JPS6311109B2 - - Google Patents
Info
- Publication number
- JPS6311109B2 JPS6311109B2 JP54106696A JP10669679A JPS6311109B2 JP S6311109 B2 JPS6311109 B2 JP S6311109B2 JP 54106696 A JP54106696 A JP 54106696A JP 10669679 A JP10669679 A JP 10669679A JP S6311109 B2 JPS6311109 B2 JP S6311109B2
- Authority
- JP
- Japan
- Prior art keywords
- welded
- welding
- electrode
- stain
- free steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 123
- 229910000831 Steel Inorganic materials 0.000 claims description 82
- 239000010959 steel Substances 0.000 claims description 82
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 39
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 39
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 33
- 239000011651 chromium Substances 0.000 claims description 29
- 229910052804 chromium Inorganic materials 0.000 claims description 29
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 24
- 235000011613 Pinus brutia Nutrition 0.000 claims description 24
- 241000018646 Pinus brutia Species 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 64
- 238000000034 method Methods 0.000 description 36
- 239000010408 film Substances 0.000 description 34
- 229910052742 iron Inorganic materials 0.000 description 32
- 239000003973 paint Substances 0.000 description 21
- 230000007797 corrosion Effects 0.000 description 17
- 238000005260 corrosion Methods 0.000 description 17
- 239000004593 Epoxy Substances 0.000 description 14
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- 239000002989 correction material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000011368 organic material Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 7
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010422 painting Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 5
- 238000004826 seaming Methods 0.000 description 5
- 239000005028 tinplate Substances 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 210000000078 claw Anatomy 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005360 mashing Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000015205 orange juice Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 235000013555 soy sauce Nutrition 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Electroplating Methods And Accessories (AREA)
Description
本発明はテインフリースチール(電解クロム酸
処理鋼板)の溶接缶胴体に関するものである。
食品用缶、エアゾール缶、18缶およびその他
の雑缶などに用いられる金属薄板材料として、ス
ズメツキ鋼板であるブリキおよび電解クロム酸処
理鋼板であるテインフリースチールがその大半を
占めている。ブリキは優れた加工性と耐食性を有
しており、現在ではおもにハンダ缶、溶接缶ある
いはDI缶(絞り−しごき缶)などとして用いら
れているが、使用されるスズがかなり高価で、か
つ希少価値の高い金属であるため、製造されるブ
リキ製の缶もまた高価なものとならざるを得な
い。
一方、テインフリースチールは低炭素薄鋼板の
表面にクロムを主体とした極く薄い皮膜、すなわ
ち主として金属クロム層と、クロム酸化物層から
なる表面皮膜(以下表面皮膜とよぶ)が被覆され
たものをいう。このテインフリースチールは加工
性の面においてはブリキよりも劣るが、ブリキよ
りもとくに塗料密着性に優れており、かつ内容品
によつては耐食性能も優れているため、塗装缶と
して適しており、さらに、安価なクロムを使用し
ているため、ブリキよりもコストが低い。従来か
ら、テインフリースチールを素材とした缶として
は接着缶、DR缶(しぼり缶)あるいは溶接缶が
知られている。
テインフリースチールの接着缶は通常、一枚の
ブランクを管状に成形して重ね合せ部を作り、そ
の重ね合せ部に有機材料を装入して接合した缶胴
体と、その缶胴体の両端に二重巻締して結合した
一対の蓋とから構成される3ピース缶である。こ
の場合、一般に接着缶の内面側において、鉄露出
面であるもとのブランクの側面端部が重ね合せ部
端面として存在するため、その端面を有機材料に
て覆つて、その鉄露出面が直接缶内面側に露出し
ないように補修されている。このような接着缶は
内面の鉄面を有機材料にて十分に補修することが
できれば、通常塗装されている電解クロム酸処理
表面と合せて十分な耐食性能を有することができ
るが、また一方では以下のような問題点をもつて
いる。すなわち、第1に缶胴の接合が有機材料と
の接着によつているため、フランジング、ネツキ
ングあるいはビーデイングなどの缶製造時の加工
あるいは缶の殺菌のための加熱に伴う有機材料の
破損あるいは劣化などに不安が残るし、また高圧
力の内容物を缶に詰めた場合においても同様の不
安が残ることがある。第2に、缶胴の接合部は2
枚の金属薄板と接合のための有機材料を合せた厚
みを有しており、蓋の二重巻締のさいに接合部と
その他の部分との巻締状態が異なるため、その接
合部近傍の巻締部位からの内容品の漏れを全くな
くするためには高度の技術を必要とする。
テインフリースチールのDR缶はテインフリー
スチールのブランクを絞り成形加工した底付の絞
りカツプとそのカツプの端面に二重巻締した一つ
の蓋とから通常構成され、いわゆる2ピース缶と
して分類されている。この場合、テインフリース
チールの電解クロム酸処理層(表面皮膜)は加工
性に乏しいため、絞り成形された絞りカツプにお
いては、その表面皮膜にき裂が生じて鉄面が局部
的に露出するため、加工前のテインフリースチー
ルよりも耐食性あるいは塗料密着性などが低下す
る。このような絞りカツプは絞り加工後、通常内
面を塗装されるが、絞り加工時のテインフリース
チールのクロム皮膜の破損がほぼ全面に及んでい
るため、その全面にわたつて塗料を完全な状態に
塗布することは容易ではない。さらに加えて、2
ピース缶であるDR缶は他の3ピース缶に比べ
て、容器として以下の制約を受ける。すなわち、
第一に、DR缶の絞りカツプの胴部の高さが、絞
り加工上制約されて、あまり高いものは製造が困
難であるため、現実にDR缶に適用できる缶型が
制約を受ける。第二に、DR缶のしぼりカツプで
は自由に胴あるいは底の板厚の分布を制御するこ
とが原理的に不可能な点にある。とくに、缶の強
度上重要である、底と胴の境界部あるいは底部の
板厚が他の部位に比べて薄くならざるを得ない。
そのような底と胴の境界部あるいは底部の板厚を
厚くすると、とくに絞りカツプの開放端附近の板
厚が極端に厚くなり、経済的ではない。一方、3
ピース缶では一般的に蓋に缶胴よりも板厚の厚い
ものを使用することにより、缶内部の加圧力ある
いは減圧力により蓋が座屈変形することを防止で
きるのであり、さらに蓋と缶胴の2重巻締により
缶自体の強度、たとえば衝撃力などによる缶の変
形に対する抵抗力が著しく増強される。上記のよ
うに、一般的に3ピース缶は2ピース缶に比べて
缶の構成あるいは強度などにおいて優れている面
が多い。
一方、溶接缶は通常、一枚のブランクを管状に
成形して重ね合せ部を作り、その重ね合せ部を溶
接接合した缶胴体と、その缶胴体の両側に蓋を二
重巻締して構成される3ピース缶である。この場
合、重ね合せ部全体を押し潰して溶接する方法、
いわゆるマツシユ溶接法と重ね合せ部の一部のみ
を溶接する方法とがあるが、前者の方が重ね合せ
部での間隙がなく、かつ溶接部の段差が小さくな
る分だけ溶接部の有機材料による補正が容易とな
るため、現在では主に前者の方法が用いられてい
る。
溶接缶胴体においては一般的に溶接部の方が他
の部位よりも強度的に優れているため、接着缶に
おけるような溶接部の強度面での不安が全くな
く、さらに3ピース缶であるため、缶のサイズお
よび蓋などを自由に選ぶことができる。さらに、
マツシユ溶接法による溶接部の厚さは通常、元の
板厚の1.0〜1.8倍であり、他の3ピース缶に比べ
て、溶接缶胴と蓋との二重巻締をより安定して行
うことができる利点を有する。
上記ような溶接缶胴体の製造方法で現在もつと
も一般的なのは重ね抵抗シーム溶接法によるもの
である。この重ね抵抗シーム溶接法は通常金属板
を重ね合せ、その重ね合せ部を順次一対の電極に
て加圧し押し潰しながらその電極間に交流電流を
通電させて連続的に抵抗溶接するものであり、そ
の電極としては2個の回転するロール状のものを
使用するのが一般的である。前述のマツシユ溶接
による重ね抵抗シーム溶接法、すなわち、マツシ
ユ・シーム溶接法によつて製造された溶接缶胴体
において特に問題となるのは、溶接部からの溶融
した金属の飛沫、いわゆるスプラツシユの発生で
ある。すなわち、マツシユ・シーム溶接法では金
属板の重ね合せ部全体にわたつて溶接を行うた
め、溶接接合面で過度に金属が溶融すると、重ね
合せ部端部より、容易にスプラツシユとなつて溶
融した金属が飛散する。このような溶接缶胴体に
おける溶接部およびその近傍でのスプラツシユの
存在は溶接部の有機材料による補正のさいの障害
となり、十分に補正されない場合が多く、耐食性
能上好ましくない。
2個の回転ロール状電極を使用した従来の重ね
抵抗シーム溶接法によりテインフリースチールを
マツシユ溶接すると、通常著しいスプラツシユが
発生したり、あるいは局部的に溶接部の強度が不
足するため、完全な密封能が保証されなかつたり
する状態が生じ、完全な溶接状態を得ることが困
難である。このような状況はテインフリースチー
ル表面の電解クロム酸処理皮膜とくに、クロム酸
化物層の存在による電気伝導性の低下に伴う溶接
時の発熱量の増大あるいは接合性の低下に帰因す
るものであり、そのため現実には溶接部およびそ
の近傍に対応する部位のテインフリースチールの
表面皮膜を予め、例えば特公昭51−14189号に開
示されるミリングカツター等による切削方法等に
より除去して鉄面を露出させたうえで、その鉄面
部を2個の回転ロール状電極でマツシユ・シーム
溶接することにより、テインフリースチールの溶
接缶胴が製造されている。上記のテインフリース
チールの溶接缶胴体の溶接部およびその近傍は全
面にわたつて鉄面が露出しているため、その部位
では塗料やプラスチツクフイルム等の補正材料と
の密着性および耐食性において、他のテインフリ
ースチールの表面皮膜の存在する部位に比べて著
しく劣るという欠点を有す。本発明はこのような
欠点の解消を図ろうとするものである。
本発明の目的は補正材料との密着性に優れ、か
つ耐食性に優れたテインフリースチールの溶接缶
胴体を提供することにある。本発明の他の目的は
補正の容易な溶接部を有する溶接缶胴体を提供す
ることにある。
本発明は、金属クロム層とクロム酸化物層とか
らなる表面皮膜を有するテインフリースチールの
溶接缶胴体において、該テインフリースチールの
板厚の1.0〜1.8倍の厚さのマツシユシーム溶接部
を有しており、該マツシユシーム溶接部は少なく
とも缶胴体内面において、溶接電極と接触した面
において、該表面皮膜によつて被覆されていて、
該クロム酸化物層の被覆率が面積比率で約30%以
上であることを特徴とするテインフリースチール
の溶接缶胴体を提供するものである。
以下、本発明について詳細に説明する。
本発明に使用されるテインフリースチールは通
常缶用薄板材料として用いられるもので、通常20
〜200mg/m2、好ましくは40〜160mg/m2の金属ク
ロム層と、その上にクロム量が、5〜30mg/m2、
好ましくは9〜25mg/m2のクロム酸化物層を有す
る表面皮膜で被覆された低炭素薄鋼板をいう。こ
こでクロム酸化物層は、製造の状態では主として
非晶性の水和クロム酸化物層よりなるが、塗料焼
付のため加熱されたり、あるいは本発明の溶接缶
胴体の電極と接触した部分等にみられるような熱
履歴を経ると、水和度やクロム原子、酸素原子の
配位状態等が変化して、結晶化度が進行する。本
