十分
なマツシユが行なわれないので、溶接後もブラン
クの端部がそのまま残つて溶接部に段差が生じた
りするからである。 一方圧力が60Kg/mm2より高いと、線電極の変形
(凹み)が激しく、その移動量を大きくしなけれ
ばならないからである。 通電時間は約3〜80msecであること、より好
ましくは5〜30msecであることが望ましい。3
msecより短かい場合は、十分な密接強度を得る
ためには、大きな溶接電流を必要とし、この場合
は極めて短時間に大電流が供給されるので、鋼界
面のみが局部的に溶解して、スプラツシユが発生
し易いからである。一方80msecより長くなる
と、熱が成形体の重ね合せ部近傍まで伝わり、こ
の部分の黒色酸化が著るしくなる。また熱が線電
極にも逃げるので、電流効率が低下し線電極の損
傷も激しくなる。最適の通電時間は、板厚、重ね
合せ部巾、押圧力、電源電圧、波形等によつて定
められる。板厚や、重ね合せ巾が大になるほど通
電時間は長くする必要がある。 溶接部の内面を保護塗膜によつてカバーする必
要がある場合は、マンドレル2の先端に延長して
設けられたガイド30に沿つて溶接金属缶胴1A
は左方に送られ、必要に応じ、塗料の濡れを良く
するため、予備加熱装置31(高周波加熱コイル
又はバーナ等の)によつて、約50〜300℃に再加
熱された後、塗料供給管11及び空気供給管12
の先端に設けられた保護塗料噴霧ノズル32(例
えばエアレスガス、この場合空気はスプレーパタ
ンを制御する)から、溶接部内面に保護塗料がス
プレーされる。次いで保護塗料は乾燥焼付炉、バ
ーナ、高周波加熱等によつて溶融あるいは熱硬化
して、溶接部内面及びその周縁部に無孔性の強固
な塗膜を形成する。 保護塗料としては、ポリエステル、変性ポリオ
レフイン、エポキシ、アクリル、ポリ塩化ビニ
ル、ポリアミド、酢酸ビニル、ポリビニルアセタ
ール、ポリエーテル、ポリカーボネート、エポキ
シエステル、フエノール、アミノ、アルキツド、
ポリウレタン樹脂およびケイ素樹脂などの一種以
上から得られる粉体塗料、分散型塗料、水系又は
溶剤系スラリー塗料および溶液型塗料などが目的
に応じ適宜使用される。以上の実施例ではスプレ
ー塗装方式について説明したが、ロールコートそ
の他の塗装方式を採用しても差支えない。 以上のようにして製造された溶接金属缶胴は、
底蓋を通常2重巻締法によつて固着された後炭酸
飲料、無炭酸飲料、果汁、魚貝類、その他の食
品、およびエアゾール等の非食品等を充填された
後、密封される。 本発明の缶の製造方法は、以上に述べた一例に
限定されるものでなく、例えば第6図に示される
ように、平行電極に設けられる案内凹部の縦断面
形状はL字形の凹部5c,5dであつてもよい。
さらに平行電極の対向する面は、単なる平面であ
つてもよい。また第7図に示されるように平行電
極の対向面に長さ方向に2本の小凸条33を設
け、その間に線電極を置いてもよい。また金属ブ
ランクの缶胴状への成形は、所謂インバーテツド
タイプの製缶方式によつて、溶接ステーシヨン3
において、押えウイングによつて行なつてもよ
い。さらに上部平行電極はマンドレルの上部その
他の周縁部にあつてもよい。 以下実施例によつて、本発明の効果を一属明ら
かにする。 実施例 1 缶の内面となるべき面に、エポキシフエノール
系塗料で缶胴のつぎ目部分をマージン塗装(未塗
装部を残す)した後焼付し、外面となるべき面に
もマージン塗装・印刷した厚さ0.23mmのテインフ
リースチール(電解クロム酸処理鋼板)より、
234mm×85mmのブランクを作成した。次に、この
ブランクの短辺の両端縁部約1mm巾の両面の電解
クロム酸処理被覆層を超音波剥離して、鉄面を完
全に露出せしめた。このブランクをロールフオー
マーにより短辺が軸方向になるように円筒状に
し、溶接ステーシヨンで重ね合わせて固定した
後、線電極を介して平行電極で成形体の重ね合わ
せ部に押圧力(35Kg/mm2)を加え、15msec通電
して溶接を行い、溶接缶胴(301径、5号缶)を
得た。溶接前の重ね合わせ巾は0.3mmで、溶接後
の重ね合わせ巾は約0.4mmであつた。 得られた溶接缶胴を切り開き、まず一缶中の溶
接部の最大板厚(tmax)と最小板厚(tmin)と
の比をとり、溶接厚みの均一性を調べた。さら
に、缶内面溶接部の円周方向の鉄のはみ出し量を
調べ、元板厚の倍数で表わした。 さらに、溶接部以外への鉄の飛び散り(スプラ
ツシユ)の有無を調べた。さらに、溶接部を樹脂
で埋込み、溶接方向に直角断面を研磨し、5%ナ
イタールを用いて熱影響部(母材と組織上異なる
部分)の巾を調べた。該断面を75倍に拡大した顕
微鏡写真を第9図に示す。さらに、缶高さ方向溶
接端部の鉄のはみ出し量を測定し、元板厚の倍数
で表わした。さらに、前記溶接部の最大板厚を溶
接部の板厚とし、これを元板厚の倍率で表わし
た。以上の評価の試料は10缶である。 次に、上記缶胴外面の溶接部分に、粉体塗装ガ
ンにより、巾7mm、乾燥塗膜の厚みが30〜50ミク
ロンになるように、エポキシフエノール系粉体塗
料を塗装した後、180℃の熱風乾燥炉中で15分間
焼付けた。この缶胴をフランジ加工し、内面にエ
ポキシフエノール系塗料を塗装したテインフリー
スチール製蓋を、常法により二重巻締して空缶を
作成した。この空缶にチオシアン酸アンモニウム
2%水溶液300mlを注入し、缶を陽極とし、直径
6mmのカーボン棒を陰極として極間電圧2ボルト
で電解した時、缶内面に赤色反応を呈する迄に要
する時間を測定して、赤色呈色反応値(秒)を求
めた(試料数10缶)。さらに、上記空缶にまぐろ
水煮を充填し、上記と同じテインフリースチール
製蓋を二重巻締し、レトルト殺菌を行い、50℃で
6ケ月間貯蔵後開缶し、缶内面溶接部の腐食状態
及び黒点発生の状態を調べた(○………黒点な
し、△………僅かにあり、×………非常にあり)。
さらに、6ケ月以内に生じた穿孔缶数を調べた
(以上の実缶試験の試料数は100缶)。表1に結果
を示す。 No.1〜No.6は、線電極を介して平行電極で重
ね合わせ部に圧力を加えて溶接を行つた場合、
No.7は回転ローラ電極で溶接した場合、No.8
は、線電極を介して回転ローラ電極で重ね合わせ
部に圧力を加え溶接した場合、及びNo.9は平行
電極のみを使用した場合の結果である。 実験No.1〜No.6が本発明の缶体であり、実験
No.7〜No.9が比較例である。表から明らかなよ
うに、本発明の缶体は優れた特性を有しているこ
とがわかる。 実施例 2 板厚の0.17mmのテインフリースチールを用い
て、実施例1と同様な方法で溶接缶胴(202径、
200ml)を作成した後、溶接部の最大厚み
(tmax)と最小厚み(tmin)の比、溶接部缶円周
方向の鉄のはみ出し量、スプラツシユの有無、熱
影響部の巾、溶接端縁部の缶高さ方向のはみ出し
量、及び溶接部板厚を調べた。 次に、上記溶接缶胴の内面溶接部分を、エアレ
スガンを用いてポリエステル系溶剤スラリー塗料
を塗装し、180℃の熱風乾燥炉中で4分間焼付け
た後、缶胴内面全体に、酸化ビニル樹脂系塗料と
エアレスガンによりスプレイ塗装し、焼付けを行
つた。この缶胴をフランジ加工し、塩ビ系塗料を
内面に塗装したアルミ製イージーオープン蓋を二
重巻締して、着色炭酸飲料を2℃で充填し、内面
にエポキシフエノール系塗料をベースコートし、
さらに塩ビ系塗料を塗装したテインフリースチー
ル製蓋を二重巻締し、50℃で6ケ月貯蔵後開缶し
て缶内面溶接部の腐食状態、鉄溶出量(内容物
1000gに対する溶出鉄mg:試料数10缶の平均
値)、及び内容物の変色状態を調べ、フレーバー
評価(パネル数10人、5………優秀、4………良
好、3………普通、2………不良、1………劣
悪)を行つた。 さらに、6ケ月以内に生じた穿孔缶数を調べ
た。結果を表2に示す。No.10〜No.15は、線電
極を介して平行電極で重ね合わせ部に圧力を加え
て溶接を行つた場合、No.16は回転ローラ電極で
溶接した場合、No.17は線電極を介して回転ロー
ラ電極で重ね合わせ部分圧力を加え溶接した場
合、及びNo.18は平行電極のみを使用した場合の
