JPS6149484A - Compound semiconductor element and manufacture thereof - Google Patents

Compound semiconductor element and manufacture thereof

Info

Publication number
JPS6149484A
JPS6149484A JP59171938A JP17193884A JPS6149484A JP S6149484 A JPS6149484 A JP S6149484A JP 59171938 A JP59171938 A JP 59171938A JP 17193884 A JP17193884 A JP 17193884A JP S6149484 A JPS6149484 A JP S6149484A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
recess
type
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59171938A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Seiji Onaka
清司 大仲
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59171938A priority Critical patent/JPS6149484A/en
Publication of JPS6149484A publication Critical patent/JPS6149484A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce dark current, by a method wherein a first recess is provided in an InO substrate and filled with either an InP or InxGa1-xAs1-yPy layer of a first conductivity type, and a second recess is provided in this layer and filled with eigher an InGaAs or Inx'Ga1-x'As1-y'Py' (y'<y) layer of the same conductivity type as the former layer, which is then protected by a layer of the conductivity type opposite to the first conductivity type. CONSTITUTION:A first recess 11 is formed in the surface of a semi-insulative InP substrate 10 and filled with either an N<-> type InP or InxGa1-xAs1-yPy epitaxial layer 12 having an impurity concentration of 5X10<15>/cm<3>. A second recess 13 is formed in a predetermined region in the layer 12 and filled with either an InGaAs or Inx'Ga1-x'As1-y'Py', epitaxial layer 14 having an impurity concentration of 5-10<15>/cm<3>. The relationship between y and y' is particularly specified to be y'<y. A P<+> type InGaAs protection layer 15 is formed on the surface of the layer 14, together with a P<+> type InP protection layer 16 which is connected to the layer 15 and which extends over a part of the surface of the layer 12, by diffusion or ion implantation. In this way, a photodiode having reduced surface leakage current is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体へテロ接合を有するフォトダイ   ・
オードなどの化合物半導体素子及びその製造方法に関す
る。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a photo die having a semiconductor heterojunction.
The present invention relates to compound semiconductor devices such as odes and methods for manufacturing the same.

従来例の構成とその問題点 1.0〜1.7μm帯(長波長帯)の光フアイバ通信は
、高純度光ファイバがこの波長帯域で低分散。
Conventional configuration and its problems In optical fiber communication in the 1.0 to 1.7 μm band (long wavelength band), high-purity optical fiber has low dispersion in this wavelength band.

低損失の特性を示すため、長距離伝送の手段として注目
されている。この長波長帯域における受光素子として現
在Ge−PINフォトダイオード、Ge −アバランシ
ェフォトダイオード(G6−APD)などが用いられて
いるが、0.8μm帯の光フアイバ通信で用いられてい
る5i−PINフォトダイオードや5i−APDに比べ
、暗電流が大きい、温度特性が悪いなどの欠点があり、
長波長帯域でSiに匹敵する特性を有する受光素子の開
発が望まれており、Goにかわる材料として化合物半導
体を用いた”0.53Ga[1,47As(以後InG
aAs  と記す)或は:[nxG2L1 、、As1
−yPy (以後InGaAsPと記す)のPINフォ
トダイオード或はAPDの開発が行われている。
Because it exhibits low loss characteristics, it is attracting attention as a means of long-distance transmission. Ge-PIN photodiodes, Ge-avalanche photodiodes (G6-APD), etc. are currently used as photodetectors in this long wavelength band, but 5i-PIN photodiodes, which are used in optical fiber communications in the 0.8 μm band, are currently used. Compared to diodes and 5i-APDs, they have drawbacks such as large dark current and poor temperature characteristics.
There is a desire to develop a photodetector with characteristics comparable to Si in the long wavelength band, and the use of compound semiconductors such as ``0.53Ga[1,47As'' (hereinafter referred to as InG
aAs ) or: [nxG2L1 , , As1
-yPy (hereinafter referred to as InGaAsP) PIN photodiodes or APDs are being developed.