発明でいうクロム酸化物層とは、完全非晶性のも
のを含むことは勿論、ある程度結晶化度が進んだ
ものであつても、第9図、第10図の透過電子顕
微鏡写真に示されるように、クラツク部分を除い
て連続被膜を形成しているものを含むものであ
る。テインフリースチールの厚さは通常の缶用薄
板材料の厚さ、すなわち約0.12〜0.6mm、特に約
0.15〜0.4mmであることが好ましい。
テインフリースチールの溶接缶胴体の製造にさ
いして、通常テインフリースチールは塗装され、
所定の寸法に裁断されたブランクに加工される。
この場合、いわゆるマージン塗装法によつてブラ
ンクの溶接される両側辺部を未塗装部分とするこ
とが望ましい。塗装されたブランクは公知の方
法、すなわちロールフオーム法あるいはインバー
テツドフオーム法などによつて断面が円形、四角
形などの側辺部に重ね合せ部を有する缶胴成形体
に成形され、さらにその缶胴成形体の重ね合せ部
をマツシユ・シーム抵抗溶接することにより、重
ね合せ部全体が押し潰されたサイドシーム溶接部
を有する溶接缶胴体ができる。
本発明者等はテインフリースチールのマツシ
ユ・シーム抵抗溶接法を研究した結果、2個の回
転ロール状電極を用いる従来のマツシユ・シーム
抵抗溶接法にてテインフリースチールの溶接が困
難であるのは、溶接電極と缶胴成形体の重ね合せ
部とのシーム溶接部方向への溶接時の瞬間的な接
触長が短かいことに原因すると考え、上記の接触
長を大きくとれるような方法、すなわち例えば曲
率が無限大である直線状の電極と曲率の大きいロ
ール状電極とを組み合せたマツシユ・シーム抵抗
溶接法にてテインフリースチールの溶接を試みた
ところ、困難とされていたテインフリースチール
の溶接がスプラツシユの皆無な状態にて、かつ溶
接部の十分な強度が得られた状態にて可能である
ことを見いだした。さらに驚くべきことには、従
来の溶接時の加熱あるいは加圧により、著しく破
壊あるいは劣化すると考えられていた溶接電極と
接触した溶接部表面の補正材料の密着材に寄与す
るクロム酸化物層がかなりの部分にて残存してい
ることを見出した。
上記のように、2個の回転ロール状電極を用い
る従来のマツシユ・シーム溶接法にて、溶接電極
と缶胴成形体の重ね合せ部との瞬間的な接触長が
限定されるのは、缶胴成形体の内部のロール状電
極の直径がその成形体の大きさにより限定される
ためであり、缶胴成形体の内部の溶接電極を直線
状にすると、溶接電極と重ね合せ部との接触長は
外部のロール状電極の曲率半径の増大とともに大
きくすることが可能となる。上記の接触長の増大
により、テインフリースチールが溶接できるのは
以下の理由と考えられる。すなわち、テインフリ
ースチールのマツシユ・シーム溶接では、清浄な
鉄面を溶接する場合に比べて接合面ではより多く
の熱量と必要し、一方電極とテインフリースチー
ルとの接触面では表面皮膜の存在による電気抵抗
の増大に伴い、発熱量が増大するため、熱が溶接
部に蓄積され、スプラツシユを生じるほど著しく
溶接部が過熱される傾向にあるが、溶接電極と缶
胴成形体の重ね合せ部との瞬間的な接触長を大き
くすることにより、溶接部から電極への熱伝導が
著しく助長され、溶接部の著しく過熱化の防止す
なわち、スプラツシユの防止が期待できる。ま
た、シーム抵抗溶接では通常溶接電流として交流
電流が用いられるが、溶接電極と溶接部との瞬間
的な接触長が短かいと、その交流電流の波形、す
なわち電流量の変化にそのまま対応したような溶
接接合面での発熱量分布となり、交流電流波形の
零値に対応する個所での接合がどうしても弱くな
る傾向にあるが、その接触長を大きくするにつれ
て、溶接される接合面の一部位ではより多くの周
波数分の交流電流が通過することになり、溶接接
合面での発熱量が均一化し、テインフリースチー
ルの溶接が可能となると考えられる。
以下図面を参照しながら本発明の溶接缶胴体の
製造法の一例について説明する。第1図は本発明
の溶接缶胴体を製造するための装置の一具体例で
あり、第2図は第1図の−線に沿う一部切断
側面図である。
1は缶胴成形体であり、第2図の左方の缶胴成
形機(図示されない)によつて重ね合せ部2が下
方になるようにして成形される。マンドレル3の
左端には缶胴成形機が附設されており、右端にお
いて溶接されるように構成されており、缶胴成形
体1はマンドレル3上を左方より右方に移送され
る。マンドレル3の頂部の長溝には缶胴成形体送
り棒4が挿通しており、送り棒4には一定間隔を
おいて爪5が附設されている。送り棒4が右方へ
移動すると缶胴成形体1はその後端上部が爪5と
係合することによつて搬送される。爪5は上方よ
り加圧されると下行し、加圧が解かれるとバネに
よつて元の位置に復するように構成されている。
マンドレル3の先端部の底部凹溝に直線状電極6
が内設されている。直線状電極6は少なくとも電
極面7が重ね合せ部2(缶胴成形体の缶高)より
も長い細長の銅または銅合金よりなつている。電
極面7は重ね合せ部の形状に対応する平面である
か、あるいは巾方向に凸曲面を有している。電極
面7の巾は重ね合せ部2の巾より大きい。また直
線状電極6はフイーダ(図示されない)によつて
溶接電源(例えば商用周波数または高速製缶の場
合は約100〜500Hzの)に接続される。
マンドレル3の電極部の両側には一対の押えウ
イング9が、また上部には支持具10が配設され
ており、夫々送り棒4の駆動機構と同期したカム
機構(図示されない)によつて横方向および上下
方向に移動可能であつて、溶接に先立ち缶胴成形
体1をマンドレル3に押圧できるように構成され
ている。
直線状電極6の下方には回転電極11が配設さ
れている。回転電極11は円板状であつて、電極
面12は短筒面よりなり、その巾は重ね合せ部2
の巾よりも大きい。回転電極11は軸受台13に
よつて軸受を介して支承され、またフイーダ14
によつて溶接電源に接続される。軸受台13の下
部には支持棒15が固着されており、支持棒15
の下部は摺動板16の透孔にはめられていて、軸
受台13は摺動板16に対し上下動可能となつて
いる。軸受台13の下面と摺動板16の上面間に
支持棒15を包囲して押圧スプリング17が設け
られていて、溶接時この押圧スプリング17によ
つて重ね合せ部2に加圧力が加えられる。摺動板
16の両側部は支枠18の両側内面に水平に設け
られたガイド19のガイド面20に沿つて、マン
ドレル3の長手方向に摺動し、それに伴なつて回
転電極11は重ね合せ部2上を回転する。回転電
極11の摺動は図示されていない等速カム運動機
構により連結杆21およびピン22を介して行な
われる。支枠18の両側板の内面上端部には突出
部(係合部)23が設けられており、軸受台底板
上面13aが突出部23の下面と係合することに
よつて、回転電極11が下方に押下げられ、回転
電極11の頂面と直線状電極6の電極面間の間隙
が重ね合せ部または溶接部の厚さより大きくなる
ことによつて、缶胴成形体1の電極部への送入な
らびに溶接の完了した缶胴体の送出が回転電極1
1によつて妨げられないように構成されている。
以上の装置によつて、溶接は次のようにして行
なわれる。
回転電極11が支枠18の左端側にあつて、突
出部23aと軸受台底板上面13aが係合してい
て、回転電極11の頂面と直線状電極6の電極面
7間の間隔が重ね合せ部の厚さよりも大きい状態
において、缶胴成形体1が送り棒4によつて直線
状電極部の所定位置まで送入されて停止する。同
時に一対の押えウイング9が左右より、また支持
具10が上部よりマンドレル3の方向に進行し
て、缶胴成形体1をマンドレル3上に押圧、固定
する。この固定状態において、第1図に示される
ように、重ね合せ部2の巾全体が電極面7および
12に接触することが重要である。これは重ね合
せ部2の全体を押し潰して溶接部全体の厚さを均
等に減少せしめるためである。すなわち、重ね合
せ部2の巾方向に電極面と接触しない部分が存在
する場合は、その非接触部は押し潰されずほとん
ど板厚分の段差が残り、この段差を完全に被覆し
て、缶内容物に対する防食を果すには、多量の保
護塗料を必要とし、非常に難かしい。
次いで摺動板16が右へ移行して、軸受台底板
上面13aと突出部23aの係合が解かれ、回転
電極の電極面12は直線状電極の電極面7上を回
転しながら、重ね合せ部2を押圧スプリング17
によつて加圧して右へ移動し、その間電流が回転
電極−重ね合せ部−直線状電極間を通過して溶接
が行なわれる。
第3図は上記の溶接方法によつて得られる本発
明のテインフリースチール溶接缶胴体25の一例
を示したものであり、マツシユ溶接部24を含ん
でいる。
第4図および第5図は本発明の1実施例におけ
るテインフリースチール溶接缶胴体の代表的なマ
ツシユ溶接部の溶接線に垂直な断面を含む溶接部
の斜視図を示したものであつて、第4図は押し潰
し量が小さくて、段差が存在する場合を、第5図
は押し潰し量が大きくて、溶接部段差がほとんど
存在しない場合を示しており、いずれも上方が缶
胴体内面側(直線状電極側)を示している。これ
らの図から明らかなように、本発明の溶接缶胴体
においては、マツシユ・シーム溶接のさいに用い
られる溶接電流の交流波形に応じた発熱量の変化
に伴う、溶接線に沿う溶接部表面の凸凹はほとん
どみられず、均一に押し潰されている。また、溶
接電極の形態が缶胴体内面と外面とでは異なるた
め、溶接部の形状および表面状態が缶胴体内外面
にて異つているが、一般に、缶胴体内面側(直線
状電極側)の方が外面側(回転電極側)に比べ溶
接時の溶接部と溶接電極と瞬間的な接触長が長く
なるため、表面での発熱が低く押えられ、より好
ましい溶接部の表面状態を呈している。内容品を
充填したときの缶胴体の耐食性能上、とくに缶内
面部のサイドシーム溶接部が重要となるため、上
記の缶内外面の溶接部の差異は好ましい傾向にあ
るといえる。
なお、本発明の溶接缶胴体のマツシユ溶接部の
幅は2mm以下が好ましく、その厚さは溶接部以外
の管状体の板厚(t)の1t〜1.8tとなる。上記の
マツシユ溶接部の幅は狭い方が有機材料による補
正の面から、また美観上も優れているため好まし
いが、その幅が約0.3mm以下になると実際上缶胴
体の製造が困難となる。
本発明のテインフリースチール溶接缶胴体の表
面は状態に応じて、通常5つの領域に分類するこ
とができる。すなわち、第4図および第5図に示
すマツシユ溶接部の表面部において、Aは溶接熱
の影響を全く受けず表面皮膜が完全に存在する表
面部を、Bは溶接電極と直接接触し、溶接時に加
圧および通電を受けた表面部を、Cは溶接時に押
し出された完全な鉄露出面部を、Dは缶胴成形体
の重ね合せ部のカツトエツジの残存分で段差とし
て残つている鉄露出面部を、Eは溶接時の加熱あ
るいは重ね合せ部の変形に伴い、表面皮膜が著し
く破壊されるか、または非晶性クロム酸化物が結
晶性酸クロム(Cr2O3)にほとんど変質し、素地
鉄との密着力が著しく低下した表面部を表わす。
第4図に示す段差が比較的大きい溶接部では、上
記のEの領域は通常極く狭い範囲に限定されてい
る。
本発明者等は溶接部の表面皮膜を採取し、電子
顕微鏡にて観察した結果、電極との接触面Bでは
表面皮膜は押し出された鉄露出面Cあるいは段差
部Dの方向に引き延ばされた状態にて存在してお
り、その表面皮膜の引き延ばされた方向と直交し
てクラツクが発生しており、さらにその表面皮膜
において溶接時の加熱にもかかわらず、かなりの
クロム酸化物が著しく変質せず、かつ素地鋼との
密着力がほとんど低下せずに、従つて補正材料の
密着性を低下させることなしに残存しているのが
確認された。缶胴体内面側の溶接部の電極との接
触面Bでの表面皮膜のクラツクの発生量は通常、
面積比率で約0〜70%に及び、一方、クロム酸化
物の被覆率は面積比率で約30〜100%に及んでい
る。この場合、表面皮膜のクラツクの発生量は溶
接部の押し潰し量あるいは溶接時の通電量などの
増加に伴い、増加する傾向にあるし、また押し出
された鉄露出面Cに近づくにつれても増加する傾
向にある。
溶接部の押し潰し量を大きくすると、段差部D
の高さL3が減少するが、一方押し出された鉄露
出面Cの幅L2および表面皮膜の変質部Eの幅L4
は増加する傾向にあり、また溶接部の押し潰し量
を小さくすると、段差部Dの高さL3が大きくな
る。この場合、押し出された鉄露出面Cの幅L2
は通常0〜0.25mm程度であり、段差部Dの高さL3
は溶接部以外の板厚(t)の0〜0.8tの範囲にあ
る。また、表面皮膜の変質部Eの幅L4は通常0
〜0.3mmの範囲にある。
上記のような、テインフリースチール溶接缶胴
体においても、溶接部でのC部およびD部のよう
な完全な鉄露出面は存在するが、その面積は小さ
いため、それらの部分に近接する部分、とくに電
極との接触面Bでの有機材料にて補正するさいの
その補正材料との密着性が十分保証されれば、満
足すべき耐食性能を得られることが試験の結果判
明した。その場合、電極との接触面Bと補正材料
との密着性は表面皮膜のクラツクの発生量あるい
はクロム酸化物層の被覆率に依存し、とくにクロ
ム酸化物層の残存面積割合が30%以上であれば補
正材料との密着性が確保されることが確認されて
いる。
本発明のテインフリースチール溶接缶胴体は、
マツシユシーム溶接部が少なくとも缶胴体内面に
おいて、溶接電極と接触した面において、金属ク
ロム層とクロム酸化物層とからなる表面皮膜によ
つて被覆されていて、該クロム酸化物層の被覆率
が面積比率で約30%以上であるので、少なくとも
溶接部内面側は補正材料との密着性に優れてお
り、しかもマツシユ溶接が行なわれているので、
溶接部に空隙等を含まない。従つて缶詰として内
容物を充填した場合、補正材料を適宜選択するこ
とにより溶接部の耐食性は、以下の実施例に示さ
れるように非溶接部のそれと殆んど変らないとい
う、従来のテインフリースチール溶接缶胴体にみ
られないすぐれた特徴を有する。
以下実施例により本発明の効果を一層明らかに
する。
実施例 1
クロム量が99mg/m2の金属クロム層とクロム量
が11mg/m2のクロム酸化物層とを有する、板厚が
0.23mmのテインフリースチール薄板に缶胴体の内
面となるべき面にエポキシ・フエノール系塗料で
缶胴の溶接部近傍を未塗装部として残す、いわゆ
るマージン塗装を行い、さらに外面となるべき面
にもマージン塗装および印刷を行つた後、ブラン
ク状に切断した。次に、このテインフリースチー
ルのブランクを第1図および第2図に示した手段
により、内径が65.3mm、胴長が125.4mmの円筒状
に成形し、さらにその円筒状のブランクの重ね合
せ部を溶接して溶接缶胴体を得た。そのさい、溶