結果である。 実験No.10〜No.15が本発明の缶体であり、実
験No.16〜No.18が比較例である。表から明らか
なように、本発明の缶体は優れた特性を有してい
ることがわかる。 実施例 3 缶の内面となるべき面に、エポキシフエノール
系塗料を缶胴のつぎ目部分をマージン塗装した後
焼付し、外面となるべき面にもマージン塗装・印
刷した厚さ0.23mm、錫メツキ量25ld/B.B(錫層
厚約0.6μm)の電気メツキブリキ板から、234mm
×85mmのブランクを作成した。このブランクをロ
ールフオーマーにより短辺が軸方向になるように
円筒状にし、溶接ステーシヨンで重ね合わせて固
定した後、線電極を介して平行電極で成形体の重
ね合わせ部に押圧力(30Kg/mm2)を加え、
15msec通電して実施例1と同様にして溶接を行
い、溶接缶胴(301径、5号缶)を得た、溶接前
の重ね合わせ巾は0.3mmで溶接後の重ね合わせ巾
は約0.4mmであつた。 得られた缶胴から、溶接部の最大厚み
(tmax)と最小厚み(tmin)の比、溶接部缶円周
方向の鉄のはみ出し量、スプラツシユの有無、熱
影響部の巾、溶接端縁部の缶高さ方向のはみ出し
量、溶接部板厚及び溶接部近傍の錫リフロー巾を
調べた(試料数10缶)。 次に、上記溶接缶胴内外面の溶接部分に、粉体
塗装ガンにより巾7mm、乾燥塗膜の厚みが30〜50
ミクロンになるように、エポキシフエノール系粉
体塗料を塗装した後、180℃の熱風乾燥炉中で15
分間焼付けた。上記缶胴をフランジ加工し、内面
にエポキシフエノール系塗料を塗装したブリキ製
蓋を、常法により二重巻締して空缶を作成し、赤
色呈色反応値を調べた。さらに、上記空缶にさけ
水煮を充填し、上記と同じブリキ蓋を二重巻締
し、レトルト殺菌を行い、50℃で6ケ月間貯蔵後
開缶し、缶内面溶接部の状態、硫化黒変の発生状
態、及び錆の発生状態を調べた(試料数各100
缶)。表3に結果を示す。 No.19〜No.24は、線電極を介して平行電極で
重ね合わせ部に押圧力を加えて溶接を行つた場
合、No.25は、線電極を介して回転ローラ電極で
重ね合わせ部に押圧力を加え溶接した場合、及び
No.26は平行電極のみを使用した場合の結果であ
る。 実験No.19〜No.24が本発明の缶体であり、実
験No.25〜No.26が比較例である。表から明らか
なように、本発明の缶体は優れた特性を有してい
ることがわかる。 実施例 4 板厚0.17mmの電気メツキブリキ板を用いて、実
施例3と同様な方法で溶接缶胴(202径、200ml)
を作成した後、溶接部の最大厚み(tmax)と最
小厚み(tmin)の比、溶接部缶円周方向の鉄の
はみ出し量、スプラツシユの有無、熱影響部の
巾、溶接端縁部の缶高さ方向のはみ出し量、溶接
部板厚及び溶接部近傍の錫のリフロー巾を調べ
た。 次に、上記缶胴をマルチビート加工し、さらに
ネツクイン加工した後、缶胴の内面溶接部分を、
エアレスガンを用いてポリエステル系溶剤スラリ
ー塗料を塗装し、180℃の熱風乾燥炉中で4分間
焼付けた後、この缶胴をフランジ加工し、塩化ビ
ニル樹脂系塗料を塗装したアルミ製イージーオー
プン蓋を二重巻締し、オレンジジユースを90℃で
充填し、内面にエポキシフエノール系塗料を塗装
したブリキ製蓋を二重巻締し、50℃で6ケ月間貯
蔵後開缶して、缶内面溶接部の腐食状態、鉄溶出
量、内容物の変色状態、フレーバー評価、及び6
ケ月以内に生じた穿孔缶数を調べた。 結果を表4に示す。No.27〜No.32は、線電極
を介して平行電極で重ね合わせ部に圧力を加えて
溶接を行つた場合、No.33は線電極を介して回転
ローラ電極で重ね合わせ部に押圧力を加え溶接し
た場合、及びNo.34は、平行電極のみを使用した
場合の結果である。 実験No.27〜No.32が本発明の缶体であり、実
験No.33〜No.34が比較例である。表から明らか
なように、本発明の缶体は優れた特性を有してい
ることがわかる。 実施例 5 実施例1と同じ手段によつて得られた、板厚
0.17mmのテインフリースチールの円筒成形体
(202径、200ml)を、溶接ステーシヨンで重ね合
わせて固定した後、線電極を介して平行電極で成
形体の重ね合わせ部に押圧力(40Kg/mm2)を加
え、溶接電圧を変えて15msec通電して溶接を行
い、溶接缶胴を作成した。この溶接缶胴から、内
面溶接端部の缶高さ方向の鉄のはみ出し量を調べ
た。 次に、溶接缶胴の内外面溶接部に、エアレスガ
ンにより巾7mm、乾燥塗膜の厚みが30〜50ミクロ
ンになるように、ポリオレフイン系溶剤スラリー
塗料を塗装した後、170℃の熱風乾燥炉中で4分
間焼付けた。さらに、この缶胴内面に塩化ビニル
樹脂系塗料をエアレスガンにより塗装し、焼付け
を行つた。 この缶胴に、内面に塩ビ系塗料を塗装したアル
ミ製イージーオープン蓋を二重巻締した後、コー
ラを2℃で充填し、フエノールエポキシ系塗料を
ベースコートし、さらに塩ビ系塗料を塗装したテ
インフリースチール製蓋を二重巻締し、50℃で6
ケ月貯蔵後開缶して、鉄溶出量とフレーバーを調
べた。表5に結果を示す。 本発明の缶体は優れた特性を有していることが
わかる。 実施例 6 実施例3と同じ手段によつて得られた、板厚
0.23mmのブリキ板の円筒成形体(202径、200ml)
を、溶接ステーシヨンで重ね合わせて固定した
後、線電極を介して平行電極で成形体の重ね合わ
せ部に押圧力(35Kg/mm2)を加え、溶接電圧を変
えて15msec通電して溶接を行い、溶接缶胴を作
成した。この溶接缶胴から、溶接部板厚を調べ
た。次に、溶接缶胴の内外面溶接部をポリエステ
ル系溶剤スラリー塗料で補正した後、内面に塩化
ビニル樹脂系塗料を塗装したアルミ製イージーオ
ープン蓋を常法により二重巻締し、リンゴジユー
スを90℃で充填し、内面にエポキシフエノール系
塗料を塗装したブリキ製蓋を二重巻締して、50℃
で6ケ月貯蔵後開缶し、缶内溶接部の腐食状態、
鉄溶出量、フレーバー、穿孔缶数を調べた。表6
に結果を示す。 本発明の缶体は優れた特性を有していることが
わかる。
The present invention relates to an improvement in a welded metal can having an impulse-line welded seam on the side surface of the can body. In this specification, an impulse-line welded seam can refers to a can body in which the entire length of the metal can body side seam is simultaneously electrical resistance welded. Conventionally, a material metal plate (metal blank) was cut into a rectangular shape from a raw metal plate, the opposite sides of which were slightly overlapped, formed into a can body shape, and the overlapping portion of the formed body was electrically resistance welded. , can bodies having a welded seam on the side of the can body are known. These conventional methods of welding joints in can bodies are broadly classified into rotating roller electrode methods and parallel electrode methods. The rotating roller electrode method is described in U.S. Patent Specification No.
