JPS6149271B2 - - Google Patents

Info

Publication number
JPS6149271B2
JPS6149271B2 JP53078294A JP7829478A JPS6149271B2 JP S6149271 B2 JPS6149271 B2 JP S6149271B2 JP 53078294 A JP53078294 A JP 53078294A JP 7829478 A JP7829478 A JP 7829478A JP S6149271 B2 JPS6149271 B2 JP S6149271B2
Authority
JP
Japan
Prior art keywords
polymer
cement
concrete
weight
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53078294A
Other languages
Japanese (ja)
Other versions
JPS557525A (en
Inventor
Ryosuke Inoe
Isamu Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP7829478A priority Critical patent/JPS557525A/en
Publication of JPS557525A publication Critical patent/JPS557525A/en
Publication of JPS6149271B2 publication Critical patent/JPS6149271B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 近年、コンクリートあるいはモルタルのプラス
チツクによる複合化について非常な勢いで開発が
なされている。このプラスチツクによる複合化の
目的として、高強度、防水性、耐薬品性、耐摩耗
性、長寿命化、凍結融解に対する抵抗性等があ
り、製造法によりポリマーセメントコンクリート
(PCC)、レジンコンクリート(REC)、ポリマー
含浸コンクリート(PIC)等に分類される。本発
明はこの内ポリマーセメントコンクリートについ
て従来にない軽量、高強度、安価なポリマーセメ
ントコンクリートを製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION In recent years, there has been a great deal of development in the composite of concrete or mortar with plastic. The objectives of this plastic composite include high strength, waterproofness, chemical resistance, abrasion resistance, long life, and resistance to freezing and thawing. Depending on the manufacturing method, polymer cement concrete (PCC), resin concrete (REC), etc. ), polymer-impregnated concrete (PIC), etc. The present invention relates to a method for producing polymer cement concrete that is unprecedented in weight, high strength, and inexpensive.

従来より、ポリマーをコンクリートに混合し、
コンクリート硬化後に加熱してポリマーを溶融し
これをコンクリート空隙中に分散させるポリマー
セメントコンクリートの製造法があつた。これは
単に硬化コンクリートの空隙をポリマーによつて
最密充填しようとしているが、硬化後に微細な空
隙を溶融ポリマーで充填することは、空隙が小さ
くなるに従つて非常に困難になる。従つて、得ら
れたポリマーセメントコンクリートは普通のコン
クリートと比較すれば特性上の向上は見られるも
のの、重量の割には高強度のものが得られない欠
点があつた。そこで本発明者等は、このポリマー
セメントコンクリートの欠点を克服するべく鋭意
研究を鑑みた結果、軽量で、安価な、しかも比較
的高強度のポリマーセメントコンクリートを得る
ことが可能になつた。
Traditionally, polymers are mixed into concrete,
There is a method for producing polymer cement concrete that heats the concrete after it hardens to melt the polymer and disperse it into the concrete voids. This simply attempts to close-pack the voids in the hardened concrete with polymer, but filling the fine voids with molten polymer after hardening becomes extremely difficult as the voids become smaller. Therefore, although the obtained polymer cement concrete has improved properties when compared to ordinary concrete, it has the disadvantage that it cannot provide high strength considering its weight. The inventors of the present invention have conducted extensive research to overcome these drawbacks of polymer cement concrete, and as a result, it has become possible to obtain polymer cement concrete that is lightweight, inexpensive, and relatively high in strength.

即ち、セメントがまだ半硬化の流動性を維持し
ている状態でポリマーを溶融分散させ同時に発泡
させることによつて軽量で、高強度のポリマーセ
メントコンクリートを得ることが可能になつた。
ここで重要な点は、セメントが半硬化の状態でポ
リマーを溶融分散させることにある。セメント中
の水がコンクリートと水和しまだ幾分柔かい状態
にある間にポリマーを溶融分散させることによつ
て、ポリマーはセメント粒子を押し拡げて微細な
空隙にまで入り込むことが可能となるためにポリ
マーの分散性が極めて良好である。また、ポリマ
ーは溶融しながら発泡するため、適度の加圧下に
おいては発泡による体積増加でさらに圧力の増加
があり高度の分散が可能になる。
That is, by melting and dispersing the polymer and simultaneously foaming it while the cement still maintains semi-hardened fluidity, it has become possible to obtain lightweight, high-strength polymer cement concrete.
The important point here is to melt and disperse the polymer while the cement is in a semi-hardened state. By melting and dispersing the polymer while the water in the cement is hydrated with the concrete and is still in a somewhat soft state, the polymer is able to spread the cement particles and penetrate into minute voids. The dispersibility of the polymer is extremely good. Further, since the polymer foams while melting, under moderate pressure, the volume increase due to foaming further increases the pressure, making it possible to achieve a high degree of dispersion.