接電源は50サイクルの交流電源を用い、円筒状の
ブランクの重ね合せ巾を0.4mm、回転電極の直径
を300mm、溶接速度を12m/minとして、加圧力
および溶接電流量を変えて溶接を行つた。
得られた溶接缶胴体内面側において、溶接部の
形状、とくに溶接電極との接触面Bの幅L1、押
し出された鉄露出面Cの幅L2、溶接部の段差量
L3およびクロム皮膜の変質部Eの幅L4を調べた。
さらに、溶接部の小片を切り出し、缶胴体内面側
にカーボンを真空蒸着させ、その小片の素地鋼を
5%硝酸アルコール溶液にて溶解した後、さらに
濃塩酸にて金属クロム皮膜を溶解除去して、缶胴
体内面側のクロム酸化物層の薄膜試料を作成し、
その試料を電子顕微鏡にて観察して、溶接電極と
の接触面Bにて残存するクロム酸化物層の残存面
積割合を調べた。この場合、溶接電極との接触面
Bを押し出された鉄露出面C側、元のテインフリ
ースチール面A側および中央部の3部位にわけ、
おのおのの部位にて5点(1点の大きさが約75μ
×65μ)を選定して残存するクロム酸化物層の面
積比率を計算し、さらにそれらの値の平均値を計
算して電極接触面Bでのクロム酸化物層の被覆面
積比率とした。
加圧力が80Kgで、溶接電流量(正弦波電流の実
効値)が3.5kAのときに得られた溶接缶胴の溶接
部の溶接方向に垂直な断面の顕微鏡組織写真(倍
率60、4%ナイタル液にて腐食)を第6図に、加
圧力が100Kgで、溶接電流量が4.8kAのときの同
様の顕微鏡写真を第7図に示す。さらに、第7図
の写真の缶内面側溶接部表面近傍の拡大写真(倍
率340)を第8図に示す。これらの写真から明ら
かなように、溶接部の上面(缶内面側)および下
面(缶外面側)の表面近傍における金属組織は溶
接の影響のない母材のフエライト組織とさほど変
らない部分が多く、これらの部分では溶接のさい
に熱影響の少なかつたことを示している。
さらに、第6図の写真と同一試料での缶内面側
溶接部での電極接触面Bの中央部でのクロム酸化
物層の透過電子顕微鏡写真(倍率1200)を第9図
に、さらに第7図の写真と同一試料での同様の透
過電子顕微鏡写真を第10図に示す。第9図にお
いてはほとんど完全にクロム酸化物層が残存して
いるのが、一方、加圧力が高く、マツシユ量が多
い第10図においてはクロム酸化物層のクラツク
(白く見える部分)が発生しているのがわかる。
なお、第9図に示すクロム酸化物層の透過電子顕
微鏡写真の一部位での電子回折像写真を参考写真
Aに、さらに溶接の影響の皆無な部分でのクロム
酸化物層の同様の電子回折像写真を参考写真Bに
示すが、これらの写真はよく類似しており、とも
にクロム酸化物が非結晶性であることを示してい
る。
次に、上記のテインフリースチール溶接缶胴体
の内面側の溶接部に幅約7mmにわたつてエポキ
シ・フエノール系塗料を補正材料として、乾燥後
の塗膜の厚みが10〜20μmになるように塗装、焼
付したものを作成した。さらに、別の補正材料と
して30μmの厚みで、8mmの幅のポリエステル系
フイルムを溶接缶胴体の内面側の溶接部に熱圧着
したものを作成した。上記の溶接部を補正した溶
接缶胴体をフランジ加工し、内面にエポキシ・フ
エノール系塗料を塗装したテインフリースチール
製蓋を、常法により二重巻締して空缶を作成し
た。
上記空缶に1.5%の濃度の食塩水を充填し、上
記と同じテインフリースチール製蓋を二重巻締
し、レトルト殺菌を行い、50℃で1カ月間貯蔵後
開缶し、缶内面溶接部の腐食状態および補正材料
の破損あるいは溶接部からの剥離状態を調べた。
表1に結果を示す。
比較例として、上記のテインフリースチールの
溶接部近傍の表面皮膜をあらかじめ除去して局部
的に鉄を露出させたブランクを用い、同様の溶接
手段にて溶接缶胴体を作成し、その缶胴体につい
ても上記と同様の条件にて試験を行つた。このさ
い、溶接缶胴体の鉄露出面の幅は約2mmであつ
た。
表1から明らかなように、本発明の溶接缶胴体
は優れた特性を有しており、とくに、溶接電極の
接触面Bでのクロム酸化物層の残存面積の割合が
多くなるにつれて、溶接部表面と補正材料との密
着性が向上し、その結果溶接部の耐食性の向上が
認められる。
The present invention relates to a welded can body made of stain-free steel (electrolytic chromic acid treated steel plate). Most of the thin metal sheet materials used for food cans, aerosol cans, 18 cans, and other miscellaneous cans are tinplate, which is tin plated steel sheet, and tainfree steel, which is electrolytic chromic acid treated steel sheet. Tinplate has excellent workability and corrosion resistance, and is currently mainly used as soldering cans, welding cans, and DI cans (drawn and ironed cans), but the tin used is quite expensive and rare. Since it is a highly valuable metal, the tin cans it manufactures must also be expensive. On the other hand, stain-free steel is a low-carbon thin steel plate coated with an extremely thin film mainly composed of chromium, i.e., a surface film consisting mainly of a metallic chromium layer and a chromium oxide layer (hereinafter referred to as the surface film). means. Although this stain-free steel is inferior to tinplate in terms of workability, it has better paint adhesion than tinplate, and depending on the contents, it also has better corrosion resistance, so it is suitable for paint cans. , moreover, it uses cheaper chrome, so it costs less than tinplate. Conventionally, adhesive cans, DR cans (squeezed cans), and welded cans have been known as cans made from stain-free steel. Bonded cans made of stain-free steel are usually produced by forming a single blank into a tubular shape to create an overlapping section, then inserting an organic material into the overlapping section and joining the can body, and a can body with two tubes attached to both ends of the can body. It is a three-piece can consisting of a pair of lids that are joined together with heavy seams. In this case, generally on the inner side of the adhesive can, the side edge of the original blank, which is the exposed iron surface, exists as the end surface of the overlapping part, so that end surface is covered with an organic material so that the exposed iron surface can be directly It has been repaired so that it is not exposed to the inside of the can. If the inner iron surface of such adhesive cans can be sufficiently repaired with an organic material, it will have sufficient corrosion resistance when combined with the electrolytic chromic acid treated surface that is usually painted. It has the following problems. First, since the can body is bonded to an organic material, damage or deterioration of the organic material may occur during can manufacturing processes such as flanging, netting, or beading, or during heating to sterilize the can. Similar concerns may remain when high-pressure contents are packed into cans. Second, the joint of the can body is 2
The thickness is the sum of two thin metal plates and the organic material used for joining, and when the lid is double-sealed, the seaming conditions between the joint and other parts are different, so the seaming conditions near the joint are different. Advanced technology is required to completely eliminate leakage of contents from the seaming area. Tein-free steel DR cans are usually composed of a draw cup with a bottom made by drawing and forming a blank of ten-free steel, and a lid double-sealed to the end of the cup, and are classified as so-called two-piece cans. There is. In this case, the electrolytic chromic acid treated layer (surface film) of stain-free steel has poor workability, so in the drawn cup, cracks occur in the surface film and the steel surface is locally exposed. , corrosion resistance and paint adhesion are lower than that of the unprocessed stain-free steel. After the drawing process, the inside surface of such drawing cups is usually painted, but since the chrome coating on the stain-free steel was damaged during the drawing process, it was necessary to completely apply the paint over the entire surface. It is not easy to apply. In addition, 2
DR cans, which are piece cans, are subject to the following restrictions as containers compared to other three-piece cans. That is,
First, the height of the body of the drawing cup of a DR can is limited by the drawing process, and it is difficult to manufacture one that is too high, which limits the can shapes that can actually be applied to DR cans. Second, with the squeeze cup of a DR can, it is theoretically impossible to freely control the thickness distribution of the body or bottom. In particular, the thickness of the boundary between the bottom and the body, or the bottom, which is important for the strength of the can, must be thinner than other parts.
