JPS6149371B2 - - Google Patents

Info

Publication number
JPS6149371B2
JPS6149371B2 JP3812679A JP3812679A JPS6149371B2 JP S6149371 B2 JPS6149371 B2 JP S6149371B2 JP 3812679 A JP3812679 A JP 3812679A JP 3812679 A JP3812679 A JP 3812679A JP S6149371 B2 JPS6149371 B2 JP S6149371B2
Authority
JP
Japan
Prior art keywords
molten metal
ladle
solder
treatment tank
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3812679A
Other languages
Japanese (ja)
Other versions
JPS55131146A (en
Inventor
Shigeaki Ootake
Kenichi Kageyama
Toshihiro Kunii
Masahiro Yamashita
Kenji Asami
Keizo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Eneos Corp
Original Assignee
Anritsu Corp
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Nippon Mining Co Ltd filed Critical Anritsu Corp
Priority to JP3812679A priority Critical patent/JPS55131146A/en
Publication of JPS55131146A publication Critical patent/JPS55131146A/en
Publication of JPS6149371B2 publication Critical patent/JPS6149371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は通信機器、電子機器、半導体、集積回
路等の接続に用いられるガスや不純物の含有量の
少ないはんだを得るためにはんだに施す減圧処理
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduced pressure treatment method for solder in order to obtain a solder containing less gas and impurities and used for connecting communication equipment, electronic equipment, semiconductors, integrated circuits, etc.

一般に通信機器、電子機器の接続工程におい
て、多くのはんだ並びにはんだ部品が使用されて
いるが、その接続においては接続強度の低下、電
気的特性、熱的特性の劣化など、接続における信
頼性の不安定さがしばしば問題点として指摘され
ている。特に最近の電子機器、例えばIC、LSI等
の小型電子機器等の精密接続においては上記のよ
うな欠点が機器全体の寿命にも影響するところか
ら、このような欠点を除去した信頼性の高い接続
を得るはんだ並びにはんだ付けが要求されるよう
になつている。
In general, many solders and solder parts are used in the connection process of communication equipment and electronic equipment, but these connections can cause problems in connection reliability, such as a decrease in connection strength and deterioration of electrical and thermal characteristics. Stability is often cited as a problem. Particularly in the precision connections of recent electronic devices, such as small electronic devices such as ICs and LSIs, the above-mentioned drawbacks affect the lifespan of the entire device, so we need highly reliable connections that eliminate these drawbacks. Increasingly, there is a demand for soldering and soldering methods to obtain the desired results.

発明者はこの問題を解決するために種々研究し
た結果以下のことが判明した。
The inventor conducted various studies to solve this problem and found the following.

はんだの接続面の劣化は、はんだ付けの際に接
続面に発生するボイドがその原因の一つと考えら
れる。この接続の際に発生するボイドは(a)はんだ
付け用フラツクスから発生する分解ガス、(b)はん
だ自身が含有している含有ガスや非金属介在物の
二つが原因であると考えられる。このうち、(a)の
フラツクスからの分解ガスははんだ付け工法の改
良によつて解決しやすいが、(b)のはんだ自身に含
まれているガスについてははんだ付け工法の改良
等では除去することは極めて困難であつて、はん
だの製造工程において除去することが必要であ
る。
One of the causes of the deterioration of the solder connection surface is considered to be voids generated on the connection surface during soldering. The voids that occur during this connection are thought to be caused by (a) decomposed gas generated from the soldering flux, and (b) gases and nonmetallic inclusions contained in the solder itself. Of these, (a) the decomposed gas from the flux can be easily solved by improving the soldering method, but (b) the gas contained in the solder itself cannot be removed by improving the soldering method. is extremely difficult and must be removed during the solder manufacturing process.

