JPS6149370B2 - - Google Patents

Info

Publication number
JPS6149370B2
JPS6149370B2 JP3812579A JP3812579A JPS6149370B2 JP S6149370 B2 JPS6149370 B2 JP S6149370B2 JP 3812579 A JP3812579 A JP 3812579A JP 3812579 A JP3812579 A JP 3812579A JP S6149370 B2 JPS6149370 B2 JP S6149370B2
Authority
JP
Japan
Prior art keywords
solder
molten metal
ladle
suction pipe
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3812579A
Other languages
Japanese (ja)
Other versions
JPS55131145A (en
Inventor
Shigeaki Ootake
Kenichi Kageyama
Toshihiro Kunii
Masahiro Yamashita
Kenji Asami
Keizo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Eneos Corp
Original Assignee
Anritsu Corp
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Nippon Mining Co Ltd filed Critical Anritsu Corp
Priority to JP3812579A priority Critical patent/JPS55131145A/en
Publication of JPS55131145A publication Critical patent/JPS55131145A/en
Publication of JPS6149370B2 publication Critical patent/JPS6149370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は通信機器、電子機器、半導体、集積回
路等の接続に用いられるガスや不純物の含有量の
少ないはんだの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing solder containing small amounts of gas and impurities, which is used for connecting communication equipment, electronic equipment, semiconductors, integrated circuits, etc.

一般に通信機器、電子機器の接続工程におい
て、多くのはんだ並びにはんだ部品が使用されて
いるが、その接続においては接続強度の低下、電
気的特性、熱的特性の劣化など、接続における信
頼性の不安定さがしばしば問題点として指摘され
ている。特に最近の電子機器、例えばIC,LSI等
の小型電子機器等の精密接続においては上記のよ
うな欠点が機器全体の寿命にも影響するところか
ら、このような欠点を除去した信頼性の高い接続
を得るはんだ並びにはんだ付けが要求されるよう
になつている。
In general, many solders and solder parts are used in the connection process of communication equipment and electronic equipment, but these connections can cause problems in connection reliability, such as a decrease in connection strength and deterioration of electrical and thermal characteristics. Stability is often cited as a problem. Particularly in the precision connections of recent electronic devices, such as small electronic devices such as ICs and LSIs, the above drawbacks affect the lifespan of the entire device, so we need highly reliable connections that eliminate these drawbacks. Increasingly, there is a demand for soldering and soldering methods to obtain the desired results.

発明者はこの問題を解決するために種々研究し
た結果以下のことが判明した。
The inventor conducted various studies to solve this problem and found the following.

はんだの接続面の劣化は、はんだ付けの際に接
続面に発生するボイドがその原因の一つと考えら
れる。この接続の際に発生するボイドは(イ)はんだ
付け用フラツクスから発生する分解ガス、(ロ)はん
だ自身が含有している含有ガスや非金属介在物の
二つが原因であると考えられる。しかるに、(イ)の
フラツクスからの分解ガスははんだ付け工法の改
良によつて解決しやすいが、(ロ)のはんだ自身に含
まれているガスについてははんだ付け工法の改良
等では除去することは極めて困難であつて、はん
だの製造工程において除去することが必要であ
る。
One of the causes of the deterioration of the solder connection surface is considered to be voids generated on the connection surface during soldering. The voids that occur during this connection are thought to be caused by (a) decomposed gas generated from the soldering flux, and (b) gases and nonmetallic inclusions contained in the solder itself. However, while (a) the decomposed gas from the flux can be easily solved by improving the soldering method, the gas contained in the solder itself (b) cannot be removed by improving the soldering method. This is extremely difficult and must be removed during the solder manufacturing process.