If the thickness of the plate at the boundary between the bottom and the body or the bottom is increased, the thickness of the plate particularly near the open end of the drawing cup becomes extremely thick, which is not economical. On the other hand, 3
For piece cans, generally, by using a lid that is thicker than the can body, it is possible to prevent the lid from buckling and deforming due to pressure or vacuum pressure inside the can. The double seaming significantly increases the strength of the can itself, for example, the resistance to deformation of the can due to impact forces. As mentioned above, three-piece cans generally have many advantages over two-piece cans in terms of structure and strength. On the other hand, welded cans usually consist of a single blank formed into a tubular shape to create an overlapping part, a can body with the overlapping part welded together, and a lid double-sealed on both sides of the can body. It is a 3-piece can. In this case, the method of crushing and welding the entire overlapped part,
There is a so-called pine welding method and a method in which only a part of the overlapped part is welded, but the former has no gaps in the overlapped part, and the difference in level of the welded part is smaller, and the organic material of the welded part is used more effectively. Currently, the former method is mainly used because it facilitates correction. In a welded can body, the welded part is generally stronger than other parts, so there is no concern about the strength of the welded part like in a bonded can, and since it is a three-piece can. You can freely choose the size and lid of the can. moreover,
The thickness of the welded part using the Matsushi welding method is usually 1.0 to 1.8 times the original plate thickness, making double seaming between the welded can body and lid more stable than with other three-piece cans. It has the advantage of being able to Currently, the most common method for manufacturing the welded can bodies described above is by lap resistance seam welding. This lap resistance seam welding method usually involves stacking metal plates, successively pressurizing and crushing the stacked parts with a pair of electrodes, and applying alternating current between the electrodes to perform continuous resistance welding. Two rotating roll-shaped electrodes are generally used as the electrodes. A particular problem with welded can bodies manufactured by the above-mentioned lap resistance seam welding method using pine welding, that is, the pine seam welding method, is the generation of molten metal splash from the welded area, so-called splash. be. In other words, in the pine seam welding method, welding is performed over the entire overlapping part of metal plates, so if the metal melts excessively at the welded joint surface, the molten metal easily becomes a splash from the end of the overlapping part. is scattered. The presence of such splashes at and near the welds in the welded can body becomes an obstacle when the welds are corrected using organic materials, and is often not sufficiently corrected, which is unfavorable in terms of corrosion resistance. When welding stain-free steel by traditional lap resistance seam welding using two rotating roll electrodes, welding usually results in significant splashing or localized weld strength, making it difficult to achieve a complete seal. Welding performance is not guaranteed and a state of welding occurs, making it difficult to obtain a perfect welding condition. This situation is attributable to the electrolytic chromic acid treatment film on the surface of stain-free steel, especially the presence of a chromium oxide layer, which reduces electrical conductivity and increases the amount of heat generated during welding or reduces bondability. Therefore, in reality, the surface film of the stain-free steel at the welded part and its vicinity is removed in advance by a cutting method using a milling cutter, etc., as disclosed in Japanese Patent Publication No. 51-14189, and the steel surface is then removed. A welded can body made of stain-free steel is manufactured by exposing the exposed iron surface and pine seam welding the iron surface using two rotating roll-shaped electrodes. As the steel surface is exposed over the entire welded part of the welded can body of the above-mentioned stain-free steel can body and its vicinity, the adhesion and corrosion resistance of the welded steel can body to paints, plastic films, etc. It has the disadvantage that it is significantly inferior to areas where the surface film of stain-free steel exists. The present invention attempts to eliminate these drawbacks. An object of the present invention is to provide a welded can body made of stain-free steel that has excellent adhesion to a correction material and excellent corrosion resistance. Another object of the present invention is to provide a welded can body having a welded portion that can be easily corrected. The present invention provides a welded can body made of stain-free steel having a surface coating consisting of a metallic chromium layer and a chromium oxide layer, which has a pine seam welded portion having a thickness of 1.0 to 1.8 times the plate thickness of the stain-free steel. and the pine seam welded portion is covered with the surface film at least on the inner surface of the can body in contact with the welding electrode,
The present invention provides a welded can body made of stain-free steel, characterized in that the coverage of the chromium oxide layer is about 30% or more in terms of area ratio. The present invention will be explained in detail below. The stain-free steel used in the present invention is normally used as a thin plate material for cans, and is usually
A metallic chromium layer of ~200 mg/m 2 , preferably 40-160 mg/m 2 and an amount of chromium thereon of 5-30 mg/m 2 ,
It refers to a low carbon thin steel sheet coated with a surface film preferably having a chromium oxide layer of 9 to 25 mg/m 2 . Here, the chromium oxide layer is mainly composed of an amorphous hydrated chromium oxide layer in the manufactured state, but it is heated for baking paint or is exposed to the parts of the welded can body of the present invention that are in contact with the electrode. When it undergoes a thermal history as seen, the degree of hydration, the coordination state of chromium atoms, oxygen atoms, etc. change, and the degree of crystallinity progresses. The chromium oxide layer referred to in the present invention includes not only a completely amorphous layer but also a layer with a certain degree of crystallinity as shown in the transmission electron micrographs of FIGS. 9 and 10. This includes those in which a continuous coating is formed except for the cracked portions, as shown in FIG. The thickness of stain-free steel is the same as that of ordinary can sheet material, i.e. about 0.12-0.6 mm, especially about
It is preferably 0.15 to 0.4 mm. When manufacturing welded can bodies made of stain-free steel, the stain-free steel is usually painted.
It is processed into blanks cut to predetermined dimensions.
In this case, it is desirable that both sides of the blank to be welded be left unpainted by a so-called margin painting method. The painted blank is formed into a can body molded body having a circular or square cross section with overlapping parts on the sides by a known method, such as a roll form method or an inverted form method. By performing pine seam resistance welding on the overlapping portions of the body molded bodies, a welded can body having a side seam weld where the entire overlapping portion is crushed is produced. As a result of research on the pine seam resistance welding method for stain-free steel, the present inventors found that the reason why it is difficult to weld stain-free steel using the conventional pine seam resistance welding method using two rotating roll electrodes is as follows. , it is thought that this is due to the short instantaneous contact length during welding in the direction of the seam weld between the welding electrode and the overlapping part of the can body molded body, and a method that can increase the above contact length, that is, for example, When welding stain-free steel using the pine seam resistance welding method, which combines a straight electrode with infinite curvature and a rolled electrode with large curvature, welding of stain-free steel, which had been considered difficult, was successful. It has been found that this is possible with no splash and with sufficient strength of the welded part. What is even more surprising is that the chromium oxide layer that contributes to the adhesion of the correction material on the surface of the welded part in contact with the welding electrode, which was thought to be significantly destroyed or deteriorated due to heating or pressure during conventional welding, is considerably reduced. It was found that some parts remained. As mentioned above, in the conventional pine seam welding method using two rotating roll-shaped electrodes, the instantaneous contact length between the welding electrode and the overlapping part of the can body is limited. This is because the diameter of the rolled electrode inside the can body molded body is limited by the size of the molded body, and if the welding electrode inside the can body molded body is made straight, the contact between the welding electrode and the overlapping part will be reduced. The length can be increased as the radius of curvature of the external rolled electrode increases. The reason why stain-free steel can be welded due to the increase in contact length described above is considered to be as follows. In other words, pine seam welding of stain-free steel requires more heat at the joint surface than when welding clean steel surfaces, while the contact surface between the electrode and stain-free steel requires more heat due to the presence of a surface film. As the electrical resistance increases, the amount of heat generated increases, so heat accumulates in the welding area, and the welding area tends to be overheated to the extent that splash occurs. By increasing the instantaneous contact length, heat conduction from the weld to the electrode is significantly promoted, and it can be expected to prevent the weld from becoming significantly overheated, that is, to prevent splash. In addition, in seam resistance welding, alternating current is normally used as the welding current, but if the instantaneous contact length between the welding electrode and the welding part is short, the waveform of the alternating current, that is, the amount of current, will respond directly to the change. The distribution of heat generation at the welded joint surface is such that the joint tends to become weaker at the point corresponding to the zero value of the AC current waveform, but as the contact length is increased, the It is thought that alternating current of more frequencies will pass through, and the amount of heat generated at the welded joint surface will become uniform, making it possible to weld stain-free steel. An example of a method for manufacturing a welded can body according to the present invention will be described below with reference to the drawings. FIG. 1 shows a specific example of an apparatus for manufacturing a welded can body according to the present invention, and FIG. 2 is a partially cutaway side view taken along the - line in FIG. 1. Reference numeral 1 designates a can body molded body, which is molded by a can body molding machine (not shown) on the left side of FIG. 2 so that the overlapping portion 2 is directed downward. A can body forming machine is attached to the left end of the mandrel 3 and is configured to be welded at the right end, and the can body formed body 1 is transferred over the mandrel 3 from the left to the right. A can body molded body feed rod 4 is inserted into the long groove at the top of the mandrel 3, and claws 5 are attached to the feed rod 4 at regular intervals. When the feed rod 4 moves to the right, the upper rear end of the can body molded body 1 engages with the claw 5, thereby being conveyed. The claw 5 is configured to move downward when pressure is applied from above, and return to its original position by a spring when the pressure is released.
A linear electrode 6 is placed in the groove at the bottom of the tip of the mandrel 3.
is installed inside. The linear electrode 6 is made of elongated copper or copper alloy, and at least the electrode surface 7 is longer than the overlapping portion 2 (can height of the molded can body). The electrode surface 7 is a flat surface corresponding to the shape of the overlapping portion, or has a convex curved surface in the width direction. The width of the electrode surface 7 is larger than the width of the overlapping portion 2. The linear electrode 6 is also connected by a feeder (not shown) to a welding power source (eg, commercial frequency or about 100-500 Hz for high-speed can making). A pair of presser wings 9 are disposed on both sides of the electrode portion of the mandrel 3, and a support 10 is disposed on the upper part, and the mandrel 3 is horizontally moved by a cam mechanism (not shown) synchronized with the drive mechanism of the feed rod 4. It is configured to be movable in the vertical and vertical directions, and to be able to press the molded can body 1 against the mandrel 3 prior to welding. A rotating electrode 11 is arranged below the linear electrode 6. The rotating electrode 11 is disk-shaped, and the electrode surface 12 is a short cylindrical surface, the width of which is the same as the overlapping portion 2.
larger than the width of The rotating electrode 11 is supported by a bearing stand 13 via a bearing, and is also supported by a feeder 14.
connected to the welding power source by A support rod 15 is fixed to the lower part of the bearing stand 13.