本発明をさらに詳細に説明する。 The present invention will be explained in further detail.

ポリマーを発泡剤1〜5PHRと共に発泡剤分解
温度以下で溶融混練し、繊維状に押出した後切断
し、またはシート状に押出した後粉砕し、繊維状
または微粉末状にした。このポリマーの微粉末ま
たは繊維25〜200重量部をセメント/(細骨材/
粗骨材)/水=100/200〜400/10〜50重量部よ
り成る組成物中に均一に分散するよう混合し所望
の形状の金型に流し込み加圧処理しながら脱気泡
操作を行つた。その後20〜48時間、100%RH雰囲
気において養生を行い半硬化の状態にした。
The polymer was melt-kneaded with 1 to 5 PHR of a blowing agent at a temperature below the blowing agent decomposition temperature, extruded into fibers and then cut, or extruded into a sheet and then crushed to form fibers or fine powder. Add 25 to 200 parts by weight of this polymer fine powder or fiber to cement/(fine aggregate/
Coarse aggregate)/water = 100/200 to 400/10 to 50 parts by weight were mixed so as to be uniformly dispersed, poured into a mold of a desired shape, and degassed while being subjected to pressure treatment. . Thereafter, it was cured in a 100% RH atmosphere for 20 to 48 hours to bring it to a semi-hardened state.

しかる後加圧、加熱し発泡および成形を行い所
望のポリマーセメントコンクリートを得た。得ら
れたポリマーセメントコンクリートは重量の割に
は圧縮強度、引張強度等に優れていることがわか
つた。
Thereafter, the mixture was pressurized, heated, foamed, and molded to obtain the desired polymer cement concrete. It was found that the obtained polymer cement concrete had excellent compressive strength, tensile strength, etc. considering its weight.

本発明で使用できるポリマーとは、ポリエチレ
ンやポリプロピレン等のポリオレフイン、ポリ塩
化ビニル、ポリ酢酸ビニル、ポリスチレン、エチ
レン−酢酸ビニル共重合体、NBRやSBR等のゴ
ム類など熱可塑性樹脂、或はフエノール樹脂、エ
ポキシ樹脂(ノボラツク型)等の熱硬化性樹脂で
ある。
Polymers that can be used in the present invention include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinyl acetate, polystyrene, ethylene-vinyl acetate copolymers, thermoplastic resins such as rubbers such as NBR and SBR, or phenolic resins. , thermosetting resins such as epoxy resins (novolac type).

セメントは、一般的なポルトランドセメント、
スラグセメント等が使用可能である。細骨材およ
び粗骨材は天然にある砂、砂利あるいは人工の砂
石でも良い。その粒子径は使用する材料の寸法に
もよるが、できるだけ小さい方が好ましく最大で
も4〜5mmが良好な結果が得られる限度である。
発泡剤はポリマーを発泡させるために用いるもの
で、一般的に有機発泡剤が使用でき、ポリマーと
混練する際に分解してしまわない程度の高温で分
解が始まるものである。例えば、P−P′オキシビ
ス(ベンゼンスルホニルヒドラジド)、3−3′ジ
スルホンヒドラジドジフエニルスルホン等のスル
ホンヒドラジド系発泡剤およびアゾビスイソブチ
ロニトリル、アゾジカルボンアミド、ジエチルア
ゾジカルボキシレート等のアゾ系発泡剤などであ
るが、好ましくはできるだけ高温で分解するアゾ
ジカルボンアミド等が最終のポリマーセメントコ
ンクリートの発泡倍率を調整しやすい。
The cement is common portland cement,
Slag cement etc. can be used. The fine aggregate and coarse aggregate may be naturally occurring sand, gravel or man-made sandstone. Although the particle size depends on the dimensions of the material used, it is preferably as small as possible, and a maximum of 4 to 5 mm is the limit at which good results can be obtained.
The blowing agent is used to foam the polymer, and generally an organic blowing agent can be used, and it starts to decompose at a high enough temperature that it will not decompose when kneaded with the polymer. For example, sulfone hydrazide blowing agents such as P-P'oxybis(benzenesulfonyl hydrazide), 3-3' disulfone hydrazide diphenyl sulfone, and azo blowing agents such as azobisisobutyronitrile, azodicarbonamide, diethyl azodicarboxylate, etc. Foaming agents, etc., are preferably used, such as azodicarbonamide, which decomposes at as high a temperature as possible, because it makes it easy to adjust the foaming ratio of the final polymer cement concrete.