しかるに従来のはんだの製造方法は一般にSn
地金、Pb地金を各々の組成比で配合した後、鋳
鉄製の鍋を用いて重油又は都市ガス等で大気中に
おいて溶解温度約400℃〜500℃で溶解した後、撹
拌し、鋳込み温度約250℃〜350℃で鉄製の鋳型に
鋳込んで急冷する方法によつているため、このよ
うな方法では地金中に含まれている不純物(非金
属物介在物)や溶存ガスが除去されないだけでな
く、溶解温度が高いため大気中のガスを吸収す
る。このため従来の製法によるはんだにはガスや
非金属介在物が多く含まれていて、このようなは
んだを用いた接続面の信頼性を低下させる要因と
なつていると考えられる。
However, conventional solder manufacturing methods generally use Sn
After mixing the ingots and Pb ingots in their respective composition ratios, they are melted in the atmosphere with heavy oil or city gas using a cast iron pot at a melting temperature of approximately 400℃ to 500℃, and then stirred to reach the casting temperature. Because the method involves casting into iron molds at approximately 250°C to 350°C and rapidly cooling, impurities (nonmetallic inclusions) and dissolved gases contained in the metal cannot be removed with this method. In addition, due to its high melting temperature, it absorbs gases from the atmosphere. For this reason, solder manufactured using conventional methods contains a large amount of gas and nonmetallic inclusions, which is thought to be a factor in reducing the reliability of connection surfaces using such solder.

以上の考察から発明者ははんだの製造時に溶融
はんだに減圧処理を施すことが前記問題点を解決
する最も有効な方策であるという結論に達した。
Based on the above considerations, the inventors have come to the conclusion that the most effective way to solve the above problems is to subject molten solder to a reduced pressure treatment during solder production.

一般に金属の溶湯に減圧処理を施す方法として
は減圧室に溶湯を満した取鍋をいれて減圧室を減
圧して溶湯に減圧処理を施す方法が考えられる。
In general, a method for subjecting molten metal to vacuum treatment is to place a ladle filled with molten metal in a vacuum chamber, reduce the pressure in the vacuum chamber, and subject the molten metal to vacuum treatment.

この方法は装置が密閉型であるので溶湯が撹拌
されず、このため減圧効果を促進するには高温
度、高真空に頼るしかないが、はんだのように融
点が低い金属では余り高温にすると鉛等が気化す
るため不都合であり、また高真空にするには装置
が複雑となる。また撹拌されないので脱ガスにあ
ずかるのは溶湯の上面だけで処理速度が非常に遅
く量産に適さない。これらの理由でこの方法では
生産コストが高くなりはんだのように低廉な製品
に用いるのは実用的に不適当である。
Since this method uses a closed device, the molten metal is not stirred, so the only way to promote the decompression effect is to rely on high temperature and high vacuum. etc., which is inconvenient because it vaporizes, and the equipment required to create a high vacuum is complicated. Furthermore, since there is no stirring, only the top surface of the molten metal is degassed, and the processing speed is very slow, making it unsuitable for mass production. For these reasons, this method increases production costs and is not practical for use in inexpensive products such as solder.