The lower part of the bearing base 13 is fitted into a through hole in the sliding plate 16, and the bearing stand 13 can move up and down with respect to the sliding plate 16. A pressing spring 17 is provided surrounding the support rod 15 between the lower surface of the bearing stand 13 and the upper surface of the sliding plate 16, and pressurizing force is applied to the overlapping portion 2 during welding by the pressing spring 17. Both sides of the sliding plate 16 slide in the longitudinal direction of the mandrel 3 along the guide surfaces 20 of the guides 19 provided horizontally on both inner surfaces of the support frame 18, and the rotating electrodes 11 are overlapped accordingly. Rotate on part 2. Sliding of the rotating electrode 11 is performed via a connecting rod 21 and a pin 22 by a constant velocity cam movement mechanism (not shown). A protrusion (engaging part) 23 is provided at the upper end of the inner surface of both side plates of the support frame 18, and when the upper surface 13a of the bearing base bottom plate engages with the lower surface of the protrusion 23, the rotating electrode 11 is rotated. The gap between the top surface of the rotating electrode 11 and the electrode surface of the linear electrode 6 becomes larger than the thickness of the overlapped portion or the welded portion, and as a result, the electrode portion of the molded can body 1 is pushed down. The can body that has been fed and welded is delivered to the rotating electrode 1.
1. Welding is performed using the above apparatus as follows. The rotating electrode 11 is located on the left end side of the support frame 18, the protrusion 23a and the upper surface 13a of the bearing base bottom plate are engaged, and the distance between the top surface of the rotating electrode 11 and the electrode surface 7 of the linear electrode 6 overlaps. In a state where the thickness is larger than the thickness of the mating part, the can body molded body 1 is fed by the feed rod 4 to a predetermined position of the linear electrode part and is stopped. At the same time, a pair of presser wings 9 advance toward the mandrel 3 from the left and right, and a support 10 advances toward the mandrel 3 from above to press and fix the can body molded body 1 onto the mandrel 3. In this fixed state, it is important that the entire width of the overlapping portion 2 is in contact with the electrode surfaces 7 and 12, as shown in FIG. This is to crush the entire overlapping portion 2 and uniformly reduce the thickness of the entire welded portion. In other words, if there is a part in the width direction of the overlapping part 2 that does not contact the electrode surface, the non-contact part will not be crushed and a step almost equal to the thickness of the board will remain, and this step will be completely covered and the contents of the can will be removed. In order to protect objects from corrosion, a large amount of protective paint is required, which is extremely difficult. Next, the sliding plate 16 moves to the right, and the engagement between the upper surface 13a of the bearing base bottom plate and the protrusion 23a is released, and the electrode surface 12 of the rotating electrode rotates on the electrode surface 7 of the linear electrode, and is overlapped. Spring 17 pressing part 2
The electrode is pressurized by the electrode and moved to the right, during which time current passes between the rotating electrode, the overlapping portion, and the linear electrode to perform welding. FIG. 3 shows an example of a stain-free steel welded can body 25 of the present invention obtained by the above-described welding method, and includes a pine welded portion 24. FIGS. 4 and 5 are perspective views of a weld including a cross section perpendicular to the weld line of a typical pine weld of a stain-free steel welded can body according to an embodiment of the present invention, Figure 4 shows a case where the amount of crushing is small and there is a step, and Figure 5 shows a case where the amount of crushing is large and there is almost no step at the weld. In both cases, the upper side is the inner surface of the can body. (linear electrode side) is shown. As is clear from these figures, in the welded can body of the present invention, the weld surface along the weld line changes due to the change in heat generation according to the alternating current waveform of the welding current used during pine seam welding. There are almost no irregularities and it is crushed evenly. In addition, since the shape of the welding electrode is different between the inner and outer surfaces of the can body, the shape and surface condition of the welded part are different on the inner and outer surfaces of the can body, but generally the inner surface of the can body (linear electrode side) is different. Since the instantaneous contact length between the welding part and the welding electrode during welding is longer than that on the outer surface side (rotating electrode side), heat generation on the surface is suppressed to a low level, resulting in a more preferable surface condition of the welded part. Since the side seam welds on the inner surface of the can are particularly important in terms of corrosion resistance of the can body when filled with contents, the above-mentioned difference in the welds on the inner and outer surfaces of the can can be said to be favorable. The width of the mash welded part of the welded can body of the present invention is preferably 2 mm or less, and its thickness is 1t to 1.8t, which is the thickness (t) of the tubular body other than the welded part. It is preferable for the width of the above-mentioned pine weld to be narrow, from the viewpoint of correction by the organic material and also from the aesthetic point of view, but if the width is less than about 0.3 mm, it becomes difficult to actually manufacture the can body. The surface of the stain-free steel welded can body of the present invention can generally be classified into five areas depending on the condition. That is, in the surface part of the matash weld shown in Figs. 4 and 5, A is the surface part that is completely unaffected by welding heat and has a complete surface film, and B is the part that is in direct contact with the welding electrode and is welded. C is the completely exposed iron surface that was extruded during welding, and D is the exposed iron surface that remains as a step due to the remaining cut edge of the overlapping part of the can body molded body. In E, the surface film is significantly destroyed due to heating during welding or deformation of the overlapped part, or the amorphous chromium oxide is almost transformed into crystalline chromium oxide (Cr 2 O 3 ), and the base material is damaged. Indicates the surface area where the adhesion to iron has significantly decreased.
In the welded part with a relatively large step shown in FIG. 4, the region E mentioned above is usually limited to an extremely narrow range. The present inventors collected the surface film of the welded part and observed it with an electron microscope. As a result, the surface film was stretched in the direction of the extruded iron exposed surface C or the step D on the contact surface B with the electrode. Cracks occur perpendicular to the direction in which the surface film is stretched, and a considerable amount of chromium oxide remains in the surface film despite the heating during welding. It was confirmed that there was no significant deterioration in quality, and the adhesion to the base steel remained almost unchanged, and therefore the adhesion of the correction material remained without deterioration. The amount of cracks in the surface film at the contact surface B of the welded part on the inner surface of the can body with the electrode is usually:
The area ratio ranges from about 0 to 70%, while the coverage of chromium oxide ranges from about 30 to 100% in area ratio. In this case, the amount of cracks in the surface film tends to increase as the amount of crushing of the welded part or the amount of current applied during welding increases, and also increases as the area approaches the exposed surface C of the extruded iron. There is a tendency. When the amount of crushing of the welded part is increased, the stepped part D
The height L 3 decreases, but on the other hand, the width L 2 of the extruded iron exposed surface C and the width L 4 of the altered part E of the surface film decrease.
tends to increase, and when the amount of crushing of the welded portion is reduced, the height L3 of the stepped portion D increases. In this case, the width L 2 of the extruded iron exposed surface C
is usually about 0 to 0.25 mm, and the height of the step D is L 3
is in the range of 0 to 0.8t of the plate thickness (t) other than the welded part. In addition, the width L 4 of the altered part E of the surface film is usually 0.
~0.3mm range. Even in the above-mentioned welded steel can body, there are completely exposed iron surfaces such as parts C and D at the welded part, but since the area is small, the parts near these parts, In particular, tests have shown that when the contact surface B with the electrode is corrected with an organic material, if the adhesion with the correction material is sufficiently guaranteed, satisfactory corrosion resistance performance can be obtained. In that case, the adhesion between the contact surface B with the electrode and the correction material depends on the amount of cracks in the surface film or the coverage of the chromium oxide layer, especially if the remaining area ratio of the chromium oxide layer is 30% or more. It has been confirmed that adhesion with the correction material is ensured. The stain-free steel welded can body of the present invention is
The pine seam welded portion is covered with a surface film consisting of a metallic chromium layer and a chromium oxide layer at least on the inner surface of the can body, on the surface in contact with the welding electrode, and the coverage of the chromium oxide layer is the area ratio. It is about 30% or more, so at least the inner side of the welded part has excellent adhesion with the correction material, and since pine welding is performed,
There are no voids in the welded area. Therefore, when filled with contents as a can, the corrosion resistance of the welded part is almost the same as that of the non-welded part, as shown in the following example, by appropriately selecting the corrective material. It has excellent features not found in steel welded can bodies. The effects of the present invention will be further clarified by Examples below. Example 1 A plate having a thickness of 99 mg/ m2 of chromium and a chromium oxide layer of 11 mg/ m2 of chromium.
We applied epoxy/phenol-based paint to the 0.23 mm thin stainless steel plate on the surface that should become the inner surface of the can body, leaving the area near the welded part of the can body as an unpainted area, so-called margin painting, and also painted the surface that should become the outer surface. After margin painting and printing, it was cut into blanks. Next, this stain-free steel blank was formed into a cylindrical shape with an inner diameter of 65.3 mm and a body length of 125.4 mm by the means shown in Figs. A welded can body was obtained by welding. At that time, a 50-cycle AC welding power source was used, the overlapping width of the cylindrical blanks was 0.4 mm, the diameter of the rotating electrode was 300 mm, the welding speed was 12 m/min, and the applied force and welding current amount were varied. I did some welding. On the inner surface of the resulting welded can body, the shape of the welded part, especially the width L 1 of the contact surface B with the welding electrode, the width L 2 of the extruded iron exposed surface C, and the amount of step of the welded part.
L 3 and the width L 4 of the altered part E of the chromium film were investigated.
Furthermore, a small piece of the welded part was cut out, carbon was vacuum-deposited on the inner surface of the can body, the base steel of the small piece was dissolved in a 5% nitric acid alcohol solution, and the metallic chromium film was further dissolved and removed with concentrated hydrochloric acid. , a thin film sample of the chromium oxide layer on the inner surface of the can body was prepared,
The sample was observed with an electron microscope to determine the remaining area ratio of the chromium oxide layer remaining on the contact surface B with the welding electrode. In this case, the contact surface B with the welding electrode is divided into three parts: the extruded iron exposed surface C side, the original stain-free steel surface A side, and the central part.
5 points on each site (each point is approximately 75μ in size)
×65 μ) was selected, the area ratio of the remaining chromium oxide layer was calculated, and the average value of these values was calculated to determine the coverage area ratio of the chromium oxide layer on the electrode contact surface B. Microscopic microstructure photograph of a cross section perpendicular to the welding direction of the welded part of the welded can body obtained when the pressurizing force was 80 kg and the welding current (effective value of sine wave current) was 3.5 kA (magnification 60, 4% nital) Fig. 6 shows a similar photomicrograph when the pressure was 100 kg and the welding current was 4.8 kA. Further, FIG. 8 shows an enlarged photograph (magnification: 340) of the vicinity of the welded part surface on the inner surface of the can in the photograph of FIG. 7. As is clear from these photographs, the metal structure near the top surface (inner side of the can) and bottom surface (outer side of the can) of the weld zone is largely the same as the ferrite structure of the base metal, which is not affected by welding. This indicates that there was little heat influence during welding in these parts. In addition, Figure 9 shows a transmission electron micrograph (magnification: 1200) of the chromium oxide layer at the center of the electrode contact surface B at the welded part on the inner surface of the can using the same sample as the photograph in Figure 6. A similar transmission electron micrograph of the same sample as the photograph in the figure is shown in FIG. In Figure 9, the chromium oxide layer almost completely remains, while in Figure 10, where the pressure is high and the amount of mashing is large, cracks (white visible parts) in the chromium oxide layer occur. I can see that it is.
Reference photo A shows an electron diffraction image of a part of the chromium oxide layer shown in FIG. An image photograph is shown in Reference Photograph B, and these photographs are very similar, indicating that the chromium oxide is amorphous. Next, apply epoxy/phenol paint as a correction material over a width of about 7 mm to the welded part on the inner surface of the welded welded can body of the above-mentioned stain-free steel can, so that the thickness of the coating after drying is 10 to 20 μm. , I created a printed version. Furthermore, as another correction material, a polyester film with a thickness of 30 μm and a width of 8 mm was bonded by thermocompression to the welded part on the inner surface of the welded can body. The welded can body with the above-mentioned welded parts corrected was flanged, and a stain-free steel lid whose inner surface was coated with epoxy/phenol paint was double-sealed using a conventional method to create an empty can. The above empty can was filled with 1.5% saline solution, double-sealed with the same stain-free steel lid as above, sterilized in a retort, stored at 50℃ for one month, opened, and welded the inside of the can. The corrosion state of the welded parts and the damage or separation of the compensation material from the welded parts were investigated.