しかるに従来のはんだの製造方法は一般にSn
地金、Pb地金を各々の組成比で配合した後、鋳
鉄製の鍋を用いて重油又は都市ガス等で大気中に
おいて溶解温度約400℃〜500℃で溶解した後、撹
拌し、鋳込み温度約250℃〜350℃で鉄製の鋳型に
鋳込んで急冷する方法が行なわれている。このよ
うな方法では地金中に含まれている不純物(非金
属介在物)や溶存ガスが除去されないだけでな
く、溶解温度が高いため大気中のガスを吸収す
る。このため従来の製法によるはんだにはガスや
非金属介在物が多く含まれていて、このようなは
んだを用いた接続面の信頼性を低下させる要因と
なつていると考えられる。
However, conventional solder manufacturing methods generally use Sn
After mixing the ingots and Pb ingots in their respective composition ratios, they are melted in the atmosphere with heavy oil or city gas using a cast iron pot at a melting temperature of approximately 400℃ to 500℃, and then stirred to reach the casting temperature. The method used is to cast it into an iron mold at about 250°C to 350°C and rapidly cool it. This method not only does not remove impurities (nonmetallic inclusions) and dissolved gases contained in the metal, but also absorbs gases from the atmosphere due to the high melting temperature. For this reason, solder manufactured using conventional methods contains a large amount of gas and nonmetallic inclusions, which is thought to be a factor in reducing the reliability of connection surfaces using such solder.

以上の考察から発明者ははんだの製造時に溶融
はんだに減圧処理を施すことが前記問題点を解決
する最も有効な方策であるという結論に達した。
Based on the above considerations, the inventors have come to the conclusion that the most effective way to solve the above problems is to subject molten solder to a reduced pressure treatment during solder production.

この減圧処理の方法としてははんだの溶湯をい
れた取鍋を減圧処理室に収容して減圧処理室を減
圧して取鍋内の溶湯を減圧処理する方法が考えら
れる。しかし、この方法は装置が密閉型であるの
で溶湯が撹拌されず、このため減圧効果を促進す
るには高温度、高真空に頼るしかない。ところが
はんだは融点が低く余り高温にすると鉛等が気化
するため最高でも450℃〜500℃である。また高真
空にするためには減圧処理室の容積が小さい方が
望ましいが、このようにすると処理量を多くでき
ない。逆に容積を大きくすると装置が高価となる
ばかりでなく減圧処理室の気密度を維持するのが
困難であり、経済性がよくない。このようにこの
方法ははんだ溶湯が撹拌されず、一回当りの処理
量も少ないので全体としては処理時間が長く、例
えば100Kgのはんだの処理に200分近くかかる。ま
た量産するには装置の数を増すか、あるいは繰り
返して行なうしかなく、この方法は実験的には可
能でも生産コストや能率の面からはんだの製造方
法としては実用的でない。
A conceivable method for this depressurization treatment is to accommodate a ladle containing molten solder in a depressurization chamber, reduce the pressure in the depressurization chamber, and depressurize the molten metal in the ladle. However, since this method uses a closed device, the molten metal is not stirred, and therefore the only way to promote the pressure reduction effect is to rely on high temperature and high vacuum. However, solder has a low melting point, and if the temperature is too high, lead etc. will vaporize, so the maximum temperature is 450°C to 500°C. Further, in order to achieve a high vacuum, it is desirable that the volume of the reduced-pressure processing chamber be small, but in this case, the processing amount cannot be increased. On the other hand, if the volume is increased, not only will the apparatus become expensive, but it will also be difficult to maintain the airtightness of the vacuum processing chamber, which is not economical. As described above, in this method, the molten solder is not stirred and the amount of solder processed at one time is small, so the overall processing time is long, for example, it takes nearly 200 minutes to process 100 kg of solder. In addition, mass production requires increasing the number of devices or repeating the process, and although this method is possible experimentally, it is not practical as a solder manufacturing method in terms of production cost and efficiency.

本発明は上記の事情からなされたもので、接続
部に有害な影響を与えるガスや不純物等の含有率
の低い良質なはんだを多量に且つ安価に製造可能
としたはんだの製造方法を提供することを目的と
している。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for producing solder that enables the production of high-quality solder in large quantities and at low cost, with a low content of gases and impurities that have a harmful effect on connections. It is an object.