There is a method, such as that described in No. 3761671, in which fixed rotating roller electrodes are brought into direct contact with both sides of the overlapping part and seam welded under pressure. Due to the high level of wear and tear, work must normally be stopped every few hours to replace the electrodes, leading to problems such as reduced productivity, lack of maintenance personnel, and unstable weld quality. There is. As a means to solve this problem, a linear electrode that runs in synchronization with the workpiece is inserted between the rotating roller electrode and the overlapping part as described in U.S. Patent No. 2,838,651, and the seam is welded under pressure. A welding method has been proposed. In this case, the rotating roller electrode has a long lifespan, but the linear electrode is exposed to the air at the red-hot part of the welding area and is difficult to cool sufficiently, so it usually has a long lifespan due to contamination and wear. There is a problem in that only one round can be used, and therefore a linear electrode corresponding to the length of the welded can body is required. Furthermore, the following common drawbacks are generally recognized in the welded parts of metal can bodies welded by the above-mentioned rotating roller electrode method. (1) Occurrence of go stone-like nuggets: This is a common phenomenon in rotating roller electrode welding, in which the structure of the material metal changes periodically along the length of the seam due to differences in thermal effects. This occurs because a portion heated to a high temperature and a portion heated to a low temperature occur periodically in each cycle of the power supply. If you try to completely weld the middle between the nuggets, the temperature at the nuggets will become unnecessarily high, which will cause a thick oxide film to develop and cause corrosion or leakage when the can is filled with contents. easy. (2) Occurrence of splash: This is a phenomenon in which molten metal jumps out from the gap between the overlapping parts due to an excessive temperature rise in the nugget part and sticks to the periphery of the overlapping part. Splash that occurs on the inner surface of the can is
Since it cannot be completely covered with a protective coating, it is likely to cause corrosion, pitting, and deterioration of flavor due to metal leaching into the contents. (3) Metal protrusion: There are small triangular protrusions that protrude from the welded part of the can end in the height direction of the can, and protrusions that protrude in the circumferential direction of the can. This seems to be due to the fact that seam welding corresponds to a type of hot rolling. The former tends to damage the sealing rubber when double-sealing the can lid, thereby impairing its sealing ability, while the latter exposes the iron when tin plate (stainless steel plate) is used, so both can lead to corrosion of the contents. , leakage, decrease in vacuum level, etc. are likely to occur. (4) Formation of a black oxide film: The areas directly above and below the roller electrodes in the overlapped area and the surrounding areas become red hot, but the surrounding areas are exposed to the air, so an oxide film develops. To prevent this, special operations such as spraying with expensive inert gas are required. Since this oxide film is porous and cannot perform a corrosion protection function, it must be covered by applying a protective paint after welding. However, this oxide film is fragile and has poor adhesion to the base steel, so it is likely to peel off from the base steel together with the protective coating when the double seam portion is bent. Therefore, this type of can is not suitable for applications requiring corrosion resistance. Further, when the metal blank is tin plated (tin-plated steel plate), as a black oxide film develops, tin oxidizes and diffuses into the base iron, resulting in iron exposure. Exposed iron may accelerate corrosion by the contents and may lead to leakage. Furthermore, since the vicinity of the weld is also heated, tin reflow occurs in that area, increasing the amount of iron-tin alloy metal, which tends to cause corrosion and sulfide blackening. (5) Thermal distortion: The high-temperature area directly above, directly below, and in the vicinity of the roller electrode expands thermally and is welded as it is, so thermal distortion remains in the area near the welded part of the can after welding is completed. This spoils the appearance of the product. On the other hand, as a method for manufacturing a metal can body using parallel electrodes, U.S. Pat. , 1st
A method has been proposed in which an overlapping portion is inserted between a second electrode fixed to the upper end of a pressing body parallel to and facing the electrode, and resistance welding is performed under pressure. According to this proposal, at least one side of the metal blanks constituting the overlapping portion is embossed to provide a large number of small protrusions, and welding is first started by melting the tips of the small protrusions. . Therefore, this method has the disadvantage that splashes are likely to occur in the welded area. Furthermore, since the fixed electrode comes into direct contact with the overlapping part, the electrode becomes contaminated and
The electrodes are easily worn out, and in the case of high-speed continuous can manufacturing, the electrodes often need to be replaced, which is a fatal defect from a productivity standpoint. Further, U.S. Patent No. 2,854,561 discloses a first electrode extending parallel to the inner surface of the overlapping portion of the can body-shaped molded body, and a first electrode that is in contact with the outer surface of the overlapping portion and is movable in a direction perpendicular to the overlapping portion. A method has been proposed in which each of the second thin plate-shaped electrodes is connected to a welding power source, and pressure is applied by a pressing body provided on the second plate-shaped electrode to simultaneously weld the entire overlapped portion. Although this method has the advantage of not requiring frequent exchange of electrodes, it has the following problems. Because the electrode is not forcedly cooled, the large current during welding causes the electrode to reach a high temperature, which tends to cause thermal distortion due to oxidation and thermal expansion of the welded part and the surface of the electrode.In particular, the second thin plate-shaped electrode is susceptible to thermal distortion. Therefore, it is difficult to apply uniform pressure to the overlapped portion, and splashes due to local melting are likely to occur. Furthermore, in the case of high-speed continuous production, the second plate-shaped electrode must be made longer in the lateral direction, which increases the size of the equipment. The present invention aims to solve the problems of the prior art as described above. In other words, the object of the present invention is to create a multi-bead that is beautiful without the occurrence of black oxide film or thermal distortion, is sound and has excellent corrosion resistance without tearing, leakage, corrosion, etc. in the double seamed parts, etc. An object of the present invention is to provide a lap welded metal can having a welded part that can withstand processing and neck-in processing. Another object of the present invention is to provide a stack welded metal can made of tin plate, which has no exposed iron and a welded part with a narrow reflow width and excellent corrosion resistance. The above object of the present invention is to provide impulse-
In a metal can with a line-welded seam, the uniformity of the thickness in the longitudinal direction of the seam is determined by the ratio of the plate thickness tmax at the maximum thickness to the plate thickness tmin at the minimum thickness (tmax/ tmin), the uniformity is in the range of 1<tmax/tmin<1.05, and the amount of metal extension Mc in the can circumferential direction at the joint is equal to the metal blank plate thickness t.
This is achieved by the welded metal can of the present invention, which is characterized in that it satisfies the relationship Mc<1×t. In the above impulse-line welded metal can of the present invention, the plate thickness tmax of the maximum thickness portion of the joint on the side of the can body and the amount of extension of the metal in the height direction
Mh has the relationship tmax < 1.7 × t Mh < 0.5 × t with respect to the metal blank plate thickness t, and the maximum width W of the part affected by the welding heat is greater than 0.2 mm and less than 0.8 mm. Preferably, it is small. In the welded metal can of the present invention, the amount of metal extending in the circumferential direction of the can at the joint is defined as the end of the metal extending beyond the ends of the overlapping metal blanks at the joint. It refers to the length measured in the circumferential direction of the can (i.e., the direction perpendicular to the length direction of the seam), and in the present invention, it is considered to be based on the hot rolling that the seam undergoes when it is electrically welded with low resistance. This includes the length of both normal metal extrusion and splash caused by excessive heating at the nugget. FIG. 8 of the attached drawings is a schematic diagram of the joint portion for explaining the definition of the above-mentioned extension amount, and A of FIG.