従つて、より処理時間が短く量産に適し装置も
簡単な生産コストも安い方法が望まれる。このよ
うな方法として第1,2図に示すような方法が考
えられる。この方法では減圧処理槽1の下部に設
けられた溶湯吸引管2を取鍋A内の溶湯に浸漬し
て減圧処理槽1を減圧する。取鍋A内の溶湯は大
気圧と減圧処理槽1内の気圧の差によつて溶湯吸
引管を上昇する。第1図と第2図のように処理槽
1又は取鍋Aあるいは両者を上下動させて吸引管
2の浸漬の深さを変化させると、溶湯上昇高さは
変化しないため第1図と第2図の状態における上
昇した溶湯の量の差に等しい量の溶湯が取鍋Aを
出たり入つたりすることになる。このため溶湯は
取鍋Aと減圧処理槽1の間を順次移動する。従つ
てこのように上下動させることによつて処理槽1
内で脱ガスされた溶湯と取鍋A内の未処理の溶湯
とは混和して次第に取鍋A内の全溶湯が減圧処理
される。
Therefore, a method that requires less processing time, is suitable for mass production, uses simple equipment, and has low production costs is desired. As such a method, the methods shown in FIGS. 1 and 2 can be considered. In this method, the molten metal suction pipe 2 provided at the lower part of the vacuum treatment tank 1 is immersed in the molten metal in the ladle A to reduce the pressure in the vacuum treatment tank 1. The molten metal in the ladle A rises through the molten metal suction pipe due to the difference between the atmospheric pressure and the pressure inside the decompression treatment tank 1. If the immersion depth of the suction pipe 2 is changed by moving the treatment tank 1 or ladle A or both up and down as shown in Figures 1 and 2, the rising height of the molten metal will not change. The amount of molten metal that is equal to the difference in the amount of molten metal that has risen in the state shown in Figure 2 flows in and out of ladle A. Therefore, the molten metal sequentially moves between the ladle A and the vacuum treatment tank 1. Therefore, by moving up and down in this way, the treatment tank 1
The degassed molten metal in the ladle A and the untreated molten metal in the ladle A are mixed, and the entire molten metal in the ladle A is gradually treated under reduced pressure.

なお第1,2図中、3は減圧管、4は吸引口で
ある。
In addition, in FIGS. 1 and 2, 3 is a pressure reducing pipe, and 4 is a suction port.

この方法を鉄鋼など一般の金属に用いると、処
理中の温度降下も少く溶湯が常時撹拌されて順次
減圧処理槽内で減圧処理されるため処理速度が著
しく早く量産に適しており、また装置も極めて簡
単であるから生産コストも安くなる。
When this method is used for general metals such as steel, the temperature drop during treatment is small and the molten metal is constantly stirred and sequentially treated under reduced pressure in a vacuum treatment tank, making the processing speed extremely fast and suitable for mass production. Since it is extremely simple, production costs are also low.

従つてこの方法ははんだのように低廉なものに
は実用的に最も適切な減圧処理方法であると推察
される。しかし、この方法では第3図に溶融した
錫及び鉛の温度の上昇に対する水素ガスの溶解許
容量を表わすグラフから明らかなように、温度の
上昇に対し水素ガス溶解許容量は二次曲線的に上
昇しはんだ溶湯は温度が高いほどガスの吸収が著
しくなる。従つてこの方法では減圧処理槽1内で
減圧処理されたはんだ溶湯が再び取鍋A内に戻る
ため、また取鍋Aと減圧処理槽1とを往復して取
鍋A内の溶湯が撹拌されるため取鍋Aのはんだ溶
湯の表面から減圧処理済みのはんだ溶湯が再び水
素ガスその他のガスを吸収すると考えられる。従
つて減圧処理槽1内で脱ガスされる反面、取鍋A
において大気に触れてガス吸収するため減圧効果
は認められるが減圧処理の速度は遅く能率的でな
い。
Therefore, it is inferred that this method is practically the most suitable reduced pressure treatment method for inexpensive materials such as solder. However, with this method, as is clear from the graph in Figure 3, which shows the allowable amount of hydrogen gas to dissolve as the temperature rises in molten tin and lead, the allowable amount of hydrogen gas to dissolve as the temperature rises follows a quadratic curve. The higher the temperature of the rising molten solder, the more gas is absorbed. Therefore, in this method, the molten solder that has been subjected to the vacuum treatment in the vacuum treatment tank 1 returns to the ladle A, and the molten metal in the ladle A is stirred by going back and forth between the ladle A and the vacuum treatment tank 1. Therefore, it is thought that the molten solder that has been subjected to pressure reduction treatment absorbs hydrogen gas and other gases from the surface of the molten solder in ladle A again. Therefore, while the gas is degassed in the depressurized treatment tank 1, the ladle A
Although a depressurizing effect is observed because the gas is absorbed by contact with the atmosphere, the depressurizing process is slow and inefficient.