以下、本発明を説明する。 The present invention will be explained below.

図中、1は取鍋A内の溶湯を吸上げて減圧処理
槽3まで導入するための溶湯吸引管、2は溶湯吸
引管1の下端部の吸引口である。3は溶湯吸引管
1から導入された取鍋A内の溶湯を減圧処理する
ための減圧処理槽で、減圧処理槽3の上部には減
圧処理槽3を減圧装置(図示せず)によつて減圧
するための減圧口4が設けられている。
In the figure, 1 is a molten metal suction pipe for sucking up the molten metal in the ladle A and introducing it to the vacuum treatment tank 3, and 2 is a suction port at the lower end of the molten metal suction pipe 1. 3 is a vacuum treatment tank for reducing the pressure of the molten metal in the ladle A introduced from the molten metal suction pipe 1, and the vacuum treatment tank 3 is installed in the upper part of the vacuum treatment tank 3 by a pressure reduction device (not shown). A pressure reduction port 4 for reducing the pressure is provided.

なお取鍋、溶湯吸引管、減圧処理槽は鋳鉄、鋼
鉄、ステンレス鋼などのはんだとの相互拡散が起
りにくい安価な材料で構成されている。
The ladle, molten metal suction pipe, and decompression treatment tank are made of inexpensive materials such as cast iron, steel, and stainless steel that are less likely to cause mutual diffusion with solder.

まず溶湯吸引管1下端の吸引口2を取鍋A内の
溶湯の比較的深い位置まで浸漬し、減圧装置によ
つて減圧口4から減圧すると外気との唯一の連通
口であつた溶湯吸引管1の吸引口2が溶湯によつ
て塞がれているので減圧処理槽3は減圧される。
このため取鍋A内の溶湯は減圧処理槽3内の気圧
と減圧処理槽3外部の大気圧との差に等しい高さ
まで溶湯吸引管1内を上昇して減圧処理槽3内ま
で溶湯は導入される。(この高さをL1とする。)
次に溶湯吸引管1下端の吸引口2が取鍋A内の溶
湯の比較的浅い位置に来るように上昇させる。取
鍋A内の溶湯の上面から溶湯吸引管1を上昇した
溶湯の上限までの高さは常に等しいから減圧処理
槽3内まで達していた溶湯の上限は溶湯吸引管1
まで下がる。(この高さをL2とする。)溶湯吸引
管1が取鍋A内の溶湯から露出した部分の長さを
第1図の場合がh1、第2図の場合がh2とすると、
第1図の状態の場合に比し、第2図の状態の場合
はL2レベルより上部に存在する第1図の状態の
溶湯の量と(h2−h1)の長さの吸引管1内の溶湯
の量との差だけ溶湯が取鍋A内に戻つている。以
下同様に第1図の状態と第2図の状態を交互に繰
り返すように本装置を上下動させると、1回毎に
上記の量の溶湯が溶湯吸引管1及び減圧処理槽3
と取鍋Aとの間で吸入、排出を繰返して順次溶湯
が移動する。減圧処理槽3内に導入された溶湯は
減圧処理されるから、こうして順次取鍋A内の全
体の溶湯が減圧処理される。
First, the suction port 2 at the lower end of the molten metal suction pipe 1 is immersed to a relatively deep position in the molten metal in the ladle A, and when the pressure is reduced from the depressurization port 4 using the decompression device, the molten metal suction pipe was the only communication port with the outside air. Since the suction port 2 of 1 is blocked by molten metal, the pressure in the vacuum treatment tank 3 is reduced.
Therefore, the molten metal in the ladle A rises in the molten metal suction pipe 1 to a height equal to the difference between the atmospheric pressure inside the vacuum treatment tank 3 and the atmospheric pressure outside the vacuum treatment tank 3, and the molten metal is introduced into the vacuum treatment tank 3. be done. (This height is L 1. )
Next, the molten metal suction pipe 1 is raised so that the suction port 2 at the lower end of the molten metal suction pipe 1 comes to a relatively shallow position of the molten metal in the ladle A. Since the height from the upper surface of the molten metal in the ladle A to the upper limit of the molten metal that has risen through the molten metal suction pipe 1 is always the same, the upper limit of the molten metal that has reached the inside of the vacuum treatment tank 3 is the height of the molten metal that has risen up the molten metal suction pipe 1.
down to. (This height is assumed to be L2 .) If the length of the part of the molten metal suction pipe 1 exposed from the molten metal in the ladle A is h1 in the case of Fig. 1 and h2 in the case of Fig. 2, then
Compared to the state shown in Fig. 1, in the case of the state shown in Fig. 2, the amount of molten metal in the state shown in Fig. 1 existing above the L 2 level and the suction pipe with a length of (h 2 - h 1 ) The amount of molten metal returned to ladle A is the same as the amount of molten metal in ladle A. Similarly, when the apparatus is moved up and down so as to alternately repeat the state shown in FIG. 1 and the state shown in FIG.
The molten metal moves between the ladle A and the ladle A by repeating suction and discharge. Since the molten metal introduced into the decompression treatment tank 3 is subjected to depressurization treatment, the entire molten metal in the ladle A is sequentially depressurized in this way.