Table 1 shows the results. As a comparative example, a welded can body was created using the same welding method using a blank in which the surface film near the welded part of the above-mentioned stain-free steel was previously removed to expose the iron locally. The test was also conducted under the same conditions as above. At this time, the width of the exposed iron surface of the welded can body was approximately 2 mm. As is clear from Table 1, the welded can body of the present invention has excellent characteristics, and in particular, as the proportion of the remaining area of the chromium oxide layer on the contact surface B of the welding electrode increases, the welded can body has excellent properties. The adhesion between the surface and the correction material is improved, and as a result, the corrosion resistance of the welded part is improved.
【表】
実施例 2
クロム量が102mg/m2の金属クロム層とクロム
量が15mg/m2のクロム酸化物層とを有する、板厚
が0.23mmのテインフリースチール薄板から実施例
1と同様の手段にて、溶接缶胴体(内径65.3mm、
胴長125.4mm)を作成した。
そのさい、円筒状のブランクの重ね合せ幅を
0.4mm、回転電極の直径を300mm、加圧力を100Kg、
溶接速度を9m/secとして溶接電流量を変えて
溶接を行つた。溶接電流量の調整は溶接交流電源
(50サイクルの商用周波数電源を用いた)の一次
側の電圧を変化させることにより行い、溶接時に
おいて溶接電流量を測定した。その結果、溶接電
流量(正弦波電流の実効値)が3.7kA〜4.5kAの
範囲にて、十分な溶接強度とシール性があり、か
つ全く溶融鉄のスプラツシユのない溶接部を有す
るテインフリースチールの缶胴体を得ることがで
きた。電流量が3.7kAよりも小さいと溶接強度あ
るいはシール性が低下し、一方、電流量が4.5kA
よりも大きいと溶融鉄のスプラツシユが溶接部よ
り発生する傾向にあつた。
得られた溶接缶胴体内面側において、溶接部の
形状、とくに溶接電極との接触面Bの幅L1、押
し出された鉄露出面Cの幅L2、溶接部の段差量
L3およびクロム皮膜の変質部Eの幅L4を調べ、
さらに、溶接部表面を電子顕微鏡にて観察して、
溶接電極との接触面Bにてクロム酸化物層が残存
している面積の比率を実施例1と同様の手段にて
調べた。
次に、上記溶接缶胴体内外面の溶接部に乾燥後
の塗膜の厚みが20〜30μmになるようにエポキ
シ・フエノール系塗料を塗装、焼付した後、それ
らの缶胴体をフランジ加工し、内面にエポキシ・
フエノール系塗料を塗装したテインフリースチー
ル製蓋を常法により二重巻締して空缶を作成し
た。
上記空缶にさけ水煮を充填し、上記と同じテイ
ンフリースチール製蓋を二重巻締し、レトルト殺
菌を行い、50℃で6ケ月間貯蔵後開缶し、缶内面
溶接部の腐食状態および硫化黒変の発生状態を調
べた。さらに、6ケ月以内に生じた穿孔缶数を調
べた(以上の実缶試験の試験数はおのおの100
缶)。表2に結果を示す。
このさいの比較例として、上記のテインフリー
スチールの溶接部およびその近傍の表面皮膜をあ
らかじめ除去して、局部的に鉄を露出させたブラ
ンクを用い、同様の溶接手段にて溶接缶胴体を作
成し、その缶胴体についても上記と同様の条件に
て試験を行つた。このさい、溶接缶胴体の鉄露出
面の幅は約2mmであつた。表2に合せて結果を示
す。
表2から明らかなように、本発明の溶接缶胴体
は優れた特性を有していることがわかる。[Table] Example 2 Same as Example 1 from a 0.23 mm thick stain-free steel thin plate having a metallic chromium layer with a chromium content of 102 mg/m 2 and a chromium oxide layer with a chromium content of 15 mg/m 2 Welded can body (inner diameter 65.3 mm,
The body length was 125.4mm). At that time, the overlapping width of the cylindrical blanks is
0.4mm, the diameter of the rotating electrode is 300mm, the pressure is 100Kg,
Welding was performed at a welding speed of 9 m/sec and by varying the amount of welding current. The amount of welding current was adjusted by changing the voltage on the primary side of the welding AC power source (using a 50-cycle commercial frequency power source), and the amount of welding current was measured during welding. As a result, the stain-free steel has sufficient welding strength and sealing performance when the amount of welding current (effective value of sine wave current) is in the range of 3.7kA to 4.5kA, and has welded parts with no molten iron splash. I was able to get a can body. If the current amount is less than 3.7kA, welding strength or sealing performance will decrease, while if the current amount is 4.5kA
When it was larger than , molten iron splash tended to occur from the welded part. On the inner surface of the resulting welded can body, the shape of the welded part, especially the width L 1 of the contact surface B with the welding electrode, the width L 2 of the extruded iron exposed surface C, and the amount of step of the welded part.
Examine L 3 and the width L 4 of the altered part E of the chrome film,
Furthermore, the weld surface was observed using an electron microscope, and
The ratio of the area where the chromium oxide layer remained on the contact surface B with the welding electrode was examined using the same method as in Example 1. Next, epoxy/phenol paint is applied and baked on the welded parts of the inner and outer surfaces of the welded can body so that the thickness of the coating after drying is 20 to 30 μm, and then the can bodies are flanged and the inner surface Epoxy
An empty can was prepared by double-sealing a lid made of stain-free steel coated with a phenolic paint using a conventional method. The above empty can was filled with water boiled in water, double-sealed with the same stain-free steel lid as above, sterilized in a retort, stored at 50℃ for 6 months, and then opened. and the state of occurrence of black sulfide discoloration was investigated. Furthermore, the number of perforated cans that occurred within 6 months was investigated (the number of actual can tests above was 100 for each test).
can). Table 2 shows the results. In this case, as a comparative example, a welded can body was created using the same welding method using a blank in which the welded parts and the surface film in the vicinity of the stain-free steel were previously removed to expose the iron locally. However, the can body was also tested under the same conditions as above. At this time, the width of the exposed iron surface of the welded can body was approximately 2 mm. The results are shown in Table 2. As is clear from Table 2, the welded can body of the present invention has excellent properties.
【表】
実施例 3
クロム量が105mg/m2の金属クロム層と、クロ
ム量が22mg/m2のクロム酸化物層とを有する、板
厚が0.17mmのテインフリースチール薄板を用い
て、実施例1と同様の方法で溶接缶胴体(202径、
200ml)を作成した。
得られた溶接缶胴体内面側において、溶接電極
との接触面Bの幅L1、押し出された鉄露出面C
の幅L2、溶接部の段差量L3およびクロム皮膜の
変質部Eの幅L4を調べ、さらに溶接部表面を電
子顕微鏡にて観察して、溶接電極との接触面Bで
のクロム酸化物層の被覆面積比率を調べた。
次に、上記溶接缶胴体内面の溶接部に20μmの
厚みで、8mmの幅のポリエステル系フイルムを熱
圧着した後、マルチビード加工、ネツクイン加工
およびフランジ加工をし、塩化ビニル樹脂系塗料
を塗布したアルミ製イージーオープン蓋を二重巻
締し、オレンジジユースを90℃で充填し、内面に
エポキシフエノール系塗料を塗装したテインフリ
ースチール製蓋を二重巻締し、50℃で6ケ月間貯
蔵後開缶して、缶内面溶接部の腐食状態、鉄溶出
量、内容物の変色状態、フレーバー評価を調べ
た。
このさいの比較例として、上記のテインフリー
スチールの溶接部およびその近傍の表面皮膜をあ
らかじめ除去して、局部的に鉄を露出させたブラ
ンクを用い、同様の溶接手段にて溶接缶胴体を作
成し、その缶胴体についても上記と同様の条件に
て試験を行つた。このさい、溶接缶胴体の鉄露出
面の幅は約2mmであつた。
表3に結果を示す。表から明らかなように、本
発明の缶胴体は優れた特性を有していることがわ
かる。[Table] Example 3 This was carried out using a 0.17 mm thick stain-free steel thin plate having a metallic chromium layer with a chromium content of 105 mg/m 2 and a chromium oxide layer with a chromium content of 22 mg/m 2 . Welded can body (202 diameter,
200ml) was created. On the inner surface of the resulting welded can body, the width L 1 of the contact surface B with the welding electrode, the extruded iron exposed surface C
The width L 2 of the weld, the amount of step L 3 of the weld, and the width L 4 of the altered part E of the chromium film were examined, and the weld surface was further observed with an electron microscope to determine whether chromium oxidation was detected on the contact surface B with the welding electrode. The coverage area ratio of the material layer was investigated. Next, a polyester film with a thickness of 20 μm and a width of 8 mm was bonded under heat to the welded part of the inner surface of the welded can body, and then multi-bead processing, net-in processing and flange processing were performed, and vinyl chloride resin paint was applied. Double-seal an aluminum easy-open lid, fill with orange juice at 90℃, double-seal a stain-free steel lid coated with epoxy phenol paint on the inside, and store at 50℃ for 6 months. The cans were opened and the corrosion state of the can inner welds, the amount of iron eluted, the discoloration of the contents, and the flavor evaluation were examined. In this case, as a comparative example, a welded can body was created using the same welding method using a blank in which the welded parts and the surface film in the vicinity of the stain-free steel were previously removed to expose the iron locally. However, the can body was also tested under the same conditions as above. At this time, the width of the exposed iron surface of the welded can body was approximately 2 mm. Table 3 shows the results. As is clear from the table, it can be seen that the can body of the present invention has excellent properties.
【表】
実施例 4
クロム量が53mg/m2の金属クロム層と、クロム
量が11mg/m2のクロム酸化物層とを有する、板厚
が0.23mmのテインフリースチール薄板に缶胴体の
内面となるべき面にエポキシ・ユリア系塗料をマ
ージン塗装し、さらに外面となるべき面にもマー
ジン塗装および印刷を行つた後、ブランク状に切
断した。次に、このテインフリースチールのブラ
ンクを実施例1と同様の手段にて溶接製缶を行
い、溶接缶胴体(内径65.3mm、胴長125.4mm)を
作成した。
そのさい、円筒状のブランクの重ね合せ幅を
0.6mm、溶接速度を12m/minとして、加圧力お
よび溶接電流量を変えて溶接を行つた。
得られた溶接缶胴体の内面側での溶接部の形状
および溶接電極との接触面Bでのクロム酸化物層
の被覆面積比率を調べた。
次に、上記溶接缶胴体内面の溶接部に幅約7mm
にわたつてエポキシ・ユリア系塗料を、乾燥後の
塗膜の厚みが20〜30μmになるように、塗装、焼
付し、ブランジ加工を行つた。その溶接缶胴体
に、内面にエポキシ・ユリア系塗料を塗装したブ
リキ製目金蓋およびブリキ製底蓋をそれぞれ二重
巻締し、さらにバルブ付のマウンテイングカツプ
を取付け、水溶性のガラスクリーナーを充填し
た。このエアゾール缶を50℃で6ケ月間貯蔵後開
缶し、缶内面溶接部の腐食状態を調べた。さら
に、6ケ月以内に生じた穿孔缶数を調べた(以上
の実缶試験の試験数はおのおの60缶)。表4に結
果を示す。
比較例として、上記のテインフリースチールの
溶接部近傍の電解クロム酸処理皮膜をあらかじめ
除去して、局部的に鉄を露出させたブランクを用
い、同様の溶接手段にて溶接缶胴体を作成し、そ
の缶胴体についても上記と同様の条件にて試験を
行つた。このさい、溶接缶胴体の鉄露出面の幅は
約2mmであつた。
表4から明らかなように、本発明の缶胴体は優
れた特性を有していることがわかる。[Table] Example 4 The inner surface of a can body was made of a 0.23 mm thick stain-free steel plate having a metallic chromium layer with a chromium content of 53 mg/m 2 and a chromium oxide layer with a chromium content of 11 mg/m 2 . After painting the margin with epoxy/urea paint on the surface that was to become the outer surface and performing margin painting and printing on the surface that was to become the outer surface, it was cut into blanks. Next, this stain-free steel blank was welded and can-formed using the same method as in Example 1 to produce a welded can body (inner diameter 65.3 mm, body length 125.4 mm). At that time, the overlapping width of the cylindrical blanks is
Welding was carried out at a welding speed of 0.6 mm and a welding speed of 12 m/min, with varying pressure and welding current. The shape of the welded portion on the inner surface side of the obtained welded can body and the coverage area ratio of the chromium oxide layer on the contact surface B with the welding electrode were investigated. Next, welded the welded part on the inner surface of the welded can body with a width of approximately 7 mm.