本発明は以上の事情に鑑みてなされたもので、
接続部に有害な影響を与えるガスや不純物等の含
有率の低い良質なはんだを多量に且つ安価に得る
ためにはんだに施す減圧処理方法を提供すること
を目的としている。
The present invention was made in view of the above circumstances, and
It is an object of the present invention to provide a method for reducing pressure on solder in order to obtain a large quantity and inexpensively of high-quality solder with a low content of gases, impurities, etc. that have a harmful effect on connection parts.

以下、本発明を図面(第4〜8図)を参照して
説明する。
Hereinafter, the present invention will be explained with reference to the drawings (FIGS. 4 to 8).

図中、2は取鍋A内の溶湯を吸上げて減圧処理
槽まで導入するための溶湯吸引管、4は溶湯吸引
管2の下端部の吸引口である。1は溶湯吸引管2
から導入された取鍋A内の溶湯を減圧処理するた
めの減圧処理槽で、減圧処理槽1の上部には減圧
処理槽1を減圧装置(図示せず)によつて減圧す
るための減圧管3が設けられている。
In the figure, 2 is a molten metal suction pipe for sucking up the molten metal in the ladle A and introducing it to the reduced pressure treatment tank, and 4 is a suction port at the lower end of the molten metal suction pipe 2. 1 is molten metal suction pipe 2
This is a depressurization treatment tank for depressurizing the molten metal in the ladle A introduced from the ladle A. At the top of the decompression treatment tank 1, there is a decompression pipe for depressurizing the decompression treatment tank 1 by a pressure reduction device (not shown). 3 is provided.

まず溶湯吸引管2下端の吸引口4を取鍋A内の
溶湯に浸漬するとともに、取鍋A内の溶湯の上面
をしやへい物5で覆つて大気からしや断する。こ
のしやへい物5はN2などの不活性ガスを用い
る。なおこの不活性ガスが長時間使用中に次第に
上方へ拡散するのを防ぐために第6図に示すよう
に蓋6を取鍋Aに被せることが望ましい。図中、
7は不活性ガスの注入口、8は溶湯吸引管2が挿
通する孔である。また第7図に示すように蓋9を
有するしやへい室10内に取鍋Aを収納し、この
しやへい室10内に不活性ガスを満してもよい。
図中11は溶湯吸引管2が挿通する孔である。
First, the suction port 4 at the lower end of the molten metal suction pipe 2 is immersed in the molten metal in the ladle A, and the upper surface of the molten metal in the ladle A is covered with a shrink material 5 to keep it away from the atmosphere. For this material 5, an inert gas such as N2 is used. In order to prevent this inert gas from gradually diffusing upward during long-term use, it is desirable to cover the ladle A with a lid 6 as shown in FIG. In the figure,
7 is an inert gas injection port, and 8 is a hole through which the molten metal suction pipe 2 is inserted. Alternatively, as shown in FIG. 7, the ladle A may be housed in a cooling chamber 10 having a lid 9, and this cooling chamber 10 may be filled with inert gas.
In the figure, 11 is a hole through which the molten metal suction pipe 2 is inserted.

また、このしやへい物として不活性ガスの替り
に酸化防止剤を用いてもよい。酸化防止剤は溶解
した状態で溶湯表面を覆つて溶湯を大気からしや
へいする。
Furthermore, an antioxidant may be used instead of an inert gas as the antioxidant. The antioxidant coats the surface of the molten metal in a dissolved state to protect the molten metal from the atmosphere.

その他、しやへい物としては(a)比重が空気より
大ではんだ溶湯より小であること、(b)耐熱性があ
ること、(c)はんだ溶湯に混和したり、ガスを供給
しないものであること、(d)はんだ溶湯表面を気密
に覆うものであること、の各条件を満すものであ
れば他のものを用いることもできる。
In addition, the following materials must (a) have a specific gravity greater than that of air but less than that of molten solder, (b) be heat resistant, and (c) not mix with molten solder or supply gas. Other materials can also be used as long as they satisfy the following conditions: (1) and (d) that they airtightly cover the surface of the molten solder.