B-1 in FIG. 8 shows the overlapping to form a seam before welding, B-1 in FIG. 8 shows the normal protrusion after welding, and B-2 in FIG. 8 shows the splash. In A of FIG. 8, E and E' indicate each end of the overlapping part 1a of the blank formed into the shape of a can body, and E and E' in B-1 and B-2 of FIG.
E' indicates each end after welding. In B-1 and B-2 of Fig. 8, the shaded parts are the extensions (protrusion and splash), and the amount of extension is the distance between the tips P, P' and the ends E, E'.
Represented by Mc. In FIG. 8 described above, the step at the overlapped end after welding is enlarged and schematically shown for convenience of explanation. This includes those welded by pressing until it is almost completely gone. As a result of research, the present inventors have found that the joints of metal cans welded using the rotating roller electrode method, which is the most commonly used conventional method, have a periodic change in plate thickness along the length due to the occurrence of nuggets. It has been found that this change in plate thickness is the main cause of various defects in welded metal cans produced by the roller electrode method.
In addition, in welded metal cans made using the parallel electrode method proposed in the past, the amount of metal extending in the circumferential direction of the can (including protrusion and splash) is large, and if this amount of extension exceeds a certain limit, the contents may It has also been found that this causes defects such as corrosion and elution of the extended metal or the occurrence of black sulfide, black spots, and rust. The present invention has been made based on these discoveries. The welded metal can of the present invention has the above-mentioned requirements for uniformity of joint plate thickness (tmax/tmin) and extension amount Mc. ―
It has the following advantages compared to wire welded cans. (1) The tmax/tmin requirements suppress the generation and development of oxide films on welds, improve adhesion and wettability with paint, provide excellent corrosion resistance to can contents, and prevent rust and sulfide blackening. Also, there is no occurrence of black spots, the storage stability of the contents is good, and no perforation occurs even after long-term storage. (2) Due to the requirements of Mc, it is easy to cover with correction paint, there is no corrosion or elution of the extended metal by the contents, there is no occurrence of black sulfide discoloration, sunspots, or rust, and the preservation of the contents is good. It is. Furthermore, in a preferred embodiment of the present invention, tmax
By making the value smaller than 1.7 times the blank plate thickness, it becomes easier to cover the seam with correction paint, and the amount of metal extension in the can height direction is reduced to 1/2 of the blank plate thickness. The smaller size prevents damage to the sealing rubber and thus provides a leak-free can. Furthermore, by reducing the width of the heat-affected zone to less than 0.8 mm, it suppresses the development of dendrite structures in the metal material, prevents damage caused by processes such as double seaming, and prevents the development of corrosion due to bubbles. can do. If the plate material is tin, tin reflow can be used to
It can suppress the occurrence and development of black oxidation, tin oxidation, and tin diffusion into the base iron, and prevent corrosion caused by the contents, and also prevent iron-tin, which causes sulfide blackening and corrosion. Increase in alloy layer can be suppressed. There are no particular restrictions on the type of metal blank used in the present invention, and aluminum plates, etc., can also be used, but among them, tinplate, which is commonly used as material for metal cans, stain-free steel, thin nickel-plated steel sheets, and phosphate-treated steel sheets. A coated or uncoated low carbon steel plate having a thickness of about 0.14 to 0.35 mm, such as a blackboard or a coated plate thereof, is preferably used. In the case of blanks with an electrically insulating film formed on their surfaces, such as stain-free steel, phosphate-treated steel plates, and painted plates, in order to obtain a good weld, at least both sides of the overlapping part of the blank should be Therefore, it is preferable to remove these films in advance using a suitable means such as a cutting tool, a milling cutter, a grinder, etc. or by applying ultrasonic waves to expose the iron surface. The can of the present invention can be manufactured as follows. A metal blank cut to predetermined dimensions is formed into a cylindrical, square, or other can body shape, usually a cylindrical shape, and then the overlapped portions of the sides are resistance welded to form the can body. Welding in a broad sense includes fusion welding and forge welding, but
In the case of fusion welding, the welded part is once melted and then rapidly cooled, so it is easy to contain air bubbles, which can cause leakage of the contents of the can, and a fragile dendrite structure develops, which can cause breakage during the double seaming process. easy. Therefore, the welding in the present invention is preferably forge welding, that is, solid phase welding. The resistance welding method of the present invention is a method in which a pair of parallel electrodes presses and energizes the overlapped parts of the can body molded weights via a wire electrode, without using rotating roller electrodes, and welds all the overlapped parts at the same time. It is. The method for manufacturing a can of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic partially cutaway front view of a welded metal can body manufacturing apparatus showing an embodiment of the present invention, and FIG.
3 and 4 are partially enlarged sectional views of the vicinity of the overlapped portion in FIG. 1, respectively, immediately before pressing the overlapped portion. and the state after welding is completed. The can body formed body 1, which has been rolled by a can body forming machine (not shown), is fed by a feed pawl 16 from the right side in FIG. wing 9
is tightly attached to the mandrel. A pair of upper and lower parallel electrodes 4a and 4b are arranged in the welding station 3 in parallel to the axial direction of the mandrel 2. It is preferable that the parallel electrodes 4a, 4b have a length equal to or slightly longer than the entire length of the molded can body 1. If it is too short, no current will flow to the lengthwise ends of the overlapping part, resulting in an unwelded part. If it is too long, an excessive current will flow to the ends due to the current wraparound phenomenon, resulting in a splash. This is because it is easy to cause Therefore, the can body molded body has upper and lower parallel electrodes 4a, 4
It is necessary to stand still directly above or below b. The opposing surfaces of the upper parallel electrode 4a and the lower parallel electrode 4b are parallel to each other. Grooves 5a and 5b, which are guide recesses, are formed on the opposing surfaces of the mandrel 2.
They are perforated parallel to each other in the axial direction, and have a U-shaped cross section. A cooling hole 6 penetrates inside the parallel electrode as close as possible to the guide grooves 5a and 5b, and cold water or cooling brine (for example, at -30°C) circulates inside the hole to cool the parallel electrode and the wire electrode. By cooling, the wire electrodes 10a, 10b are prevented from increasing in temperature during welding. If necessary, the cooling effect of the wire electrodes can be further improved by blowing cooling air from the outside. Further, the upper and lower parallel electrodes are connected to a welding power source (22 in FIG. 5) via conductive plates 7 provided in contact with each other above and below. The upper parallel electrode 4a is buried under the mandrel 2, and the lower parallel electrode 4b is fixed to the upper end of the pressing body 8. Preferably, the parallel electrodes are made of copper or a copper alloy. In the grooves 5a, 5b, a pair of wire electrodes 10a,
10b is fitted so as to be slidable and protrude. Each wire electrode 10a, 10b is provided on the right side in FIG. 2 and is supplied from a feed reel (29 in FIG. 5), and as the number of welding increases, the grooves 5a, 5b
The wire travels in one direction inside and is wound up by a take-up reel (28 in FIG. 5). Upper line electrode 10a
is the idler 14 attached to the tip of the mandrel.
is turned against the direction of travel of the can body and then passed through a guide hole 18 passing through the mandrel and wound up. At least the opposing surfaces 10c and 10d of the line electrodes 10a and 10b are connected to the mandrel 2.