Epoxy/urea paint was applied, baked, and blanked to a thickness of 20 to 30 μm after drying. The welded can body is double-sealed with a tin eye lid and a tin bottom lid whose inner surfaces are coated with epoxy/urea paint, a mounting cup with a valve is attached, and a water-soluble glass cleaner is applied. Filled. After storing this aerosol can at 50°C for 6 months, the can was opened and the state of corrosion of the welded part on the inner surface of the can was examined. Furthermore, the number of perforated cans that occurred within six months was investigated (the number of actual cans tested above was 60 cans each). Table 4 shows the results. As a comparative example, a welded can body was created using the same welding method using a blank in which the electrolytic chromic acid treatment film near the welded part of the above-mentioned stain-free steel was previously removed to expose iron locally. The can body was also tested under the same conditions as above. At this time, the width of the exposed iron surface of the welded can body was approximately 2 mm. As is clear from Table 4, the can body of the present invention has excellent properties.
【表】
実施例 5
クロム量が161mg/m2の金属クロム層と、クロ
ム量が11mg/m2のクロム酸化物層とを有する、板
厚が0.23mmのテインフリースチール薄板から実施
例4と同様の方法にて溶接缶胴体を作成した。こ
のさい、円筒状のブランクの重ね合せ幅を0.4mm
とした。
上記溶接缶胴体内面の溶接部に実施例4と同様
にエポキシ・ユリア系塗料を塗装、焼付し、フラ
ンジ加工を行い、ブリキ製目金蓋、ブリキ製底蓋
およびマウンテイングカツプを取付け、エアゾー
ル缶を作成した。この缶体に洗濯のりを充填し、
50℃で6カ月間貯蔵後開缶し、缶内面溶接部の腐
食状態および内容品の色調の変化を調べた。さら
に、6カ月以内に生じた穿孔缶数を調べた(以上
の実缶試験の試験数はおのおの60缶)。表5に結
果を示す。
比較例として、上記のテインフリースチールの
溶接部近傍の電解クロム酸処理皮膜をあらかじめ
除去して、局部的に鉄を露出させたブランクを用
い、同様の溶接手段にて溶接缶胴体を作成し、そ
の缶胴体についても上記と同様の条件にて試験を
行つた。
表5から明らかなように、本発明の缶胴体は優
れた特性を有していることがわかる。[Table] Example 5 Example 4 was made from a 0.23 mm thick stain-free steel sheet having a metallic chromium layer with a chromium content of 161 mg/m 2 and a chromium oxide layer with a chromium content of 11 mg/m 2 . A welded can body was created using the same method. At this time, the overlapping width of the cylindrical blanks was set to 0.4 mm.
And so. The welded part of the inner surface of the welded can body was painted with epoxy/urea paint in the same manner as in Example 4, baked, flanged, and a tin metal lid, tin bottom lid, and mounting cup were attached to the aerosol can. It was created. Fill this can body with laundry starch,
After storage at 50°C for 6 months, the cans were opened and the corrosion state of the welded parts inside the cans and changes in the color tone of the contents were examined. Furthermore, the number of perforated cans that occurred within six months was investigated (the number of actual can tests above was 60 cans each). Table 5 shows the results. As a comparative example, a welded can body was created using the same welding method using a blank in which the electrolytic chromic acid treatment film near the welded part of the above-mentioned stain-free steel was previously removed to expose iron locally. The can body was also tested under the same conditions as above. As is clear from Table 5, the can body of the present invention has excellent properties.
【表】
実施例 6
クロム量が100mg/m2の金属クロム層と、クロ
ム量が15mg/m2のクロム酸化物層とを有する、板
厚が0.22mmのテインフリースチール薄板に、缶胴
体の内面となるべき面にエポキシ・フエノール系
塗料を、缶胴の溶接部近傍となるべき部分を未塗
装部として残す、いわゆるマージン塗装を行い、
さらに外面となるべき面にもマージン塗装を行つ
た後、この薄板をブランクに切断した。
次に、このテインフリースチールのブランク
を、溶接部となるべき部分より表面処理皮膜(金
属クロム層およびクロム酸化物層)を除去するこ
となく、第11図および第12図に示す装置を用
いて、重ね合せ部をマツシユシーム溶接して、断
面が132mm×77.4mmで、胴長が185.7mmであり、重
ね合せ部が短辺の中央に位置するような角形状缶
胴プリフオーム101を作製した。
第11図、第12図において、101は角形状
の缶胴プリフオームであり、第11図のマンドレ
ル104の左端に附設された缶胴成形機(図示さ
れない)によつて、重ね合せ部102が上方にな
るようにしてブランクから形成される。マンドレ
ル104の右端には、重ね合せ部102を溶接し
て溶接缶胴体100を形成するための内側ロール
電極106と外側ロール電極111が配設されて
いる。
缶胴プリフオーム101はマンドレル104の
左方から右方へ、送り爪を有するチエーンコンベ
ア(図示されない)により移送され、その移送中
にて、複数個のローラ群120,121,12
2,123,124,125および126によ
り、その角形状と重ね合せ部102の所定の重ね
合せ幅が確保される。
内側ロール電極106は、鉛直方向に延びる回
転軸106aを有し、回転軸106aが、外側ロ
ール電極111の回転軸111aと直交するよう
に配設されている。110および112は夫々、
溶接時に内側ロール電極106および外側ロール
電極111により支持される内側線電極および外
側線電極であり、側面が円弧状の長方形状断面を
有している。内側線電極110は、ガイドロール
127および128を経て矢印方向に移向し、そ
の底面が内側ロール電極106の円板状主部10
7の上面と接触し、またその側面が、円板状上方
突出部108の側周部108aと接触した後、ガ
イドロール129および130によつて矢印方向
に案内される。
ガイドロール128と130との間では内側線
電極110は実質的に直線状であり、内側ロール
電極106と外側ロール電極111とが対向する
部分で、内側線電極110と外側線電極112と
が対向している。缶胴プリフオーム101の重ね
合せ部102は内側および外側線電極110,1
12を介して、内側ロール電極106および外側
ロール電極111により押圧、通電されて、電気
抵抗マツシユシーム溶接を行なわれて、溶接部1
03に形成される。
外側ロール電極111は図示されない駆動機構
により回転駆動されており、溶接中の缶胴プリフ
オーム101を第11図の左方から右方へと移動
させて、連続的にマツシユシーム溶接を行なう。
なお131は通電のための導電性液体、132は
円板状主部107を冷却するための冷却媒体、1
33はOリングである。
溶接にさいし、内側ロール電極106の直径は
比較的小さいにもかかわらず、内側ロール電極1
06の平面部である円板状主部107を溶接加圧
面に使用することにより、溶接電極と缶胴プリフ
オーム101の重ね合せ部102とのシーム溶接
方向での溶接時の瞬間的な接触長を、テインフリ
ースチールが表面処理皮膜を除去することなく溶
接可能となる程度にまで長くすることが可能とな
る。
以上の装置において、外側ロール電極111の
直径を140mm、内側ロール電極106の直径を32
mmとし、線電極として市販のスズメツキ軟銅線
(直径1.5mm、スズメツキ量4g/m2)を巾2.1mm
で厚さ0.85mmの、両側面が円弧状の長方形状断面
を有するように圧延加工したものを、最初に外側
ロール電極111から次に内側ロール電極106
へ向うように、1本の線を張つて使用した。
缶胴プリフオームの重ね合せ部102の幅を
0.35mm、電極加圧力を70Kg、溶接速度を7m/
minとし、溶接電源として50Hzの交流電源を採用
した。その結果、溶接電流量(正弦波電流の実効
値)が3.5kA〜3.7kAの範囲にて、十分な溶接強
度とシール性があり、かつ溶融鉄のスプラツシユ
の全くない溶接部103を有するテインフリース
チールの缶胴体を得ることができた。
得られた溶接缶胴体100の内面側の溶接部1
02において、内側線電極110との接触面Bで
のクロム酸化物層で被覆されている面積の比率を
実施例1と同様の手段にて調べたところ、約60%
であつた。
次に、上記溶接缶胴体100の内面側溶接部
に、乾燥後の塗膜の厚みが30〜40μmで、巾が約
8mmとなるようにエポキシ・フエノール系塗料を
塗装、焼付した後、その缶胴体をフランジ加工
し、内面にエポキシ・フエノール系塗料を塗装し
たテインフリースチール製蓋を常法により二重巻
締して空缶を作成した。
上記空缶に醤油を充填、上記と同じテインフリ
ースチール製蓋を二重巻締を行い、50℃で6ケ月
間貯蔵後開缶し、缶内面溶接部の腐食状態を調べ
たところ、腐食は全く生じていなかつた。(以上
の実缶試験の試験数はおのおの50缶)
このさいの比較例として、上記のテインフリー
スチール溶接部およびその近傍の表面処理皮膜を
あらかじめ除去して、局部的に鉄を露出させたブ
ランクを用い、同様の溶接手段にて溶接缶胴体を
作成した。その缶胴体についても上記と同様の条
件にて試験を行つた結果、エポキシ・フエノール
系塗料を塗装した鉄面より成る缶胴体内面側溶接
部にて、著るしいさびが発生していた。このさ
い、溶接缶胴体の鉄露出面の幅は約2mmであつ
た。[Table] Example 6 A can body was coated on a 0.22 mm thick stain-free steel thin plate having a metallic chromium layer with a chromium content of 100 mg/m 2 and a chromium oxide layer with a chromium content of 15 mg/m 2 . Apply epoxy/phenol paint to the surface that should be the inner surface, and leave the area near the welded part of the can body as an unpainted area, so-called margin painting.