減圧装置によつて減圧管3から減圧すると外気
との唯一の連通口であつた溶湯吸引口4が溶湯に
よつて塞がれているので減圧処理槽1は減圧され
る。このため取鍋A内の溶湯は減圧処理槽1内の
気圧と減圧処理槽1外部の大気圧との差に等しい
高さまで溶湯吸引管2内を上昇する。溶湯吸引管
2の下端の吸引口4が取鍋A内の溶湯の比較的深
い位置まで来るようにして減圧処理槽1内(第4
図においてL1レベル)まで溶湯を導入した後、
溶湯吸引管2下端の吸引口4が取鍋A内の溶湯の
比較的浅い位置に来るように上昇させる。(第5
図)取鍋A内の溶湯の上面から溶湯吸引管2を上
昇した溶湯の上限までの高さは常に等しいから減
圧処理槽1内まで達していた溶湯の上限は例えば
溶湯吸引管2の上端近傍(L2レベル)まで下が
る。この時溶湯吸引管2が取鍋A内の溶湯から露
出した部分の長さを第4図の場合がh1、第5図の
場合がh2とすると第4図の状態の場合に比し、第
5図の状態の場合はL2レベルより上部に存在す
る第4図の状態の溶湯の量とh2−h1の長さの吸引
管2内の溶湯の量との差だけ溶湯が取鍋A内に戻
つている。以下同様に第4図の状態と第5図の状
態を交互に繰り返すように本装置を上下動させる
と、1回ごとに上記の量の溶湯が溶湯吸引管2及
び減圧処理槽1と取鍋Aとの間で吸入、排出を繰
返して順次溶湯が移動する。減圧処理槽1内に導
入された溶湯は減圧処理されるから、こうして順
次取鍋A内の全体の溶湯が減圧処理される。この
間取鍋A内の溶湯の上面はしやへい物5によつて
大気からしやへいされているので、溶湯の温度が
高くても大気中からガスを吸収することがないの
で溶湯の減圧はすみやかに行なわれる。なお、減
圧処理槽の代りに取鍋Aあるいは両者を上下動さ
せてもよい。
When the pressure is reduced from the pressure reduction pipe 3 by the pressure reduction device, the pressure in the pressure reduction treatment tank 1 is reduced because the molten metal suction port 4, which was the only communication port with the outside air, is blocked by the molten metal. Therefore, the molten metal in the ladle A rises in the molten metal suction pipe 2 to a height equal to the difference between the atmospheric pressure inside the reduced pressure treatment tank 1 and the atmospheric pressure outside the reduced pressure treatment tank 1. Inside the vacuum treatment tank 1 (the fourth
After introducing the molten metal up to the L1 level in the figure,
The molten metal suction pipe 2 is raised so that the suction port 4 at the lower end comes to a relatively shallow position of the molten metal in the ladle A. (5th
Figure) Since the height from the upper surface of the molten metal in the ladle A to the upper limit of the molten metal that has risen through the molten metal suction pipe 2 is always the same, the upper limit of the molten metal that has reached the inside of the vacuum treatment tank 1 is, for example, near the upper end of the molten metal suction pipe 2. (L 2 level). At this time, let us assume that the length of the exposed part of the molten metal suction pipe 2 from the molten metal in the ladle A is h 1 in the case of Fig. 4 and h 2 in the case of Fig. 5. , in the case of the state shown in Fig. 5, the amount of molten metal is the difference between the amount of molten metal in the state shown in Fig. 4 above the L2 level and the amount of molten metal in the suction pipe 2 with a length of h 2 - h 1 . It has returned to ladle A. Similarly, when the apparatus is moved up and down so as to alternately repeat the state shown in FIG. 4 and the state shown in FIG. The molten metal is transferred to and from A by repeating suction and discharge. Since the molten metal introduced into the depressurization treatment tank 1 is subjected to depressurization treatment, the entire molten metal in the ladle A is sequentially subjected to depressurization treatment in this way. During this time, the upper surface of the molten metal in the ladle A is shielded from the atmosphere by the insulation material 5, so even if the temperature of the molten metal is high, no gas is absorbed from the atmosphere, so the pressure of the molten metal cannot be reduced. It will be done promptly. In addition, instead of the reduced pressure treatment tank, the ladle A or both may be moved up and down.