さらに、ポリマーとコンクリートの親和性を良
好にするために、シリカ、炭酸カルシウム等の一
般的な無機充填剤および反応性のモノアルコキシ
チタネート等の有機チタネートを使用すれば一層
強度の向上が図れる。
Further, in order to improve the affinity between the polymer and concrete, the strength can be further improved by using general inorganic fillers such as silica and calcium carbonate, and organic titanates such as reactive monoalkoxy titanates.

本発明をさらに明らかにするために実施例にて
説明する。
EXAMPLES In order to further clarify the present invention, Examples will be described.

実施例 低密度ポリエチレン(密度0.924、分子量
150000〜200000)100重量部に対してアゾジカル
ボンアミド5重量部を添加しこれをダイ部温度
150℃の単軸押出機でシート状に押出し、このシ
ートを粉砕することによつて粒子径約50μmのポ
リエチレン微粉末を得た。別に普通ポルトランド
セメント/砂/水が重量比2/4/0.5の比率の
セメント混合物を調整しておき、上記ポリエチレ
ン30重量部に対してセメント混合物70重量部を混
合し金型に充填した。100%RH、20℃の雰囲気で
30時間養生した後20Kg/cm2の圧力を加えては常圧
にもどす脱気泡操作を2〜3回繰り返した。その
後180℃まで昇温し、50Kg/cm2で加熱加圧プレスを
行ない発泡成形し、加圧状態で20℃まで冷却しさ
らに8時間静置した。得られたポリマーセメント
コンクリートは10×10×30cmの角棒で、比重
1.3、圧縮強度800Kg/cm2、引張強度45Kg/cm2、曲げ
強度60Kg/cm2、弾性係数(E1/3)3.2×105であ
り普通のセメントコンクリートに比べ重量の割に
は高強度であつた。このポリマーセメントコンク
リートは、互いにセメント、ゴム系接着剤等で容
易に接着でき、透水性もほとんど無く(1/10〜1/
20)、建材用として最適であつた。
Example Low density polyethylene (density 0.924, molecular weight
150000~200000) 5 parts by weight of azodicarbonamide is added to 100 parts by weight, and the die part temperature is
The mixture was extruded into a sheet using a single-screw extruder at 150° C., and the sheet was pulverized to obtain fine polyethylene powder having a particle size of about 50 μm. Separately, a cement mixture of ordinary Portland cement/sand/water in a weight ratio of 2/4/0.5 was prepared, and 70 parts by weight of the cement mixture was mixed with 30 parts by weight of the polyethylene and filled into a mold. In an atmosphere of 100%RH and 20℃
After curing for 30 hours, a degassing operation of applying a pressure of 20 kg/cm 2 and returning to normal pressure was repeated 2 to 3 times. Thereafter, the temperature was raised to 180°C, and foam molding was performed by heating and pressing at 50Kg/cm 2 .The product was cooled under pressure to 20°C and left to stand for further 8 hours. The obtained polymer cement concrete was made into square bars of 10 x 10 x 30 cm, with specific gravity
1.3, compressive strength 800Kg/cm 2 , tensile strength 45Kg/cm 2 , bending strength 60Kg/cm 2 , elastic modulus (E1/3) 3.2×10 5 , and has higher strength relative to its weight than ordinary cement concrete. It was hot. This polymer cement concrete can be easily bonded to each other with cement, rubber adhesive, etc., and has almost no water permeability (1/10 to 1/1
20), it was most suitable for use as a building material.

上述のように、本発明によればコンクリート中
の微細間隙、すなわちコンクリート粒子間にまで
十分発泡ポリマーを充填できるので、次の点で優
れている。
As described above, according to the present invention, the foamed polymer can be sufficiently filled into minute gaps in concrete, that is, even between concrete particles, so that the present invention is excellent in the following points.

(1) 同一の強度を有しながら軽量化が図れる。(1) Lighter weight can be achieved while maintaining the same strength.

(2) 透水性が小さい。(2) Low water permeability.

(3) 防音性に優れる。(3) Excellent soundproofing properties.