第1図に従来のInGaAs / I n P拡散型プ
レナーPINフォトダイオードの断面構造を示す。第1
図において、1は高濃度n型InP基板、2は低、  
      濃度”−型”3°′キパル層”t’?+I
Jア密度は5X1015(7+1  ’ 、3は低濃度
n−型InGaAs  xビタキシャル層でキャリア密
度は5X10  cm。
FIG. 1 shows a cross-sectional structure of a conventional InGaAs/InP diffused planar PIN photodiode. 1st
In the figure, 1 is a high concentration n-type InP substrate, 2 is a low concentration,
Concentration "-type"3°' Kipal layer "t'?+I
JA density is 5X1015 (7+1', 3 is a low concentration n-type InGaAs x bitaxial layer and carrier density is 5X10 cm.

4はZn を拡散した高濃度、P+型InGaAs層で
ある。5はP+型工nt;aAs層4にオーミック接触
する電極でAu −Znの蒸着膜、6は計則InP基板
1にオーミック接触する電極でAu −Snの蒸着膜、
7はInGaAs のp−n−接合の保護膜を兼ねた無
反射コーテイング膜でプラズマCvD法により堆積した
Si3N4膜である。人は受光部である。この構造にお
いてn−型InGaAs層3とP+型InGaAs層4
との接合の表面即ちSi3N4膜7との界面でリーク電
流が発生し、暗電流が大きくなってしまう。
4 is a high concentration, P+ type InGaAs layer in which Zn is diffused. 5 is a P+ type electrode; 6 is an electrode that is in ohmic contact with the aAs layer 4 and is a deposited film of Au-Zn; 6 is an electrode that is in ohmic contact with the InP substrate 1 and is a deposited film of Au-Sn;
7 is a non-reflection coating film which also serves as a protective film for the InGaAs p-n junction, and is a Si3N4 film deposited by the plasma CVD method. A person is a light receiver. In this structure, an n-type InGaAs layer 3 and a p+-type InGaAs layer 4
A leakage current occurs at the surface of the junction with the Si3N4 film 7, that is, at the interface with the Si3N4 film 7, resulting in an increase in dark current.

第1図の構造で、直径300μmのPINフォトダイオ
ードの場合、暗電流は逆バイアスが5vのとき数10μ
人と大きい。一方Si3N4膜7を除去すると、暗電流
は逆バイアス6vのとき、100nA程度と小さくなる
が表面に保護膜が無い状態であるので素子の信頼性が問
題となる。
In the case of a PIN photodiode with a diameter of 300 μm in the structure shown in Figure 1, the dark current is several tens of μm when the reverse bias is 5 V.
big with people On the other hand, if the Si3N4 film 7 is removed, the dark current is reduced to about 100 nA at a reverse bias of 6 V, but since there is no protective film on the surface, the reliability of the device becomes a problem.

一方メサ型tT) InGaAs / I nP 、或
はInGaAsP /InPPINフォトダイオードに
してp−n接合部がInGaAs 層、或はInGaA
sP層の表面に形成されない構造にする事により、暗電
流を低下させる方式は発明されているが、FET等他の
素子との集積化を考えると、メサ構造では、集積密度や
配線等に問題があシ、プレナー構造の低暗電流の受光素
子の開発が要請されている。
On the other hand, in a mesa type (tT) InGaAs/InP or InGaAsP/InPPIN photodiode, the p-n junction is an InGaAs layer or an InGaA photodiode.
A method has been invented to reduce dark current by creating a structure that is not formed on the surface of the sP layer, but when considering integration with other elements such as FETs, the mesa structure has problems with integration density, wiring, etc. There is a need for the development of light-receiving elements with a planar structure and low dark current.

発明の目的 本発明はこの様な従来のInGaAs / InP 、
或はInGaAsP / I n P−P I N 7
オトダイオードにおける問題点を解決するためになされ
たものであり、表面保護膜が形成された状態でもなおか
つ、低暗電流の化合物半導体素子の製造方法を提供する
事を目的としている。
OBJECTS OF THE INVENTION The present invention is directed to such conventional InGaAs/InP,
Or InGaAsP/I n P-P I N 7
This was developed in order to solve the problems with photodiodes, and the purpose is to provide a method for manufacturing a compound semiconductor element that has a low dark current even when a surface protective film is formed.