It is important that the plane be parallel to the axis of the plane. The overlapped portion 1a of the can body molded body 1 is directly pressed and energized by contacting the wire electrode, but if the pressing force is uneven, especially in the length direction, the overlapped portion 1a Contact surface 1 between blank edges in 1a
The electrical resistance at point (b) becomes non-uniform in the longitudinal direction of the overlapping length, and there is a risk that an excessive current will flow through the portion of low electrical resistance, causing local melting and splash. By the way, the inner surface of the can body molded body 1 is
It is in close contact with the mandrel 2 except for the vicinity of the overlapped portion, and therefore the overlapped portion 1a is also basically parallel to the axial direction of the mandrel 2. Therefore, the surfaces 10c and 10d of the wire electrodes that come into contact with the overlapping portion must be parallel to the axis of the mandrel 2 at least during welding. Therefore, the pressing body 9 also moves relative to the central axis of the mandrel 2 and presses the surfaces 10c and 10 of the wire electrodes.
d must be configured so that it is parallel to the axis of the mandrel 2 during welding and presses the overlapping portion. Similarly, the overlapping portion 1a needs to be pressed uniformly in the width direction as well. Therefore, it is necessary that the upper and lower line electrodes 10a and 10b are also parallel to each other in the width direction, that is, the interval between them is substantially constant. Within the range that satisfies this condition, the opposing surfaces 10c and 10d of the wire electrodes may be flat or may be curved surfaces corresponding to the shape of the molded can body. In addition, the surface of the line electrode 10a in contact with the groove 5a and the overlapping portion 1a
It is preferable from the viewpoint of workability and wire electrode production that the surface 10c in contact with is parallel. Line electrode 10b
The same applies to Such a wire electrode can be easily produced by light flat rolling of a round wire. Furthermore, it is desirable that the entire overlapped portion be sufficiently matted by welding so that the thickness of the entire overlapped portion is substantially equal to the thickness of the other portions of the formed can body. This is because if only a part of the width of the overlapped part is welded and the widthwise end of the overlapped part remains unwelded, it is difficult to completely protect this part with paint. This is because it is easily corroded by objects, etc., and in the case of double seams, only the overlapping joints are thick, creating a step, which may result in incomplete seaming and the risk of leakage of contents. . For this purpose, it is important that the entire overlapped portion 1a be located on the opposing surfaces 10c and 10d of the wire electrodes during welding. By doing so, the entire overlapped portion can be sufficiently mashed as shown in FIG. 4. Furthermore, during welding, most of the overlapping part and its vicinity are in contact with the wire electrodes 10a, 10b cooled by the refrigerant, and are not exposed to the atmosphere, which means that the energization time described below is extremely short. Together,
This enables oxidation-free welding of overlap joints and their surrounding areas. The wire electrodes 10a, 10b are made of copper or a copper alloy, and preferably have a hardness (Witzkers hardness) of about 70 to 180. If it is lower than about 70, the part that contacts the overlapping part will be easily deformed locally due to the pressing force during welding, so it will be necessary to increase the amount of movement of the wire electrode. This is because if there are slight undulations on the parallel surfaces of the wire electrodes, it is difficult to apply a uniform pressing force because the parts do not fit well. The mandrel 2 is equipped with a paint supply pipe 11 and an air supply pipe 12 for supplying paint and air for spray protective painting of the inner surface of the welded part of the metal can body after welding. Further, since the mandrel 2 is cantilevered, a mandrel support 15 is provided at the upper part of the mandrel 2 in the gap between the right and left presser wings 9 to prevent it from bending upward when pressed by the pressing body 8. The mandrel support 15 is normally located above the mandrel 2 and the formed can body 1, but when the pressing body 8 comes into contact with the overlapped portion 1a, it descends and supports the mandrel 2 through the formed can body 1. It rises when the molded can body is delivered. FIG. 5 is a schematic diagram showing the welded metal can body manufacturing system of the present invention. The pressing body 8 is reciprocated up and down by a drive mechanism 18 driven by a motor. Drive mechanism 18
Although a cam mechanism, a crank mechanism, a cylinder mechanism, etc. are employed as the mechanism, a cam mechanism is illustrated in FIG. As is clear from FIG. 4, the position of the upper surface 10d of the lower wire electrode at the top dead center of the pressing body 8 is
It is located at a location lower than the lower surface 10c of the upper line electrode by the thickness of the metal blank. On the other hand, as is clear from FIG. 3, the position of the upper surface 10d of the lower line electrode at the initial stage of pressing is lower than the lower surface 10c of the upper line electrode by twice the thickness of the metal blank. Therefore, at the initial stage of pressing, the metal of the overlapped portion 1a is at a low temperature and thus has a large deformation resistance, and this combined with the fact that impact force is likely to be applied to the wire electrode. When an impact force is applied, a wire electrode made of copper or a copper alloy may be significantly deformed or, in extreme cases, may break. In order to prevent these accidents and to easily ensure the set pressing time, a buffer mechanism 20 (spring, (hydraulic, pneumatic, etc.) is provided. Further, a screw 8c is provided between the pressing body sliding portion 8b and the cam follower 8d, so that the height of the pressing body sliding portion 8b can be adjusted. This height adjustment makes it possible to adjust the pressing force and pressing time within a certain range. The cam mechanism 18 and the feed pawl 16 are synchronized so that pressing of the overlapped portion immediately starts when the can body formed body 1 is positioned at the welding station 3 of the mandrel and comes to rest. It is desirable that the current be applied after a predetermined pressing force is reached. This is because if the current is applied when the pressing force is insufficient, the pressure on the overlapped portions will become uneven, leading to local overheating, which may cause splash. Therefore, a proximity switch 21 that is turned ON when the pressing body 8 rises to a position where a predetermined pressing force is applied is provided adjacent to the pressing body sliding portion 8b. , 4b are energized. There are no particular restrictions on the type of welding power supply circuit 22, but the energization time is approximately
If the time is longer than 20 msec, a commercial frequency power supply with a timer is used to maintain a good temperature. If the time is shorter than about 40 msec, a known electromagnetic energy storage type or electrostatic energy storage type power source is suitably used. FIG. 5 schematically shows an electrostatic storage type power source. When the proximity switch 21 is turned on, the thyristor 22a is triggered, thereby discharging the capacitor 22b and energizing the lower parallel electrodes 4a and 4b via the transformer 22c. At the same time as the discharge ends, the thyristor 22e is triggered and the capacitor 22b is charged by the DC power supply 22d. The cam mechanism 18 is synchronized so that the lower parallel electrode 4b immediately starts descending after the energization (discharge) is finished and the welding is completed. It is not preferable to release the pressure while the current is being applied because sparks are generated and there is a risk of burnout of the welded portion. In synchronization with the above-mentioned lowering, the presser wing 9 is released, the feed pawl 16 slides on the feed pawl guide 17, and the welded can body formed body is moved from the right side to the left side in Fig. 2. 1 from the welding station 3, ie between the wire electrodes. Subsequently, the next molded can body 1 is fed into the welding station 3 and welded in the same manner as described above. As mentioned above, wire electrodes are usually manufactured by lightly flat rolling a round wire. At this time, very slight undulations may occur on the flat surface, but these undulations disappear after welding several times. Furthermore, as the number of welding increases, the wire electrode adapts to the shape of the overlapping part, and an appropriate pressing force is applied to the entire area of the overlapping part. Under normal conditions, the wire electrodes 10a and 10b are welded repeatedly on the same part until the number of welds reaches several tens and the deformation of the wire electrode becomes large and it becomes difficult to obtain a uniform pressing force. Can be used for During this time, almost no oxidation of the wire electrode occurs. Therefore, the wire electrode may be moved in the same direction by the length of the can body every time several tens of cans are welded, or it may be moved little by little in the same direction every time one or several cans are welded. . After use, wire electrodes can be repaired and reused, or if they cannot be repaired, they can be melted and recycled into wire electrodes. In order to achieve the purpose of high-speed continuous can manufacturing, it is preferable that the wire electrodes be moved between the time when the pressing by the pressing body 8 is released and the next pressing starts again. This embodiment will be explained with reference to FIG. Proximity switch 21 is turned on due to the rise of pressing body 8
A signal is input to the preset counter 23 each time. When the preset counter 23 receives a signal with a preset count value, it outputs an ON signal only until the next signal is input, and then turns ON again.