このようにはんだ溶湯が充分に減圧処理される
まで上下動を繰り返した後、減圧処理槽3の減圧
を解除して減圧処理槽3を上昇させて吸引管1を
取鍋Aから抜き去り、取鍋A内の減圧処理された
はんだ溶湯を鋳型に鋳込んで急冷する。
After repeating the vertical movement until the molten solder is sufficiently depressurized, the depressurization in the depressurizing tank 3 is released, the decompressing tank 3 is raised, and the suction pipe 1 is removed from the ladle A. The vacuum-treated molten solder in pot A is poured into a mold and rapidly cooled.

なお減圧処理槽3を上下動させる替りに取鍋A
あるいは両者を上下動させてもよい。
Note that instead of moving the decompression treatment tank 3 up and down, the ladle A
Alternatively, both may be moved up and down.

以上の本発明のはんだの製造方法のプロセスの
概略を図示すれば第3図のようになる。
The outline of the process of the solder manufacturing method of the present invention described above is shown in FIG. 3.

次に実施例を述べると、Sn60、Pb40の配合比
で100Kgを300℃に溶解して、この温度に保持する
ため鋳鉄製の取鍋を加熱しつつ、10分間減圧処理
槽3の上下動を繰り返して減圧処理を行つた。減
圧処理槽3、吸引管2はステンレス製で減圧処理
槽3の真空度は5×10-1torrにした。次に鋳込み
温度約240℃〜300℃で金型に鋳込50℃/minの冷
却速度でSn−Pbはんだを得た。
Next, to describe an example, 100kg of Sn60 and Pb40 was melted at 300°C, and the vacuum treatment tank 3 was moved up and down for 10 minutes while heating a cast iron ladle to maintain this temperature. The vacuum treatment was repeated. The vacuum treatment tank 3 and the suction tube 2 were made of stainless steel, and the degree of vacuum in the vacuum treatment tank 3 was set to 5×10 −1 torr. Next, Sn-Pb solder was obtained by casting into a mold at a casting temperature of about 240°C to 300°C and cooling at a cooling rate of 50°C/min.

上述のような減圧処理を施して製造した
Sn60/Pb40はんだ(以下前者と記す)と、減圧
処理を施していない従来の方法により通信機器、
電子機器用として充分に吟味された原材料を用い
て製造したSn60/Pb40はんだ(以下後者と記
す)の特性を比較すると次のような結果が得られ
た。
Manufactured by applying reduced pressure treatment as described above.
Communication equipment is manufactured using Sn60/Pb40 solder (hereinafter referred to as the former) and the conventional method that does not undergo depressurization treatment.
Comparing the properties of Sn60/Pb40 solder (hereinafter referred to as the latter) manufactured using raw materials that have been carefully examined for use in electronic devices, the following results were obtained.