発明の構成 本発明はInP基板表面に第1の凹部を形成しこの凹部
内に第1導電形のInP層、或はInxGa、−xAs
1 、Py層が形成され、更にそのInP或はInGa
AsP層に第2の凹部が形成され、その中に第1導電形
ノInGaAs 或は工nxIGa1−xlAs、−y
lPyl(y’< y )層を有し、上記第2の凹部を
含む領域の表面に第2導電形の拡散層或はイオン注入層
を形成し、表面でのリーク電流を低減し、暗電流を飛躍
的に低くするものである。
Structure of the Invention The present invention forms a first recess on the surface of an InP substrate, and an InP layer of a first conductivity type, InxGa, -xAs, etc. is formed in the recess.
1. A Py layer is formed, and the InP or InGa layer is formed.
A second recess is formed in the AsP layer, and a first conductivity type of InGaAs or InGaAs, -y is formed in the AsP layer.
It has an lPyl (y'< y) layer, and a second conductivity type diffusion layer or ion implantation layer is formed on the surface of the region including the second recess to reduce leakage current at the surface and reduce dark current. This dramatically lowers the

実施例の説明 以下本発明の一実施例について説明する。第2図にその
構造を示す。同図において、1oは半絶縁性InP 基
板、12は基板表面に形成された深さ4112nの第1
の凹部11内に形成されたn−型エピタキシャル層でキ
ャリア密度及び膜厚は例えば5 X 1015cnV’
、及び2 p 772である。13は更にこのn一層1
2に形成場れた第2凹部内に形成されたn1型InGa
As工ピタキシヤル層で、キャリア密度及び膜厚は、5
X10  cm  %及び2μmである。14.15は
、n  InGa蔀の表面全体をおおう様に例えばZn
を拡散したp+型InGaAs及InP層で、拡散深さ
は約1μmである。16及び17はそれぞれp+型In
GaAs層15及びnuInP  層12表面にオーミ
ック接触をとるだめの金属で例えばそれぞれAu −Z
n及びAu −Snの蒸着膜である。PINフォトダイ
オードの受光部はBであり、入射した光はn−及びp型
InGaAs層13.14で吸収される。18は受光部
Bでは無反射コーティング層となり、n−型rnp層1
2とp+型InP層15との接合表面では表面保護膜と
なる様な膜例えばSi、N4膜である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below. Figure 2 shows its structure. In the figure, 1o is a semi-insulating InP substrate, and 12 is a first layer with a depth of 4112n formed on the substrate surface.
The n-type epitaxial layer formed in the recess 11 has a carrier density and film thickness of, for example, 5 x 1015cnV'.
, and 2 p 772. 13 is further this n layer 1
n1 type InGa formed in the second recess formed in 2.
The As pitaxial layer has a carrier density and film thickness of 5.
X10 cm % and 2 μm. In 14.15, for example, Zn is applied so as to cover the entire surface of n InGa.
The p+ type InGaAs and InP layer is diffused with a diffusion depth of approximately 1 μm. 16 and 17 are p+ type In
A metal for making ohmic contact with the surfaces of the GaAs layer 15 and the nuInP layer 12, for example, Au-Z.
This is a vapor deposited film of n and Au-Sn. The light receiving part of the PIN photodiode is B, and the incident light is absorbed by the n- and p-type InGaAs layers 13 and 14. 18 is a non-reflective coating layer in the light receiving part B, and is an n-type RNP layer 1.
On the bonding surface between 2 and the p+ type InP layer 15, a film such as a Si or N4 film is used as a surface protective film.

本発明の一実施例の特徴とするところは次の通りである
The features of one embodiment of the present invention are as follows.

n−型InGaAs層13とp+型InGaAs層14
との接合が表面に露出しない構造をとっているだめ表面
リーク電流が少ない。本発明者の実験によると、従来例
に示した構造のプレナー型フォトダイオードの暗電流は
p−n接合の周辺長に比例する結果が得られており、従
ってInGaAs  でのp−n接合表面でのリークが
生じているといえる。一方InPのp−n接合ダイオー
ドの試作を行うと、リーク電流は同じ条件下で、2桁以
上も小さく、InP接合表面のリーク電流は、InCr
aAs接合表面のリーク電流に比べてはるかに小さい事
が判明した。
n-type InGaAs layer 13 and p+-type InGaAs layer 14
Since the structure does not expose the junction with the surface, surface leakage current is small. According to experiments conducted by the present inventors, it has been found that the dark current of a planar photodiode having the structure shown in the conventional example is proportional to the peripheral length of the p-n junction. It can be said that a leak has occurred. On the other hand, when we prototyped an InP p-n junction diode, the leakage current was more than two orders of magnitude smaller under the same conditions, and the leakage current at the InP junction surface was lower than that of the InCr.
It was found that the leakage current was much smaller than the leakage current at the aAs junction surface.