It is configured to start counting from. The output of the preset counter 23 mentioned above is sent to the AND circuit 2.
Enter 4. On the other hand, a proximity switch 25 is provided adjacent to a rotating plate 19 fixed to the rotating shaft of the cam mechanism 18. The rotary plate 19 is mainly made of a non-magnetic material, and is opposed to the proximity switch 25 so that the proximity switch 25 is turned ON only for a set time t during the period when the pressing body 8 is not pressing the overlapping portion. A magnetic body 19a is arranged on the surface. The set time t is the time required for the line electrode to move, and is determined from the set length of the line electrode's movement each time and the circumferential speed of the pinch roll 26, which is a drive device for the line electrode. The output of the proximity switch 25 is input to the AND circuit 24. The output of the AND circuit 24 is connected to a clutch/brake circuit 27 that constitutes the drive mechanism of the pinch roll 26, and
When the output of circuit 24 is ON, the clutch engages,
The brakes are designed to work when turned off. Therefore, the pinch roll 26 rotates only for a set time t to feed the wire electrode in the direction of the take-up reel 28. Since the take-up reel 28 is driven by a torque motor, it takes up the wire electrode only while the pinch roll 26 is rotating. Next, the welding conditions will be explained when the substrate is a metal blank of 0.14 to 0.35 mm thick, which is a low carbon steel plate. The width of the overlapping portion 1a is preferably about 0.1 to 1.0 mm. As the plate thickness increases, this width increases within the above range. If the width is less than approximately 0.1 mm, it will be difficult to stack the cans uniformly along the length of the can body, and the overlapped portion will likely slip when pressed after stacking, and the welding strength will also decrease. be. On the other hand, it is unnecessary for the width to be larger than about 1.0 mm from the viewpoint of welding strength, and on the contrary, the required amount of current and pressing force increase, resulting in the disadvantage of making the equipment too large. From the overlapping width and the diameter of the mandrel at the welding station 3, the dimension of the metal blank in the direction perpendicular to the direction of movement of the mandrel is determined. In addition, in the welding station 3, the outer periphery of the formed can body 1 is pressed against the mandrel by a presser wink 9, which is provided on the outside of the mandrel and whose inner surface shape corresponds to the outer diameter of the mandrel. A portion 1a is formed. Pressure to press the overlapping part during welding (value obtained by dividing the pressing load by the pressing body 8 by the total area of the overlapping part)
is about 15 to 60 Kg/mm 2 , preferably 25 to 45 Kg/mm 2 . If the pressure is less than 15Kg/ mm2 , the contact resistance between the steels at the overlapping part will be uneven, causing excessive current to flow locally, causing overheating, causing splashes, and forming a black oxide film. The stability of the weld is lost. Furthermore, since sufficient mashing is not performed, the edges of the blank remain as they are even after welding, resulting in a step in the welded area. On the other hand, if the pressure is higher than 60 Kg/mm 2 , the wire electrode will be severely deformed (indented) and the amount of movement must be increased. It is desirable that the current application time be approximately 3 to 80 msec, more preferably 5 to 30 msec. 3
If it is shorter than msec, a large welding current is required to obtain sufficient bond strength, and in this case, a large current is supplied in an extremely short period of time, so only the steel interface is locally melted. This is because splashes are likely to occur. On the other hand, if the time is longer than 80 msec, the heat will be transmitted to the vicinity of the overlapping part of the molded bodies, and the black oxidation in this part will become significant. Heat also escapes to the wire electrodes, resulting in lower current efficiency and severe damage to the wire electrodes. The optimum energization time is determined by the plate thickness, width of the overlapped portion, pressing force, power supply voltage, waveform, etc. The longer the plate thickness and the overlap width, the longer the energization time needs to be. If it is necessary to cover the inner surface of the welded part with a protective coating, weld metal can body 1A along guide 30 extending from the tip of mandrel 2.
is sent to the left and, if necessary, is reheated to approximately 50 to 300°C by a preheating device 31 (such as a high-frequency heating coil or burner) to improve wetting of the paint, and then the paint is supplied. Pipe 11 and air supply pipe 12
The protective paint is sprayed onto the inner surface of the weld from a protective paint spray nozzle 32 (e.g., airless gas, in which case the air controls the spray pattern) provided at the tip of the weld. Next, the protective coating is melted or thermally hardened using a drying oven, burner, high frequency heating, etc., to form a non-porous, strong coating film on the inner surface of the welded part and its periphery. Protective coatings include polyester, modified polyolefin, epoxy, acrylic, polyvinyl chloride, polyamide, vinyl acetate, polyvinyl acetal, polyether, polycarbonate, epoxy ester, phenol, amino, alkyd,
Powder coatings, dispersion-type coatings, water-based or solvent-based slurry coatings, solution-type coatings, etc. obtained from one or more of polyurethane resins and silicone resins are used as appropriate depending on the purpose. Although the spray coating method was described in the above embodiments, roll coating or other coating methods may also be used. The welded metal can body manufactured as described above is
After the bottom lid is usually secured by double seaming, it is filled with carbonated drinks, non-carbonated drinks, fruit juice, fish and shellfish, other foods, and non-food items such as aerosols, and then sealed. The can manufacturing method of the present invention is not limited to the above-mentioned example. For example, as shown in FIG. It may be 5d.
Further, the opposing surfaces of the parallel electrodes may be simply flat surfaces. Alternatively, as shown in FIG. 7, two small protrusions 33 may be provided in the length direction on the opposing surfaces of the parallel electrodes, and a line electrode may be placed between them. In addition, the metal blank is formed into the shape of a can body by a so-called inverted type can making method, at welding station 3.
In this case, it may be performed using a presser wing. Further, the upper parallel electrode may be on the top of the mandrel or other peripheral portions. The effects of the present invention will be clarified by way of Examples below. Example 1 The seam part of the can body was painted with epoxyphenol paint on the surface that was to become the inner surface of the can (leaving an unpainted area) and then baked, and the surface that was to be the outer surface was also margin painted and printed. Made of 0.23mm thick stain-free steel (electrolytic chromic acid treated steel plate),
A blank of 234 mm x 85 mm was created. Next, the electrolytic chromic acid treated coating layer on both sides of the short edges of this blank having a width of about 1 mm was peeled off by ultrasonic waves to completely expose the iron surface. The blanks were formed into a cylindrical shape using a roll former so that the short side was oriented in the axial direction, and after being stacked and fixed at a welding station, a pressing force (35 kg/ mm 2 ) and welded by applying current for 15 msec to obtain a welded can body (301 diameter, No. 5 can). The overlap width before welding was 0.3 mm, and the overlap width after welding was approximately 0.4 mm. The resulting welded can body was cut open, and the ratio of the maximum plate thickness (tmax) to the minimum plate thickness (tmin) of the welded part in one can was determined to examine the uniformity of the weld thickness. Furthermore, the amount of iron protruding in the circumferential direction of the welded part on the inner surface of the can was investigated and expressed as a multiple of the original plate thickness. Furthermore, the presence or absence of iron splatter in areas other than the welded areas was investigated. Furthermore, the welded area was filled with resin, the cross section perpendicular to the welding direction was polished, and the width of the heat-affected zone (a part that is structurally different from the base metal) was examined using 5% nital. FIG. 9 shows a micrograph of the cross section magnified 75 times. Furthermore, the amount of iron protruding from the welded end in the can height direction was measured and expressed as a multiple of the original plate thickness. Further, the maximum plate thickness of the welded portion was defined as the plate thickness of the welded portion, and this was expressed as a magnification of the original plate thickness. The samples for the above evaluation were 10 cans. Next, use a powder coating gun to apply epoxyphenol powder paint to the welded part of the outer surface of the can body so that the width is 7 mm and the dry coating thickness is 30 to 50 microns. Baked for 15 minutes in a hot air drying oven. This can body was flanged, and a lid made of stain-free steel whose inner surface was coated with epoxyphenol paint was double-sealed using a conventional method to prepare an empty can. When 300 ml of 2% ammonium thiocyanate aqueous solution is poured into this empty can and electrolysis is carried out at a voltage of 2 volts between the electrodes using the can as an anode and a carbon rod with a diameter of 6 mm as a cathode, the time required for a red reaction to appear on the inside of the can is The red color reaction value (seconds) was determined by measuring (10 samples). Furthermore, the above empty can was filled with boiled tuna, double-sealed with the same stain-free steel lid as above, sterilized by retort, stored at 50℃ for 6 months, and then opened. The state of corrosion and the occurrence of sunspots were examined (○...no sunspots, △...slightly present, ×...extremely present).