(1) はんだ中の残存ガス量をランズレイの含有ガ
ス測定装置によつて測定すると後者のはんだ
100g中に約1.5c.c.のガスを含有しているのに対
し前者には約0.4c.c.しか含有されておらず含有
ガスが著しく除去されていることが確認され
た。
(1) When the amount of residual gas in the solder was measured using Lansley's gas content measuring device, the latter solder
It was confirmed that the former contained only about 0.4 cc of gas per 100 g, whereas the former contained only about 0.4 cc of gas, indicating that the contained gas had been significantly removed.

(2) 亜鉛、カドミウム等の金属不純物の含有量が
前者では後者の半分以下に減少し、また砒素、
サルフアーのような非金属不純物も僅かながら
減少しているのが認められた。金属不純物はは
んだの流動性を劣化させるが、これらはSn、
Pbよりも蒸気圧が高いため減圧処理によつて
減少したものである。
(2) The content of metal impurities such as zinc and cadmium in the former is reduced to less than half of the latter, and the content of arsenic, cadmium, etc.
A slight decrease in non-metallic impurities such as sulfur was also observed. Metal impurities deteriorate the fluidity of solder, but these include Sn,
Since its vapor pressure is higher than that of Pb, it was reduced by depressurization treatment.

(3) スライドガラス板の上面に銅を蒸着させた試
験片上ではんだを溶解しガラス板の裏側からは
んだの拡散した部分のボイド発生状況を調べる
と前者では後者に比較してボイドの数が著しく
減少していることが確認された。
(3) When melting solder on a test piece with copper vapor-deposited on the top surface of a glass slide plate and examining the state of void generation in the area where the solder diffused from the back side of the glass plate, it was found that the number of voids was significantly greater in the former than in the latter. It was confirmed that the number is decreasing.

(4) はんだを240℃に溶融して、この中に活性化
ロジンフラツクスを塗布した銅板を浸漬しては
んだの銅板に対するぬれの速さを測定するメニ
スコグラフ法を行つたところ、前者では後者よ
り約20%もぬれのスピードが速いことが確認さ
れた。
(4) The meniscograph method was used to measure the wetting speed of the solder to the copper plate by melting the solder at 240°C and immersing a copper plate coated with activated rosin flux in the solder. It was confirmed that the wetting speed was approximately 20% faster.

(5) 円板状にはんだを打抜いてスライドガラス板
にのせ240℃に加熱させて各々のはんだの形状
の変化を目視観察により比較したところ前者の
方が後者より溶融開始時間がかなり早いことが
確認された。
(5) We punched out a disc of solder, placed it on a slide glass plate, heated it to 240℃, and compared the changes in the shape of each solder by visual observation, and found that the melting start time of the former was much faster than the latter. was confirmed.

(6) 同様に円板状に打抜いたはんだを加熱しては
んだの広がり面積を比較すると前者の方が後者
より約15〜20%大であることが確認された。
(6) Similarly, when a disc-shaped solder was punched out and heated and the spread area of the solder was compared, it was confirmed that the former was about 15 to 20% larger than the latter.

(7) はんだを板厚0.5mmに冷間圧延し、標点間距
離50mmのJIS13B号試験片に打ち抜きインスト
ロン型引張試験機により温度25℃、引張速度20
mm/minで引張試験を行つた結果、前者の伸び
率は165%、後者の伸び率は50%となり3倍以
上の伸び特性が得られた。
(7) Cold-roll the solder to a plate thickness of 0.5 mm, punch it into a JIS No. 13B test piece with a gage distance of 50 mm, and test it using an Instron type tensile tester at a temperature of 25°C and a tensile speed of 20.
As a result of performing a tensile test at mm/min, the elongation rate of the former was 165%, and the elongation rate of the latter was 50%, which was more than three times the elongation property.

