KR20030053420A - Water-permeable construction materials using waste fiber reinforced plastics - Google Patents

Water-permeable construction materials using waste fiber reinforced plastics Download PDF

Info

Publication number
KR20030053420A
KR20030053420A KR1020010087644A KR20010087644A KR20030053420A KR 20030053420 A KR20030053420 A KR 20030053420A KR 1020010087644 A KR1020010087644 A KR 1020010087644A KR 20010087644 A KR20010087644 A KR 20010087644A KR 20030053420 A KR20030053420 A KR 20030053420A
Authority
KR
South Korea
Prior art keywords
waste frp
construction materials
frp
resin
waste
Prior art date
Application number
KR1020010087644A
Other languages
Korean (ko)
Other versions
KR100466285B1 (en
Inventor
한회현
이동익
문경주
박응모
Original Assignee
한회현
이동익
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한회현, 이동익 filed Critical 한회현
Priority to KR10-2001-0087644A priority Critical patent/KR100466285B1/en
Publication of KR20030053420A publication Critical patent/KR20030053420A/en
Application granted granted Critical
Publication of KR100466285B1 publication Critical patent/KR100466285B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE: Provided is a production process of construction materials with water permeability using waste FRP which lets unsaturated polyester resin bind the waste FRP so that it helps to recycle the waste FRP to high functional construction materials. CONSTITUTION: The production process of the construction materials with water permeability using the waste FRP comprises the steps of: (i) mixing 6-13wt% of unsaturated polyester resin, 1-10wt% of filler and 70-92wt% of the waste FRP; and (ii) letting the mixture put into a frame, vibrating the mixture with compressing and then heating or keeping normal temperature to produce the construction materials.

Description

폐 FRP를 이용한 투수성 건자재 제조 방법{Water-permeable construction materials using waste fiber reinforced plastics}Water-permeable construction materials using waste fiber reinforced plastics}

본 발명은 환경오염을 유발시키는 폐 FRP를 친환경적이면서 고기능성 건설 재료로 재활용하고자 폐 FRP의 분쇄한 칩을 이용한 투수성 건자재의 제조에 관한 것으로 더욱 자세하게는 폐 FRP를 골재로 이용하고 역학적 성질 및 내구성이 우수하며 FRP와 동질재료인 불포화폴리에스테르(Unsaturated Polyester Resin; Up)수지를 결합재로 이용하여 투수성 폴리머 콘크리트 제품 제조가 가능하다.The present invention relates to the manufacture of permeable building materials using crushed chips of waste FRP in order to recycle waste FRP causing environmental pollution into environmentally friendly and high-functional construction materials. More specifically, the waste FRP is used as aggregate and its mechanical properties and durability. It is possible to manufacture permeable polymer concrete products by using FRP and Unsaturated Polyester Resin (Up) resin, which is a homogeneous material as a binder.

FRP(Fiber Reinforced Plastics)는 보강재인 섬유와 결합재인 수지로 이루어진 복합재료이다. 현재 사용되고 있는 FRP 제품은 주택기기, 건설자재, 산업구조물 등 다양한 분야에서 많이 사용되고 있으며, 생산량 또한 매년 증가 추세에 있어 현재 국내에서는 연간 약 3만 5천톤에 이른다. 반면에 폐기되는 FRP의 양도 상대적으로 증가하여 현재 년간 1만톤정도가 배출되고 있어 이에 대한 처리문제가 심각한 실정이다. FRP는 열경화성수지와 불연성의 유리섬유로 이루어져 있기 때문에 열가소성 수지와는 달리 소각에 의한 처리가 아주 어려우며 비록 소각처리 한다고 할지라도 다이옥신 발생 등의 환경오염을 일으킬 수 있으며, 완전 소각을 위한 설비는매우 고가이다. 따라서 대부분의 업체에서는 주로 절단 또는 파쇄하여 매립을 하고 있는 형편인데 이 또한 현재 폐 FRP가 산업폐기물로 지정되어 있어 이를 아무 장소에나 매립할 수 없는 실정으로 매립장소가 매우 부족한 상황이고 처리비용도 많이 든다.Fiber Reinforced Plastics (FRP) is a composite material consisting of a fiber as a reinforcement and a resin as a binder. Currently used FRP products are widely used in various fields such as housing equipment, construction materials, industrial structures, etc., and the production volume is also increasing every year, and currently reaches about 35,000 tons in Korea. On the other hand, the amount of discarded FRP is also relatively increased, and about 10,000 tons are emitted per year, which is a serious problem. Because FRP is composed of thermosetting resin and non-combustible glass fiber, it is very difficult to process by incineration unlike thermoplastic resin. Even though incineration is performed, it can cause environmental pollution such as dioxin generation, and the facility for complete incineration is very expensive. to be. As a result, most companies are mainly cutting or crushing landfills, and the current waste FRP is designated as industrial waste, so it is not possible to land it anywhere. .