Furthermore, the number of perforated cans that occurred within six months was investigated (the number of samples in the above actual can test was 100 cans). Table 1 shows the results. No. 1 to No. 6 show that when welding is performed by applying pressure to the overlapping part with a parallel electrode via a wire electrode,
No.7 is No.8 when welding with a rotating roller electrode.
No. 9 is the result when welding was performed by applying pressure to the overlapping part with a rotating roller electrode via a wire electrode, and No. 9 is the result when only parallel electrodes were used. Experiments No. 1 to No. 6 are the can bodies of the present invention.
No. 7 to No. 9 are comparative examples. As is clear from the table, it can be seen that the can bodies of the present invention have excellent properties. Example 2 A welded can body (202 diameter,
200ml), the ratio of the maximum thickness (tmax) to the minimum thickness (tmin) of the weld, the amount of iron protruding in the circumferential direction of the weld, the presence or absence of splash, the width of the heat affected zone, and the weld edge. The amount of protrusion in the can height direction and the thickness of the welded part were investigated. Next, the inner welded part of the welded can body was coated with a polyester solvent slurry paint using an airless gun, and after baking for 4 minutes in a hot air drying oven at 180°C, the entire inner surface of the can body was coated with a polyester solvent slurry paint. It was spray painted using paint and an airless gun, and then baked. This can body is flanged, double-sealed with an aluminum easy-open lid coated with PVC paint on the inside, filled with colored carbonated beverages at 2°C, and the inside surface coated with epoxy phenol paint.
Furthermore, a lid made of stain-free steel coated with PVC paint was double-sealed, and the can was stored at 50℃ for 6 months.
The dissolved iron mg per 1000g (average value of 10 samples) and the discoloration of the contents were examined, and the flavor evaluation (10 panels, 5...excellent, 4...good, 3...fair, 2...Poor, 1...Poor). Furthermore, the number of perforated cans that occurred within 6 months was investigated. The results are shown in Table 2. No. 10 to No. 15 are welded by applying pressure to the overlapping parts with a parallel electrode via a wire electrode, No. 16 is welded with a rotating roller electrode, and No. 17 is a weld with a wire electrode. No. 18 shows the results when welding was performed by applying pressure to the overlapping portions using rotating roller electrodes, and when only parallel electrodes were used. Experiments No. 10 to No. 15 are can bodies of the present invention, and Experiments No. 16 to No. 18 are comparative examples. As is clear from the table, it can be seen that the can bodies of the present invention have excellent properties. Example 3 Epoxyphenol-based paint was applied to the inner surface of the can, and the seams of the can body were painted with a margin, and then baked, and the outer surface was also painted and printed with a margin of 0.23 mm, tin plating. 234mm from an electroplated tin plate with a thickness of 25ld/BB (tin layer thickness approx. 0.6μm)
A blank of ×85 mm was created. The blanks were formed into a cylindrical shape using a roll former with the short side oriented in the axial direction, and after being stacked and fixed at a welding station, a pressing force (30 kg/ mm 2 ) and
Welding was carried out in the same manner as in Example 1 by applying current for 15 msec to obtain a welded can body (301 diameter, No. 5 can). The overlap width before welding was 0.3 mm and the overlap width after welding was approximately 0.4 mm. It was hot. From the obtained can body, the ratio of the maximum thickness (tmax) to the minimum thickness (tmin) of the welded part, the amount of iron protruding from the welded part in the can circumferential direction, the presence or absence of splash, the width of the heat affected zone, and the welded edge. The amount of protrusion in the can height direction, the plate thickness of the welded part, and the tin reflow width near the welded part were investigated (10 cans sampled). Next, the welded parts on the inner and outer surfaces of the welded can body were coated with a powder coating gun to a width of 7 mm and a dry coating thickness of 30 to 50 mm.
After applying epoxyphenol powder paint to a micron size, it was placed in a hot air drying oven at 180℃ for 15 minutes.
Bake for a minute. The above-mentioned can body was flanged and a tin lid whose inner surface was coated with epoxyphenol paint was double-sealed using a conventional method to prepare an empty can, and the red color reaction value was examined. Furthermore, the empty can was filled with boiled salmon, double-sealed with the same tin lid as above, sterilized in a retort, stored at 50℃ for 6 months, and then opened. The occurrence of black discoloration and the occurrence of rust were investigated (100 samples each).
can). Table 3 shows the results. No. 19 to No. 24 are welded by applying pressing force to the overlapping part with a parallel electrode via a wire electrode, and No. 25 is welding by applying a pressing force to the overlapping part with a parallel electrode via a wire electrode. When welding with pressure applied, and
No. 26 is the result when only parallel electrodes were used. Experiments No. 19 to No. 24 are can bodies of the present invention, and Experiments No. 25 to No. 26 are comparative examples. As is clear from the table, it can be seen that the can bodies of the present invention have excellent properties. Example 4 Welded a can body (202 diameter, 200ml) using an electroplated tin plate with a thickness of 0.17mm in the same manner as in Example 3.
After creating the weld, the ratio of the maximum thickness (tmax) to the minimum thickness (tmin) of the weld, the amount of iron protruding in the circumferential direction of the weld can, the presence or absence of splash, the width of the heat affected zone, and the weld edge of the can The amount of protrusion in the height direction, the thickness of the welded part, and the reflow width of tin near the welded part were investigated. Next, the can body was subjected to multi-beat processing, and then subjected to neck-in processing, and then the inner welded part of the can body was
After applying a polyester solvent slurry paint using an airless gun and baking it in a hot air drying oven at 180℃ for 4 minutes, the can body was flanged and an aluminum easy-open lid coated with a vinyl chloride resin paint was attached. Double-seal the can, fill it with orange juice at 90℃, double-seal the tin lid with an epoxy phenol paint applied to the inside, store it at 50℃ for 6 months, open the can, and remove the welds on the inside of the can. Corrosion state, iron elution amount, discoloration state of contents, flavor evaluation, and 6
The number of perforated cans that occurred within months was investigated. The results are shown in Table 4. No. 27 to No. 32 are welded by applying pressure to the overlapped part with a parallel electrode via a wire electrode, and No. 33 is a pressure applied to the overlap part by a rotating roller electrode via a wire electrode. No. 34 is the result when only parallel electrodes are used. Experiments No. 27 to No. 32 are can bodies of the present invention, and Experiments No. 33 to No. 34 are comparative examples. As is clear from the table, it can be seen that the can bodies of the present invention have excellent properties. Example 5 Plate thickness obtained by the same method as Example 1
After 0.17 mm stain-free steel cylindrical molded bodies (202 diameter, 200 ml) were stacked and fixed on a welding station, a pressing force (40 Kg/mm 2 ) and welded by changing the welding voltage and applying current for 15 msec to create a welded can body. The amount of iron protruding from this welded can body in the can height direction at the inner welded end was investigated. Next, polyolefin solvent slurry paint was applied to the welded parts of the inner and outer surfaces of the welded can body using an airless gun to a width of 7 mm and a dry coating thickness of 30 to 50 microns, and then placed in a hot air drying oven at 170°C. Bake for 4 minutes. Further, a vinyl chloride resin paint was applied to the inner surface of the can body using an airless gun and baked. This can body is double-sealed with an aluminum easy-open lid coated with PVC paint on the inside, then filled with Coke at 2°C, base coated with phenol epoxy paint, and then coated with PVC paint. Double-seal the free steel lid and heat at 50℃ for 6 hours.