本発明によるSn60/Pb40はんだの残存ガス量
をランズレイの含有ガス測定装置により測定する
と、第8図のような結果が得られた。すなわち、
本発明の減圧処理方法によれば減圧処理槽1内で
減圧処理されたはんだ溶湯が取鍋Aに戻つても取
鍋A内の溶湯の上面はしやへい物によつて覆われ
て大気からしやへいされているのではんだ溶湯が
高温でも大気に触れてガスを吸収することがな
い。このため可能な限りはんだ溶湯の温度を上げ
ることができるので処理時間が短かく、且つはん
だ溶湯の温度が高いので撹拌効果も大である。
When the amount of residual gas in the Sn60/Pb40 solder according to the present invention was measured using a Lansley gas content measuring device, the results shown in FIG. 8 were obtained. That is,
According to the depressurization treatment method of the present invention, even when the molten solder that has been depressurized in the depressurization treatment tank 1 returns to the ladle A, the upper surface of the molten metal in the ladle A is covered with resin and debris and is kept away from the atmosphere. Because it is sealed, the molten solder does not come in contact with the atmosphere and absorb gas even at high temperatures. Therefore, since the temperature of the molten solder can be raised as much as possible, the processing time is shortened, and since the temperature of the molten solder is high, the stirring effect is also great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従来の減圧処理方法を示す説明
図、第3図は溶融した錫及び鉛100gにおけるH2
溶解量・温度特性のグラフ、第4,5図は本発明
による減圧処理方法を示す説明図、第6図は取鍋
に蓋を被せた状態を示す説明図、第7図は取鍋を
不活性ガスが満されたしやへい室内に収納した状
態を示す説明図、第8図はしやへい物を用いた場
合のはんだ溶湯中の含有ガス量を示すグラフであ
る。 1……減圧処理槽、2……溶湯吸引管、3……
減圧管、5……しやへい物。
Figures 1 and 2 are explanatory diagrams showing the conventional depressurization treatment method, and Figure 3 is H 2 in 100g of molten tin and lead.
Graphs of dissolved amount and temperature characteristics, Figures 4 and 5 are explanatory diagrams showing the reduced pressure treatment method according to the present invention, Figure 6 is an explanatory diagram showing the ladle with a lid on, and Figure 7 is an explanatory diagram showing the ladle without the lid. FIG. 8 is a graph showing the amount of gas contained in the molten solder when the molten solder is used. 1... Decompression treatment tank, 2... Molten metal suction pipe, 3...
Decompression tube, 5...Silky stuff.

Claims (1)