また冷間圧延限界値は後者では0.05mm程度であ
るのに前者では0.01mm以下となり本発明によるは
んだは極薄板及び極細線加工が容易となることが
認められた。
Further, the cold rolling limit value was about 0.05 mm in the latter case, but 0.01 mm or less in the former case, and it was recognized that the solder according to the present invention could be easily processed into ultra-thin plates and ultra-fine wires.

なお上記実施例では真空度を5×10-1torrとし
たがさらに高真空であればなおよい。また冷却速
度10℃/min以上の冷却速度であれば効果に格別
の差はない。
In the above embodiment, the degree of vacuum was set at 5×10 −1 torr, but it would be better if the vacuum was even higher. Furthermore, if the cooling rate is 10°C/min or higher, there is no particular difference in effectiveness.

また溶湯吸引管1の外周に加熱装置(例えばニ
クロム線による)を設けて前記の減圧処理中に減
圧処理槽3と取鍋Aとの間を移動する溶湯の温度
が低下しないようにしてもよい。
Further, a heating device (for example, using a nichrome wire) may be provided on the outer periphery of the molten metal suction pipe 1 to prevent the temperature of the molten metal moving between the depressurization treatment tank 3 and the ladle A from decreasing during the depressurization treatment. .

このように本発明によればはんだ溶湯は減圧処
理槽3で減圧処理されるとともに減圧処理槽3と
取鍋Aとの間を移動するため常時撹拌される。こ
のため減圧処理の能率は極めて高く、前記したよ
うに減圧処理室内に取鍋を収納する密閉式の方法
では例えば100Kgのはんだの処理に200分近くかか
るが本発明では僅か10分間で処理できる。また通
常の取鍋を用いることができるので汎用性があ
り、溶湯吸引管を備えた減圧処理槽によつて取鍋
内の溶湯全体を短時間で減圧処理できるので生産
コストや能率の面から減圧処理を施したはんだの
製造方法として本発明は極めて実用的である。ま
た前述したように通常溶融金属の減圧処理には高
真空、高温度が条件とされるが、はんだは低融点
合金であり、特にPbを含んだはんだの場合Pbの
蒸気圧の特性からいたずらに高温度にするとPb
のビユーム発生の原因になるため不都合である
が、本発明の方法では溶湯の温度はSn60/Pb40
の場合でも約300℃で充分である。また前記密閉
式の方法では真空度として10-3torr程度の高真空
が必要であるが、本発明では1桁以下の5×
10-1torrで充分で減圧装置も簡単ですむ。またこ
のように本発明では高温度、高真空を必要としな
いから本発明に使用する減圧処理槽及び溶湯吸引
管の製作も容易である。
As described above, according to the present invention, the molten solder is subjected to a reduced pressure treatment in the reduced pressure treatment tank 3 and is constantly stirred as it moves between the reduced pressure treatment tank 3 and the ladle A. For this reason, the efficiency of vacuum processing is extremely high; as mentioned above, in the closed method in which a ladle is housed in a vacuum processing chamber, it takes nearly 200 minutes to process 100 kg of solder, but with the present invention it can be processed in just 10 minutes. In addition, it is versatile because a normal ladle can be used, and the entire molten metal in the ladle can be depressurized in a short time using a decompression treatment tank equipped with a molten metal suction pipe, reducing pressure in terms of production costs and efficiency. The present invention is extremely practical as a method for producing treated solder. In addition, as mentioned above, high vacuum and high temperature are normally required for depressurization treatment of molten metal, but solder is a low melting point alloy, and in particular, in the case of solder containing Pb, due to the characteristics of Pb's vapor pressure, At high temperatures, Pb
However, in the method of the present invention, the temperature of the molten metal is less than Sn60/Pb40.
Even in this case, a temperature of about 300°C is sufficient. In addition, the closed method requires a high degree of vacuum of about 10 -3 torr, but in the present invention, the degree of vacuum is 10 -3 torr or less.
10 -1 torr is sufficient and requires a simple decompression device. Furthermore, since the present invention does not require high temperature or high vacuum, it is easy to manufacture the vacuum treatment tank and molten metal suction pipe used in the present invention.