After storage for several months, the can was opened and the amount of iron eluted and flavor were examined. Table 5 shows the results. It can be seen that the can body of the present invention has excellent properties. Example 6 Plate thickness obtained by the same method as Example 3
Cylindrical molded body of 0.23mm tin plate (202 diameter, 200ml)
After overlapping and fixing them at a welding station, a pressing force (35 kg/mm 2 ) was applied to the overlapping part of the molded bodies using a parallel electrode via a wire electrode, and welding was performed by changing the welding voltage and applying current for 15 msec. , a welded can body was created. The thickness of the welded portion was determined from this welded can body. Next, after correcting the welds on the inner and outer surfaces of the welded can body with polyester solvent slurry paint, an aluminum easy-open lid whose inner surface is coated with vinyl chloride resin paint is double-sealed using a conventional method, and the apple juice is Fill at 90℃, double seal with a tin lid coated with epoxyphenol paint on the inside, and heat to 50℃.
After being stored for 6 months, the can was opened and the welds inside the can were found to be corroded.
The amount of iron elution, flavor, and number of perforated cans were investigated. Table 6
The results are shown in It can be seen that the can body of the present invention has excellent properties.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例である装置の一部切
断正面図を、第2図は第1図の2―2線に沿う縦
断面図を、第3図は第1図の重ね合せ部近傍の溶
接直前の拡大断面図を、第4図は第1図の重ね合
せ部近傍の溶接終了直後の拡大断面図を、第5図
は本発明を実施するためのシステムの模式図を、
第6図は1実施例である平行電極の軸線方向に垂
直な縦断面図を、第7図は他の実施例である平行
電極の縦断面図を示す。第8図は、本発明におけ
る溶接金属のはみ出し量の定義を説明する為の模
式的図である。第9図は、本発明の溶接金属缶の
継目部を、その直角方向に切断した断面を示す顕
微鏡写真である。図面中の符号の主要なものはそ
れぞれ、装置の下記の部分を示す。 1……成形体、1a……重ね合わせ部、2……
マンドレル、4a,4b……平行電極、5a,5
b……案内凹部、6……冷却孔、10a,10b
……線電極、11……塗料供給管、12……空気
供給管。
Fig. 1 is a partially cutaway front view of a device that is an embodiment of the present invention, Fig. 2 is a longitudinal sectional view taken along line 2-2 in Fig. 1, and Fig. 3 is a superimposition of Fig. 1. FIG. 4 is an enlarged sectional view immediately before welding near the overlapping portion of FIG. 1, FIG. 5 is a schematic diagram of a system for carrying out the present invention, and FIG.
FIG. 6 shows a longitudinal cross-sectional view perpendicular to the axial direction of a parallel electrode according to one embodiment, and FIG. 7 shows a longitudinal cross-sectional view of a parallel electrode according to another embodiment. FIG. 8 is a schematic diagram for explaining the definition of the amount of protrusion of weld metal in the present invention. FIG. 9 is a micrograph showing a cross section of the joint of the welded metal can of the present invention, taken in a direction perpendicular to the joint. Main symbols in the drawings indicate the following parts of the device, respectively. 1...Molded object, 1a...Overlapping portion, 2...
Mandrel, 4a, 4b...Parallel electrode, 5a, 5
b...Guide recess, 6...Cooling hole, 10a, 10b
... wire electrode, 11 ... paint supply pipe, 12 ... air supply pipe.

Claims (1)

【特許請求の範囲】 1 缶胴側面に、インパルス―線溶接した継目を
有する金属缶において、該継目部の長さ方向にお
ける厚さの均一度を、厚さが最大である部分の板
厚(tmax)と最小である部分の板厚(tmin)の
比(tmax/tmin)で表わしたとき、該均一度
が、 1<tmax/tmin<1.05 の範囲にあり、そして、継目部における缶円周方
向の金属の延び出し量Mcが、金属ブランク板厚
tに対し、 Mc<1×t の関係を満足することを特徴とする溶接金属缶。 2 継目部の厚さが最大である部分の板厚tmax
が金属ブランク板厚tに対し、 tmax<1.7t の関係を満足する特許請求の範囲第1項記載の溶
接金属缶。 3 継目部の、溶接の熱の影響を受けた部分の最
大巾Wが 0.2mm<W<0.8mm である特許請求の範囲第1項又は第2項に記載の
溶接金属缶。 4 缶の高さ方向の金属の延び出し量Mhが金属
ブランク板厚tに対し、 Mh<0.5t の関係を満足する特許請求の範囲第1〜3項の何
れかに記載の溶接金属缶。
[Claims] 1. In a metal can having an impulse-line welded seam on the side of the can body, the uniformity of the thickness in the longitudinal direction of the seam is defined as the plate thickness at the maximum thickness ( The uniformity is in the range of 1<tmax/tmin<1.05 when expressed as the ratio (tmax/tmin) of the plate thickness (tmin) at the minimum part, and the can circumference at the joint part is A welded metal can characterized in that the amount of metal extension Mc in the direction satisfies the relationship Mc<1×t with respect to the metal blank plate thickness t. 2 Plate thickness tmax at the part where the thickness of the joint is maximum
The welded metal can according to claim 1, wherein tmax<1.7t with respect to the metal blank plate thickness t. 3. The welded metal can according to claim 1 or 2, wherein the maximum width W of the part of the joint affected by the heat of welding is 0.2 mm<W<0.8 mm. 4. The welded metal can according to any one of claims 1 to 3, wherein the amount of metal extension Mh in the height direction of the can satisfies the relationship Mh<0.5t with respect to the metal blank plate thickness t.
JP10294878A 1978-08-25 1978-08-25 Welded metallic tin Granted JPS5538209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294878A JPS5538209A (en) 1978-08-25 1978-08-25 Welded metallic tin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294878A JPS5538209A (en) 1978-08-25 1978-08-25 Welded metallic tin

Publications (2)

Publication Number Publication Date
JPS5538209A JPS5538209A (en) 1980-03-17
JPS6124258B2 true JPS6124258B2 (en) 1986-06-10

Family

ID=14341036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294878A Granted JPS5538209A (en) 1978-08-25 1978-08-25 Welded metallic tin

Country Status (1)

Country Link
JP (1) JPS5538209A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772045A (en) * 1980-10-23 1982-05-06 Hokkai Can Co Ltd Can for containing drink
JPS57192801U (en) * 1981-06-02 1982-12-07
JPS5988301U (en) * 1982-12-06 1984-06-15 スズキ株式会社 motorcycle wheels

Also Published As

Publication number Publication date
JPS5538209A (en) 1980-03-17

Similar Documents

Publication Publication Date Title
US3949896A (en) Seamed article
US2177104A (en) Method for manufacturing can bodies
US4106167A (en) Frictional method and machine for seaming tubular sections
US4579786A (en) Surface-treated steel strips seam weldable into cans
US4352001A (en) Method and apparatus for producing welded metallic can body
EP0023753B1 (en) Method and apparatus of making welded metallic can bodies
US3523513A (en) Can body and method of forming same
JP2007231394A (en) Steel sheet for welded can
JPS6150075B2 (en)
US3798406A (en) Process for welding metal coated sheet structures
JPS6124258B2 (en)
US2078546A (en) Method of making can bodies
KR890003098B1 (en) Method of making welded can body
US4517256A (en) Welded can bodies
JP3212136B2 (en) Can body having a welding can body
CA1177419A (en) Method of producing container bodies and container bodies produced thereby
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JPS625711B2 (en)
JPS6131198B2 (en)
JPS6311109B2 (en)
Spinella Resistance Welding of Aluminum Alloys
USRE32251E (en) Method of electric welding tinfree cans
JP2583472B2 (en) Thermoplastic resin film striped coated metal plate and method for producing the same
JPH06170558A (en) Welding method for tin free steel can body
JPS6150074B2 (en)