【特許請求の範囲】 1 はんだ溶湯を減圧処理する減圧処理槽に設け
た溶湯吸引管を取鍋に収容されたはんだ溶湯に浸
漬するとともにはんだ溶湯の上面をしやへい物で
覆うことによつて大気からしや断し、前記減圧処
理槽を減圧して減圧処理槽内へ前記溶湯吸引管か
らはんだ溶湯を導入し、前記減圧処理槽と取鍋と
の相対的な上下方向の運動により取鍋中の溶湯を
前記溶湯吸引管を介して減圧処理槽に移動させた
後再び取鍋に戻す操作を反復して取鍋内の溶湯全
体に減圧処理を施すことを特徴とするはんだの減
圧処理方法。 2 前記しやへい物が不活性ガスである特許請求
の範囲第1項記載のはんだの減圧処理方法。 3 前記しやへい物が酸化防止剤である特許請求
の範囲第1項記載のはんだの減圧処理方法。
[Scope of Claims] 1. By immersing a molten metal suction pipe installed in a decompression treatment tank for depressurizing molten solder into molten solder contained in a ladle, and covering the top surface of the molten solder with a damp material. The molten solder is removed from the atmosphere, the pressure is reduced in the vacuum treatment tank, the molten solder is introduced into the vacuum treatment tank from the molten metal suction pipe, and the ladle is removed by relative vertical movement between the vacuum treatment tank and the ladle. A method for depressurizing solder, characterized in that the entire molten metal in the ladle is subjected to depressurization treatment by repeatedly transferring the molten metal therein to the decompression treatment tank via the molten metal suction pipe and then returning it to the ladle. . 2. The method for depressurizing solder according to claim 1, wherein the refrigerant is an inert gas. 3. The method for treating solder under reduced pressure according to claim 1, wherein the desiccant is an antioxidant.
JP3812679A 1979-03-30 1979-03-30 Vacuum-treating method for solder Granted JPS55131146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3812679A JPS55131146A (en) 1979-03-30 1979-03-30 Vacuum-treating method for solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3812679A JPS55131146A (en) 1979-03-30 1979-03-30 Vacuum-treating method for solder

Publications (2)

Publication Number Publication Date
JPS55131146A JPS55131146A (en) 1980-10-11
JPS6149371B2 true JPS6149371B2 (en) 1986-10-29

Family

ID=12516754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3812679A Granted JPS55131146A (en) 1979-03-30 1979-03-30 Vacuum-treating method for solder

Country Status (1)

Country Link
JP (1) JPS55131146A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537728B2 (en) * 2003-06-13 2009-05-26 Senju Metal Industry Co., Ltd. Method for increasing the effectiveness of a component of a material
CN106216872B (en) * 2016-08-11 2019-03-12 北京康普锡威科技有限公司 A kind of SnBiSb series low-temperature leadless solder and preparation method thereof

Also Published As

Publication number Publication date
JPS55131146A (en) 1980-10-11

Similar Documents

Publication Publication Date Title
EP1578559B1 (en) Bonding method
JP3809806B2 (en) Manufacturing method of semiconductor device
CN1104982C (en) Method and device for directionally solidifying a melt liquid
US5037471A (en) Method for manufacturing oxygen-free copper
JPS6149371B2 (en)
US5211775A (en) Removal of oxide layers from titanium castings using an alkaline earth deoxidizing agent
Hume-Rothery CXXV.—The system sodium–tin
EP0882544A1 (en) A lead-free tin-silver-based soldering alloy
US6287364B1 (en) Method for producing copper alloy ingot
US3460816A (en) Fluxless aluminum brazing furnace
CN112958941B (en) Sn-Bi-In-Zn-Ga low-melting-point high-entropy alloy lead-free solder and preparation method and application thereof
JPS6149370B2 (en)
EP0499134A2 (en) Fluxless solder
CA2039598C (en) Vacuum-suction degassing method and an apparatus therefor
RU2160652C2 (en) Method for applying babbitt onto bearing surface
Cheng et al. Control of pinhole defects formation in semi-flexible coaxial cable by vertical tin-plating process
JPH0864943A (en) Dispersion soldering method
JPH051320A (en) Method for high-frequency induction non-oxidized quenching and apparatus therefor
JP2006061925A (en) Closed type melting furnace
Klimtová et al. Bismuth-based Solder Alloys: Influence of Added Phosphorus and Gallium on Wettability and Spreading
JPH05195104A (en) Reduction method of molten copper or copper alloy
SU621777A1 (en) Device for introducing alloying ingredients to melt
JPH06212244A (en) Method for smelting extra low nitrogen steel
CN106312359A (en) Solder paste preparation method
JP3060758B2 (en) Differential pressure casting method