更に本発明では表面保護膜が形成されている。Furthermore, in the present invention, a surface protective film is formed.

従来例の説明でも述べた様に、工nG1LAs のp−
n接合表面に表面保護膜を形成するとリーク電流が増加
するが、本発明ではxnpの表面に接合が形成される事
になるので表面保護膜を形成した場合でも従来例よりも
小さく、しかも高い信頼性が得られる。
As mentioned in the explanation of the conventional example, the p-
When a surface protective film is formed on the n-junction surface, leakage current increases, but in the present invention, the junction is formed on the xnp surface, so even if a surface protective film is formed, the leakage current is smaller than that of the conventional example, and is highly reliable. You can get sex.

次に本発明の一実施例のPINフォトダイオードの製造
方法について説明する。工程の概略を第3図(2L)〜
(d)に示す・ (a)’n+型InP基板10の表面にsiN又は51
02等の絶縁膜19をスパッタリング法等で形成し、フ
ォトリソグラフィーと化学エツチングによりnInP 
層の形成される領域の絶縁膜を除去する。その後、この
絶縁膜をエツチングマスクとして、InP基板中に深さ
約4μmの凹部11を形成する。(第3図(a)) (b)  次に上記の基板即ち表面に凹部11を有し、
しかも凹部以外の表面には絶縁膜の付着された基板上に
n−型InP層12(例えばキャリア密度5 X 10
15cm ’、厚さ4μm)を気相エピタキシャル成長
法等で成長させる。この成長は、他の成長方法例えばM
 OCV D (Metal QrganicChem
ical Vap or Deposition)法、
又はMBK(Mo1ccular Beam Epit
axial ) 法などであってもよい。
Next, a method for manufacturing a PIN photodiode according to an embodiment of the present invention will be described. The outline of the process is shown in Figure 3 (2L)~
As shown in (d), (a) siN or 51
An insulating film 19 such as 02 is formed by sputtering or the like, and nInP is formed by photolithography and chemical etching.
The insulating film in the region where the layer is to be formed is removed. Thereafter, using this insulating film as an etching mask, a recess 11 having a depth of about 4 μm is formed in the InP substrate. (FIG. 3(a)) (b) Next, having a recess 11 on the above substrate, that is, on the surface,
Furthermore, an n-type InP layer 12 (for example, a carrier density of 5 x 10
15 cm' and a thickness of 4 μm) using a vapor phase epitaxial growth method or the like. This growth can be achieved using other growth methods such as M
OCV D (Metal QrganicChem
ical Vapor or Deposition) method,
Or MBK (Mo1ccular Beam Epit
axial) method, etc. may be used.

次に、上記の基板を弗酸系の溶液に浸漬する事により、
第1の凹部以外のInP層12を絶縁膜19と共にリフ
トオフ法で除去し、第1の凹部の内部をInP層12と
する。(第3図(b))(C)次にこのn−型InP層
の埋め適寸れだ基板表面にsiN、又は8102等の絶
縁膜20をスパッタリング法等で形成し、フォトリソグ
ラフィーと化学エツチングによりn−−InGaAs層
の形成される領域(この領域は受光部となる)の絶縁膜
を除去する。その後、この絶縁膜をエツチングマスクと
してn−−InP 層に深さ約2μ2nの凹部13を形
成する。そしてこの基板にn−型InGaAs 層14
(例えばキャリア密度、5×10”Cm ’ 、厚さ2
μyyz )を気相エピタキシャル成長法で成長させる
。この成長も他の成長方法例えばMOCVD 、MBK
法であっても良い。
Next, by immersing the above substrate in a hydrofluoric acid solution,
The InP layer 12 other than the first recessed portion is removed together with the insulating film 19 by a lift-off method, and the inside of the first recessed portion is left as the InP layer 12. (FIG. 3(b)) (C) Next, an insulating film 20 of SiN or 8102 is formed on the surface of the substrate with an appropriate gap by filling this n-type InP layer with a sputtering method, and then photolithography and chemical etching are performed. The insulating film in the region where the n--InGaAs layer is to be formed (this region will become the light receiving section) is removed by the following steps. Thereafter, using this insulating film as an etching mask, a recess 13 having a depth of about 2 μ2n is formed in the n--InP layer. Then, on this substrate, an n-type InGaAs layer 14 is formed.
(e.g. carrier density, 5 x 10"Cm', thickness 2
μyyz) is grown by vapor phase epitaxial growth. This growth can also be achieved using other growth methods such as MOCVD, MBK.
It may be a law.