After applying margin coating to the surface that would become the outer surface, this thin plate was cut into blanks. Next, this stain-free steel blank was processed using the equipment shown in Fig. 11 and Fig. 12 without removing the surface treatment film (metallic chromium layer and chromium oxide layer) from the part to be welded. A square can body preform 101 having a cross section of 132 mm x 77.4 mm, a body length of 185.7 mm, and an overlapping part located at the center of the short side was manufactured by pine seam welding the overlapping part. 11 and 12, 101 is a rectangular can body preform, and a can body forming machine (not shown) attached to the left end of the mandrel 104 in FIG. It is formed from a blank in the following manner. At the right end of the mandrel 104, an inner roll electrode 106 and an outer roll electrode 111 for welding the overlapping portion 102 to form the welded can body 100 are arranged. The can body preform 101 is transferred from the left side to the right side of the mandrel 104 by a chain conveyor (not shown) having feeding claws, and during the transfer, a plurality of roller groups 120, 121, 12
2, 123, 124, 125 and 126 ensure the square shape and a predetermined overlapping width of the overlapping portion 102. The inner roll electrode 106 has a rotating shaft 106a extending in the vertical direction, and the rotating shaft 106a is arranged to be perpendicular to the rotating shaft 111a of the outer roll electrode 111. 110 and 112 are each
The inner wire electrode and the outer wire electrode are supported by the inner roll electrode 106 and the outer roll electrode 111 during welding, and have a rectangular cross section with an arcuate side surface. The inner wire electrode 110 is moved in the direction of the arrow through guide rolls 127 and 128, and its bottom surface is connected to the disc-shaped main portion 10 of the inner roll electrode 106.
7 and its side surface contacts the side circumferential portion 108a of the disc-shaped upper projection 108, and then is guided in the direction of the arrow by guide rolls 129 and 130. The inner wire electrode 110 is substantially linear between the guide rolls 128 and 130, and the inner wire electrode 110 and the outer wire electrode 112 are opposed to each other at the portion where the inner roll electrode 106 and the outer roll electrode 111 face each other. are doing. The overlapping portion 102 of the can body preform 101 has inner and outer wire electrodes 110,1
12, is pressed and energized by the inner roll electrode 106 and the outer roll electrode 111 to perform electrical resistance pine seam welding, and the welded portion 1
Formed in 03. The outer roll electrode 111 is rotationally driven by a drive mechanism (not shown), and moves the can body preform 101 being welded from left to right in FIG. 11 to continuously perform pine seam welding.
Note that 131 is a conductive liquid for electricity supply, 132 is a cooling medium for cooling the disc-shaped main portion 107, and 1
33 is an O-ring. During welding, although the diameter of the inner roll electrode 106 is relatively small, the inner roll electrode 1
By using the disc-shaped main part 107, which is the flat part of 06, as the welding pressure surface, the instantaneous contact length during welding in the seam welding direction between the welding electrode and the overlapping part 102 of the can body preform 101 can be reduced. , it becomes possible to lengthen the stain-free steel to the extent that it can be welded without removing the surface treatment film. In the above device, the diameter of the outer roll electrode 111 is 140 mm, and the diameter of the inner roll electrode 106 is 32 mm.
mm, and a commercially available tin-plated annealed copper wire (diameter 1.5 mm, tin-plating amount 4 g/m 2 ) was used as a wire electrode with a width of 2.1 mm.
A 0.85 mm thick rectangular cross-section with arcuate sides is rolled first into the outer roll electrode 111 and then into the inner roll electrode 106.
I used a single wire stretched out so that it was pointing towards. The width of the overlapping part 102 of the can body preform is
0.35mm, electrode pressure 70Kg, welding speed 7m/
min, and a 50Hz AC power source was used as the welding power source. As a result, the welding area 103 has sufficient welding strength and sealing performance when the amount of welding current (effective value of sine wave current) is in the range of 3.5 kA to 3.7 kA, and there is no molten iron splash. I was able to obtain a steel can body. Welded portion 1 on the inner surface of the obtained welded can body 100
In 02, the ratio of the area covered with the chromium oxide layer on the contact surface B with the inner line electrode 110 was investigated using the same method as in Example 1, and found to be approximately 60%.
It was hot. Next, epoxy/phenol paint is applied to the inner welded part of the welded can body 100 so that the thickness after drying is 30 to 40 μm and the width is about 8 mm, and then baked. An empty can was created by flanging the body and double-sealing the lid with a stain-free steel lid coated with epoxy/phenol paint on the inside using the usual method. The above empty can was filled with soy sauce, double-sealed with the same stain-free steel lid as above, stored at 50℃ for 6 months, then opened, and the corrosion state of the welded part on the inside of the can was examined. It wasn't happening at all. (The number of tests in the above actual can tests was 50 cans each.) As a comparative example, a blank was prepared in which the above-mentioned stain-free steel welds and the surface treatment film in the vicinity were removed in advance to expose iron locally. A welded can body was created using the same welding method. The can body was also tested under the same conditions as above, and as a result, significant rust had occurred at the weld on the inner surface of the can body, which was made of steel coated with epoxy/phenol paint. At this time, the width of the exposed iron surface of the welded can body was approximately 2 mm.
第1図は本発明の溶接缶胴体を製造するための
具体例である装置の一部破断側面図を、第2図は
第1図の−線に沿う断面図を、第3図は本発
明の1実施例である溶接缶胴体の斜視図を、第4
図および第5図は第3図の−線に沿う断面の
斜視図であつて、本発明の実施例である溶接部の
断面を含む斜視図を、第6図、第7図および第8
図は本発明の溶接部の断面顕微鏡組織を、第9図
および第10図は本発明の溶接部におけるクロム
酸化物層の透過電子顕微鏡写真、第11図は本発
明の溶接缶胴体を製造するための他の具体例であ
る装置の一部破断正面図を、第12図は第11図
のXII−XII線に沿う縦断面図を示す。
24……マツシユ溶接部、25……テインフリ
ースチール缶胴体、B……溶接部における溶接電
極との接触面、100……溶接缶胴体、103…
…溶接部。
FIG. 1 is a partially cutaway side view of a device that is a specific example of manufacturing a welded can body of the present invention, FIG. 2 is a cross-sectional view taken along the line - in FIG. 1, and FIG. A perspective view of a welded can body, which is an example of
6, 7 and 8 are perspective views of a cross section taken along the line - in FIG.
The figure shows a cross-sectional microscopic structure of the welded part of the present invention, Figures 9 and 10 are transmission electron micrographs of the chromium oxide layer in the welded part of the present invention, and Figure 11 shows the welded can body of the present invention manufactured. FIG. 12 is a longitudinal cross-sectional view taken along the line XII-XII of FIG. 11. 24...Masushi welding part, 25...Tein-free steel can body, B...Contact surface with welding electrode in welding part, 100...Welding can body, 103...
…welded part.
Claims (1)
面皮膜を有するテインフリースチールの溶接缶胴
体において、該テインフリースチールの板厚の
1.0〜1.8倍の厚さのマツシユシーム溶接部を有し
ており、該マツシユシーム溶接部は少なくとも缶
胴体内面において、溶接電極と接触した面におい
て、該表面皮膜によつて被覆されていて、該クロ
ム酸化物層の被覆率が面積比率で約30%以上であ
ることを特徴とするテインフリースチールの溶接
缶胴体。1. In a welded can body made of stain-free steel that has a surface film consisting of a metallic chromium layer and a chromium oxide layer, the plate thickness of the stain-free steel
It has a pine seam welded part with a thickness of 1.0 to 1.8 times, and the pine seam welded part, at least on the inner surface of the can body, is covered with the surface film in contact with the welding electrode, and is covered with the chromium oxide. A welded can body made of stain-free steel, characterized in that the coverage rate of the material layer is approximately 30% or more in terms of area ratio.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10669679A JPS5633184A (en) | 1979-08-23 | 1979-08-23 | Drum of welded can of tin-free steel |
GB8016424A GB2056349B (en) | 1979-08-06 | 1980-05-19 | Method and apparatus of making welded metallic can bodies and an improvement in welded can bodies |
US06/150,775 US4334138A (en) | 1979-08-06 | 1980-05-19 | Method of electric welding tinfree cans |
EP80301626A EP0023753B1 (en) | 1979-08-06 | 1980-05-19 | Method and apparatus of making welded metallic can bodies |
DE8080301626T DE3070976D1 (en) | 1979-08-06 | 1980-05-19 | Method and apparatus of making welded metallic can bodies |
AU58604/80A AU518357B2 (en) | 1979-08-06 | 1980-05-21 | Welding can bodies |
US06/526,928 US4517256A (en) | 1978-12-29 | 1983-08-26 | Welded can bodies |
US06/612,105 USRE32251E (en) | 1979-08-06 | 1984-05-18 | Method of electric welding tinfree cans |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10669679A JPS5633184A (en) | 1979-08-23 | 1979-08-23 | Drum of welded can of tin-free steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5633184A JPS5633184A (en) | 1981-04-03 |
JPS6311109B2 true JPS6311109B2 (en) | 1988-03-11 |
Family
ID=14440184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10669679A Granted JPS5633184A (en) | 1978-12-29 | 1979-08-23 | Drum of welded can of tin-free steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5633184A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5064982A (en) * | 1983-06-10 | 1991-11-12 | Nippon Kokan Kabushiki Kaisha | Electric resistance seam welding method |
JPH0710437B2 (en) * | 1986-05-21 | 1995-02-08 | 東洋製罐株式会社 | Matsushimu welding can barrel |
JP4885909B2 (en) * | 2008-06-02 | 2012-02-29 | ハリマ興産株式会社 | ax |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148150A (en) * | 1978-05-13 | 1979-11-20 | Toyo Seikan Kaisha Ltd | Electric welding of nonconductive coatt treated steel plate |
JPS5570487A (en) * | 1978-11-22 | 1980-05-27 | Yoshizaki Kozo | Method and apparatus for production of metal can drum |
JPS5733110A (en) * | 1980-07-31 | 1982-02-23 | Shinko Electric Co Ltd | Height adjusting apparatus for fixed portion of parts feeder with adjusting ring |
-
1979
- 1979-08-23 JP JP10669679A patent/JPS5633184A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54148150A (en) * | 1978-05-13 | 1979-11-20 | Toyo Seikan Kaisha Ltd | Electric welding of nonconductive coatt treated steel plate |
JPS5570487A (en) * | 1978-11-22 | 1980-05-27 | Yoshizaki Kozo | Method and apparatus for production of metal can drum |
JPS5733110A (en) * | 1980-07-31 | 1982-02-23 | Shinko Electric Co Ltd | Height adjusting apparatus for fixed portion of parts feeder with adjusting ring |
Also Published As
Publication number | Publication date |
---|---|
JPS5633184A (en) | 1981-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0194608B1 (en) | Method of lap welding can blank consisting of metal sheet or the like | |
EP0023753B1 (en) | Method and apparatus of making welded metallic can bodies | |
US4477501A (en) | Welded can and process for preparation thereof | |
EP0038646A1 (en) | Method of manufacturing a welded can body | |
JPS6311109B2 (en) | ||
JPS632715B2 (en) | ||
KR890003098B1 (en) | Method of making welded can body | |
JPS6150075B2 (en) | ||
JP3181410B2 (en) | Tin Free Steel Can Body Welding Method | |
JP3212136B2 (en) | Can body having a welding can body | |
JPS625711B2 (en) | ||
CA1177419A (en) | Method of producing container bodies and container bodies produced thereby | |
JPS6030589A (en) | Production of welded can body | |
JPS6124258B2 (en) | ||
USRE32251E (en) | Method of electric welding tinfree cans | |
JPS6324795B2 (en) | ||
JP3153001B2 (en) | Can body having a welding can body | |
JP2580923B2 (en) | Laminated steel sheet for welding can and method for producing the same | |
JPS6150074B2 (en) | ||
JPS61289932A (en) | Laser welding can shell body | |
JPH0343947B2 (en) | ||
JPS601115B2 (en) | Can body seam welding machine | |
JPS62275582A (en) | Mash-seam welding can shell | |
JPH0343945B2 (en) | ||
JPS6335719B2 (en) |