(4) 耐候性に優れ、特に温度変化、湿度変化によ
る劣化が小さい。
(4) Excellent weather resistance, with little deterioration due to changes in temperature and humidity.

(5) 低荷重におけるクリープが小さい。(5) Small creep at low loads.

また、セメントの半硬化状態においては、まだ
流動性があるため、発泡を抑制されず、十分軽量
化を図ることができる。更に、成形サイクルも比
較的速く、その工業的価値は極めて大なるもので
ある。
Furthermore, since cement still has fluidity in a semi-hardened state, foaming is not suppressed and the weight can be sufficiently reduced. Furthermore, the molding cycle is relatively fast, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリマーに該ポリマーより分解温度の低い有
機発泡剤を添加、混練後粉砕または叩解した微細
片状または繊維状物をセメント、骨材、水より成
る組成物に混合し、セメントが半硬化状態の間に
加熱、加圧しポリマーを溶融しながら発泡させる
ことを特徴とするポリマーセメントコンクリート
の製造方法。
1 Add an organic blowing agent whose decomposition temperature is lower than that of the polymer to the polymer, mix the crushed or beaten fine flakes or fibrous material with a composition consisting of cement, aggregate, and water, and mix the cement into a semi-hardened state. A method for producing polymer cement concrete, which is characterized by foaming the polymer while melting it by heating and applying pressure.
JP7829478A 1978-06-28 1978-06-28 Manufacture of polymer cement concrete Granted JPS557525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7829478A JPS557525A (en) 1978-06-28 1978-06-28 Manufacture of polymer cement concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7829478A JPS557525A (en) 1978-06-28 1978-06-28 Manufacture of polymer cement concrete

Publications (2)

Publication Number Publication Date
JPS557525A JPS557525A (en) 1980-01-19
JPS6149271B2 true JPS6149271B2 (en) 1986-10-28

Family

ID=13657907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7829478A Granted JPS557525A (en) 1978-06-28 1978-06-28 Manufacture of polymer cement concrete

Country Status (1)

Country Link
JP (1) JPS557525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783526A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Compression type refrigerator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184516A (en) * 1982-04-22 1983-10-28 Oval Eng Co Ltd Measuring device for liquid stored in tank
JPS61144503A (en) * 1984-12-18 1986-07-02 Kajima Corp Measuring instrument for wall thickness of vertical steel pipe
JPS63246610A (en) * 1987-04-01 1988-10-13 Iseki Kaihatsu Koki:Kk Method for inspecting pipeline and apparatus for measuring said pipeline
JPH05306923A (en) * 1992-04-30 1993-11-19 Takenaka Komuten Co Ltd Three-dimensional method and instrument for measuring surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783526A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Compression type refrigerator

Also Published As

Publication number Publication date
JPS557525A (en) 1980-01-19

Similar Documents

Publication Publication Date Title
US3865661A (en) Process for manufacturing a porous thermoplastic resin article reinforced by a glass matt
US8124662B2 (en) Foamed polymer-inorganic binder hybrid material having controlled density and morphology, method for its preparation and uses thereof
JPS6149271B2 (en)
CN107098668B (en) A kind of inorganic gel matrix composite foamed material and preparation method thereof
JPS62260745A (en) Manufacture of hydraulic material, concrete material and concrete
JPS5812223B2 (en) Manufacturing method of lightweight concrete
KR20000000485A (en) Unsaturated polyester mortar
KR960011322B1 (en) Method for concrete composite materials using waste plastic
JPS63210082A (en) Manufacture of lightweight cement products
CN111187018A (en) Foaming cement reinforcing agent and foaming cement using same
JPH08175861A (en) Formed plate of inorganic material and its production
JPH06144950A (en) Production of ceramic lightweight building material
JPS6364295B2 (en)
JP2511437B2 (en) Lightweight cement products
KR20030053420A (en) Water-permeable construction materials using waste fiber reinforced plastics
CN116768527A (en) Foamed soft porcelain and preparation method thereof
JPS6330381A (en) Manufacture of lightweight cement product
JPS59156705A (en) Manufacture of light thick cured body
JPS5926958A (en) Manufacture of hardened body
JPS5834499B2 (en) styrene cage styrene
JPH0568422B2 (en)
JPS63100079A (en) Extrusion formed product and manufacture
JPH03223144A (en) Production of inorganic board
JPS62182140A (en) Hydraulic inorganic composition
JPH0355425B2 (en)