以上説明したように本発明によれば接続部に有
害な影響を与えるガスや不純物等の含有率の低い
良質なはんだを多量にかつ安価に能率よく製造す
ることができる。
As explained above, according to the present invention, high-quality solder with a low content of gases, impurities, etc. that have a harmful effect on connection parts can be efficiently produced in large quantities at low cost.

従つてこのようにして得られたはんだを用いれ
ば小型電子機器等の精密接続においても信頼性が
飛躍的に向上する。またぬれ性や広がり率がよ
く、溶融開始時間も早まるので作業効率も向上す
る。
Therefore, if the solder thus obtained is used, reliability will be dramatically improved even in precision connections of small electronic devices and the like. In addition, it has good wettability and spreading rate, and the melting start time is accelerated, which improves work efficiency.

またSn地金、Pb地金は一般の地金と同様、産
地あるいは精錬方法(乾、湿)の違いによつて不
純物組成に微妙な違いがあるためJIS規格におい
てSn地金は主成分99.5〜99.90まで4種類に、Pb
地金は主成分99.95〜99.99まで5種類に分類され
ているが、上記の減圧処理を施すことによつては
んだは均一化され且つ高純度化されるのでいずれ
の種類の地金を用いた場合でも極薄板あるいは極
細線などの材料加工を安定して行うことが可能と
なる。
Also, as with general metals, Sn and Pb metals have subtle differences in impurity composition depending on the production area or refining method (dry or wet). 4 types up to 99.90, Pb
Bullion metals are classified into five types with main components ranging from 99.95 to 99.99, but by applying the above-mentioned depressurization treatment, the solder becomes uniform and highly purified, so no matter which type of metal you use. However, it becomes possible to stably process materials such as ultra-thin plates or ultra-fine wires.

従つて本発明による方法は工業的に極めて有効
なものである。
Therefore, the method according to the present invention is industrially extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の方法を示す説明図、第3
図は本発明の方法のプロセスの概略を示す図であ
る。 1……溶湯吸引管、2……吸引口、3……減圧
処理槽、4……減圧口、A……取鍋。
Figures 1 and 2 are explanatory diagrams showing the method of the present invention, Figure 3
The figure is a diagram schematically showing the process of the method of the present invention. 1... Molten metal suction pipe, 2... Suction port, 3... Decompression treatment tank, 4... Decompression port, A... Ladle.

Claims (1)

【特許請求の範囲】 1 はんだ溶湯を減圧処理する減圧処理槽に設け
た溶湯吸引管を取鍋に収容されたはんだ溶湯に浸
漬し、前記減圧処理槽を減圧して減圧処理槽内に
前記溶湯吸引管からはんだ溶湯を導入し、前記減
圧処理槽と取鍋との相対的な上下方向の運動によ
り取鍋中の溶湯を前記溶湯吸引管を介して減圧処
理槽に移動させた後再び取鍋に戻す操作を反復し
て取鍋内の溶湯全体に減圧処理を施し、しかる後
前記取鍋からはんだ溶湯を取出し固化させること
を特徴とするはんだの製造方法。 2 溶湯吸引管内を移動する溶湯を所定温度に保
持するために前記溶湯吸引管が加熱装置によつて
加熱されるようにした特許請求の範囲第1項記載
のはんだの製造方法。
[Scope of Claims] 1. A molten metal suction pipe provided in a vacuum processing tank for processing molten solder under reduced pressure is immersed in the molten solder contained in a ladle, and the pressure in the vacuum processing tank is reduced to remove the molten metal into the vacuum processing tank. The molten solder is introduced from the suction pipe, and the molten metal in the ladle is moved to the vacuum processing tank via the molten metal suction pipe by the relative vertical movement between the vacuum processing tank and the ladle, and then returned to the ladle. 1. A method for manufacturing solder, which comprises repeating the operation of returning the solder to a vacuum to apply a pressure reduction treatment to the entire molten metal in the ladle, and then removing the molten solder from the ladle and solidifying it. 2. The method of manufacturing solder according to claim 1, wherein the molten metal suction pipe is heated by a heating device in order to maintain the molten metal moving in the molten metal suction pipe at a predetermined temperature.
JP3812579A 1979-03-30 1979-03-30 Manufacture of solder Granted JPS55131145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3812579A JPS55131145A (en) 1979-03-30 1979-03-30 Manufacture of solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3812579A JPS55131145A (en) 1979-03-30 1979-03-30 Manufacture of solder