その次に、この基板を弗酸系の溶液に浸漬する事により
、第2の凹部13以外のInGaAs 層を絶縁膜と共
にリフトオフ法で除去し1、第2の凹部13の内部をI
nGaAs 層14とする。(第3図(C)) 次にn−型1nGaAs層14の表面全体とその周辺部
のInP基板表面に、p型不純物を選択拡散し、p+型
InGaAs層16及びp+型InP層16を形成する
。(第3図(d)) このp型不純物の選択拡散はたとえばsi、N4膜を選
択拡散のマスクとして封管法によりZnを1μmの拡散
深さに拡散する。この場合の拡散温度、及び拡散時間は
それぞれ500°C及び9分である。このp型不純物の
選択拡散は他の方法、たとえば封管法によるC(1の拡
散あるいはZn 、 Cd 、 Mg 、 Beなどの
イオン注入法などによってもよい(d)。
Next, by immersing this substrate in a hydrofluoric acid solution, the InGaAs layer other than the second recess 13 is removed together with the insulating film by a lift-off method 1, and the inside of the second recess 13 is
An nGaAs layer 14 is used. (FIG. 3(C)) Next, p-type impurities are selectively diffused into the entire surface of the n-type 1nGaAs layer 14 and the surface of the InP substrate in the surrounding area to form a p+-type InGaAs layer 16 and a p+-type InP layer 16. do. (FIG. 3(d)) In this selective diffusion of the p-type impurity, Zn is diffused to a diffusion depth of 1 μm by a sealed tube method using, for example, a Si or N4 film as a selective diffusion mask. The diffusion temperature and diffusion time in this case are 500°C and 9 minutes, respectively. This selective diffusion of the p-type impurity may be performed by other methods, such as diffusion of C (1) using a sealed tube method or ion implantation of Zn, Cd, Mg, Be, etc. (d).

次にオーミック接触をとるだめの金属、たとえばAu−
Zn蒸着膜1了、Au −Sn蒸着膜18を形成する。
Next, use a metal to make ohmic contact, such as Au-
After completing the Zn vapor deposition film 1, an Au--Sn vapor deposition film 18 is formed.

Au −Zn蒸着膜17及びAu−8n蒸着膜18は他
の金属、例えばAu 、 Ni 、 Cr。
The Au-Zn deposited film 17 and the Au-8n deposited film 18 are made of other metals, such as Au, Ni, and Cr.

)、g 、 Geなどオーミック接触が得られるもので
あれば良い。
), g, Ge, etc., which can provide ohmic contact, may be used.

最後に第2図の如く、表面保護膜21を形成する。21
は無反射コーテイング膜でもあり、たとえばプラダ−q
 CV D法によりSi3N 4膜を1761mの厚さ
に堆積すると波長1.3μmの光に対する無反射コーテ
イング膜となる。21はたとえばCVD法、スパッタ蒸
着法々どによって形成したSi、N4膜でもよく、また
8102  などの他の材質のものであっても良い。ま
た上記実施例では、21は表面保護膜と無反射コーテイ
ング膜とを兼用しているが、第2図のn+型InP11
とp+型InP層16との接合表面の保護膜と受光部B
の無反射コーティング膜、とを異なる膜で形成しても良
い。まだ上記実施例でp型とn型とが逆であってもよい
事は勿論である。上記説明においてはPINフォトダイ
オードとして説明したが、インパットダイオードなどの
電気素子にも応用可能である。
Finally, as shown in FIG. 2, a surface protective film 21 is formed. 21
is also a non-reflective coating film, for example Prada-q
When a Si3N4 film is deposited to a thickness of 1761 m by the CVD method, it becomes a non-reflective coating film for light with a wavelength of 1.3 μm. 21 may be, for example, a Si or N4 film formed by CVD or sputter deposition, or may be made of other materials such as 8102. Further, in the above embodiment, 21 serves both as a surface protection film and a non-reflection coating film, but the n+ type InP 11 in FIG.
and the protective film on the bonding surface of the p+ type InP layer 16 and the light receiving part B
The non-reflective coating film and the non-reflective coating film may be formed using different films. Of course, the p-type and n-type may be reversed in the above embodiments. In the above description, a PIN photodiode has been described, but it can also be applied to electric elements such as impact diodes.