Publications (2)

Publication Number Publication Date
JPS55131145A JPS55131145A (en) 1980-10-11
JPS6149370B2 true JPS6149370B2 (en) 1986-10-29

Family

ID=12516727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3812579A Granted JPS55131145A (en) 1979-03-30 1979-03-30 Manufacture of solder

Country Status (1)

Country Link
JP (1) JPS55131145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303470A (en) * 1988-05-31 1989-12-07 Sharp Corp Copying machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222141A (en) * 1985-03-27 1986-10-02 Mitsubishi Metal Corp Pb alloy solder material for assembling semiconductor device
JPS61222140A (en) * 1985-03-27 1986-10-02 Mitsubishi Metal Corp Pb alloy solder material for assembling semiconductor device
CN105414807B (en) * 2015-12-31 2017-09-01 广州汉源新材料股份有限公司 A kind of filling core method of solder stick scaling powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303470A (en) * 1988-05-31 1989-12-07 Sharp Corp Copying machine

Also Published As

Publication number Publication date
JPS55131145A (en) 1980-10-11

Similar Documents

Publication Publication Date Title
JP6055242B2 (en) Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
CN104411450B (en) Alloy
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JP2004002989A (en) Copper alloy stock having satisfactory press working property and its production method
WO2004070070A1 (en) Cu ALLOY AND METHOD FOR PRODUCTION THEREOF
CN110184510A (en) A kind of novel high thermal conductivity aluminum alloy materials
JPS6149370B2 (en)
EP2980233A1 (en) Process for manufacturing maraging steel and method for refining inclusions
TWI629365B (en) Aluminum foil, electronic component wiring substrate using the same, and method for manufacturing aluminum foil
KR100679913B1 (en) ??-??-??-?? based copper alloy strip and parts for the electronic goods obtained by manufacturing the same
JPS591653A (en) Copper alloy for fin of radiator
CN115430949A (en) Five-membered eutectic high-toughness low-temperature tin-bismuth series solder and preparation method thereof
KR100429109B1 (en) Electronic circuit component paper zone with good electrical conductivity and high softening temperature and manufacturing method thereof
JPH07258777A (en) Copper-based alloy for connector and its production
Cheng et al. Control of pinhole defects formation in semi-flexible coaxial cable by vertical tin-plating process
TWI708854B (en) Titanium copper plate, pressed product, and manufacturing method of pressed product
JPS5850172A (en) Melt casting method for copper alloy
JP4341762B2 (en) Connector material for electronic and electrical equipment composed of high-strength Cu alloy with excellent rolling and bending workability
JPS5966968A (en) Method and device for melting and casting metal
SU1737013A1 (en) Alloy with specified linear expansion coefficient
JPS6149371B2 (en)
CN117260060A (en) Low-temperature solder for electronic packaging and preparation method thereof
JP2001073045A (en) Production of high strength copper alloy cast ingot
Hernady et al. The effect of thermal cycles during aluminum casting on the intermetallic layer formation at the interface of steel crucible
US3488833A (en) Copper alloys for vacuum switches