、         本発明は・半絶縁性1”2基板を
用“る事が1き、しかも、プラナ−構造であるので、他
の光素子或は電気素子との集積化が行いやすく、いわゆ
る光ICへの応用が可能である。
The present invention allows the use of semi-insulating substrates and has a planar structure, making it easy to integrate with other optical devices or electrical devices, making it suitable for so-called optical ICs. can be applied.

発明の詳細 な説明した様に本発明は、長波長帯の受光素子として低
暗電流かつ高信頼度の特性が得られ、光通信の発展に大
きく寄与するものである。
As described in detail, the present invention provides low dark current and high reliability characteristics as a long wavelength band light receiving element, and greatly contributes to the development of optical communications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来tニア) InGaAs / InP −
P I N 7 tトダイオードの構造断面図、第2図
は本発明の一実施例であるInGaAs / InP−
P I Nフォトダイオードの構造断面図、第3図(a
)〜(d)は本発明の一実施例であるInGaAs y
 InP −P I Nフォトダイオードの構造断面図
である。 11.13・・・・・・第1.第2の凹部、12・・・
「型InP層、14−−−n−型InGaAs層、15
・・・・・・p+型InGaAs層、16・・・・・・
p+型InP層、21・・・・・表面保護膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
Figure 1 shows conventional t-nia) InGaAs/InP -
FIG. 2 is a cross-sectional view of the structure of a PIN7T diode, which is an InGaAs/InP diode according to an embodiment of the present invention.
Structural cross-sectional view of PIN photodiode, Figure 3 (a
) to (d) are InGaAs y which is an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the structure of an InP-P I N photodiode. 11.13...1st. Second recess, 12...
"type InP layer, 14---n-type InGaAs layer, 15
...p+ type InGaAs layer, 16...
p+ type InP layer, 21...surface protective film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電形或は半絶縁性InP基板に形成された
第1の凹部内に第1導電形のInP或は In_xGa_1_−_xAs_1_−_yP_yなる
第1の層が形成され、更に前記第1層の表面から第2の
凹部が形成され、その中に第1導電形のIn_0_._
5_3Ga_0_._4_7Asあるいは上記第1導電
形In_xGa_1_−_xAs_1_−_yP_y層
よりも組成がIn_0_._5_3Ga_0_._4_
7Asに近いIn_x_′Ga_1_−_x_′As_
1_−_y_′P_y_′なる第2の層を有し、前記第
2の層の表面全体及び前記第2の凹部の周囲の前記第1
の層もしくは第1導電形或は半絶縁性InP基板表面に
第2導電形の拡散層或はイオン注入層が形成されている
事を特徴とする化合物半導体素子。
(1) A first layer of InP of a first conductivity type or In_xGa_1_-_xAs_1_-_yP_y is formed in a first recess formed in a first conductivity type or semi-insulating InP substrate, and A second recess is formed from the surface of the layer and In_0_. of the first conductivity type is formed therein. _
5_3Ga_0_. _4_7As or the composition of In_0_. _5_3Ga_0_. _4_
In_x_'Ga_1_-_x_'As_ close to 7As
1_-_y_'P_y_';
1. A compound semiconductor device characterized in that a second conductivity type diffusion layer or an ion implantation layer is formed on the surface of a first conductivity type or semi-insulating InP substrate.
(2)第1導電形或は半絶縁性InP基板上に第1の凹
部を形成する工程、前記第1の凹部内に第1導電形のI
nP或はIn_xGa_1_−_xAs_1_−_yP
_y層をエピタキシャル成長する工程、及び前記エピタ
キシャル成長した層に第2の凹部を形成する工程、そし
て、その第2の凹部に第1導電形の In_0_._5_3Ga_0_._4_7As或は上
記In_xGa_1_−_xAs_1_−_yP_y層
よりも組成がIn_0_._5_3Ga_0_._4_
7Asに近いIn_x_′Ga_1_−_x_′As_
1_−_y_′P_y_′層エピタキシャル成長する工
程、及び前記第1導電形のInGaAs或はIn_x_
′Ga_1_−_x_′As_1_−_y_′P_y_
′の表面全体及び前記第2の凹部の周囲の上記第1導電
形エピタキシャル層、もしくは第1導電型或は半絶縁性
InP基板表面に、第2導電形の不純物を拡散或は注入
する工程を含む事を特徴とする化合物半導体素子の製造
方法。
(2) forming a first recess on a first conductivity type or semi-insulating InP substrate; forming a first conductivity type I in the first recess;
nP or In_xGa_1_-_xAs_1_-_yP
_y layer epitaxially grown, a second recess formed in the epitaxially grown layer, and a first conductivity type In_0_. _5_3Ga_0_. _4_7As or the composition of In_0_. _5_3Ga_0_. _4_
In_x_'Ga_1_-_x_'As_ close to 7As
1_-_y_'P_y_' layer epitaxial growth, and the first conductivity type InGaAs or In_x_
'Ga_1_-_x_'As_1_-_y_'P_y_
a step of diffusing or implanting impurities of a second conductivity type into the first conductivity type epitaxial layer or the first conductivity type or semi-insulating InP substrate surface around the entire surface of the second conductivity type and the second recess; 1. A method for manufacturing a compound semiconductor device comprising:
JP59171938A 1984-08-18 1984-08-18 Compound semiconductor element and manufacture thereof Pending JPS6149484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171938A JPS6149484A (en) 1984-08-18 1984-08-18 Compound semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171938A JPS6149484A (en) 1984-08-18 1984-08-18 Compound semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6149484A true JPS6149484A (en) 1986-03-11

Family

ID=15932602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171938A Pending JPS6149484A (en) 1984-08-18 1984-08-18 Compound semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6149484A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251458A2 (en) * 1986-05-16 1988-01-07 AT&T Corp. Process for manufacturing indium-phosphide devices
US5100833A (en) * 1987-08-05 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
WO2017098769A1 (en) * 2015-12-11 2017-06-15 ソニー株式会社 Light-receiving element, manufacturing method for light-receiving element, imaging element, and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251458A2 (en) * 1986-05-16 1988-01-07 AT&T Corp. Process for manufacturing indium-phosphide devices
US5100833A (en) * 1987-08-05 1992-03-31 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5194399A (en) * 1987-08-05 1993-03-16 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
US5275968A (en) * 1987-08-05 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor light emitting device disposed in an insulating substrate
WO2017098769A1 (en) * 2015-12-11 2017-06-15 ソニー株式会社 Light-receiving element, manufacturing method for light-receiving element, imaging element, and electronic device
US10483299B2 (en) 2015-12-11 2019-11-19 Sony Semiconductor Solutions Corporation Light-receiving element, method of manufacturing light-receiving element, imaging device, and electronic apparatus
US10943932B2 (en) 2015-12-11 2021-03-09 Sony Semiconductor Solutions Corporation Light-receiving element, method of manufacturing light-receiving element, imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
KR890004963B1 (en) Semiconductor optical detector
EP0156156A1 (en) Avalanche photodiodes
US6489635B1 (en) Epitaxially grown p-type diffusion source for photodiode fabrication
JPS6016474A (en) Hetero multiple junction type photo detector
CA1199097A (en) Preparation of photodiodes
US4700209A (en) Avalanche photodiode and a method of making same
JPS6149484A (en) Compound semiconductor element and manufacture thereof
CA1280196C (en) Avanlanche photodiode
JP4109159B2 (en) Semiconductor photo detector
US7009224B2 (en) Metamorphic long wavelength high-speed photodiode
Ohnaka et al. A planar InGaAs PIN/JFET fiber-optic detector
JPH07118548B2 (en) III-V group compound semiconductor PIN photo diode
JPS6149485A (en) Compound semiconductor element and manufacture thereof
JPS6398158A (en) Photodiode
JPS59149070A (en) Photodetector
JPH0344967A (en) Manufacture of semiconductor device
KR970009732B1 (en) Fabrication method of planar pin photodiode
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS6080282A (en) Compound semiconductor element and manufacture thereof
JPS6222475B2 (en)
GB2240874A (en) Photodiode
JPS6259905B2 (en)
JPH041740Y2 (en)
JPH0722641A (en) Photodetector
JPS639986A (en) Semiconductor photodetector