폐 FRP를 이용한 건설재료로의 이용기술에 대해서는 국내특허공보 등록번호 제10-0225129호에는 폐FRP 분말과 메트릭스 수지간에 화학적 결합이 가능한 실란계 커플링제를 사용하여 이들의 양을 변화시켜 수지와 혼합시켜 건자재를 성형하는 제조방법이 공개되어 있다.Regarding the technology of using waste FRP as a construction material, Korean Patent Publication No. 10-0225129 uses a silane coupling agent that can chemically bond between waste FRP powder and matrix resin to change the amount thereof and mix with resin. The manufacturing method of molding a building material is disclosed.

그러나 상기 종래의 기술은 폐 FRP를 이용한 건축자재 조성물에 관한 것이나, 폐 FRP 분말을 대상으로 하며 계면결합력 증가를 위해 실란계 커플링제 등을 첨가해야 하는 방식이다.However, the related art relates to a building material composition using waste FRP, but to waste FRP powder and to add a silane coupling agent or the like to increase interfacial bonding force.

본 발명에 의한 폐 FRP를 다량 사용한 투수성 건자재의 결합재 조성물 제조방식은 5∼10mm인 칩상태의 폐 FRP가 주재료인데, 이는 폐FRP의 미분쇄가 어려운 문제를 고려한 것이다. 따라서 본 발명에 의해 폐 FRP를 대량 활용할 수 있고 소량의 결합재를 사용하기 때문에 제조비용을 절감할 수 있을 뿐만 아니라 기존 시멘트 콘크리트를 이용한 투수성 블록 등에 비하여 높은 강도를 발현할 수 있으며 내화학성 및 동결융해 저항성이 우수한 장점이 있어 산업폐기물인 폐 FRP를 고부가성 자원으로 재활용할 수 있다.The method of manufacturing a binder composition of a permeable dry material using a large amount of waste FRP according to the present invention is a waste FRP of chip state of 5 to 10 mm, which is considered to be difficult to pulverize waste FRP. Therefore, according to the present invention, waste FRP can be utilized in large quantities and a small amount of binder can be used to reduce manufacturing costs, and can express high strength as compared to a permeable block using cement concrete. It has the advantage of excellent resistance and can recycle industrial waste waste FRP as high value added resources.

따라서, 본 발명은 폐 FRP를 친환경적이면서 경제성 있는 건설재료로의 이용을 위한 연구와 고기능성 건설재료로서의 재활용 기술 개발을 수행하는데 있다.Therefore, the present invention is to carry out the research for the use of waste FRP as an eco-friendly and economical construction material and the development of recycling technology as a high-functional construction material.

본 발명에 의해 역학적 성질 및 내구성이 우수한 폐 FRP를 주재료로 하는 투수성 폴리머 콘크리트를 개발하는데 있다.According to the present invention, a water-permeable polymer concrete based on waste FRP having excellent mechanical properties and durability is developed.

본 발명에서는 폐 FRP의 처리효과를 극대화하기 위하여 폐 FRP의 혼입량을 최대로 하면서 소요강도를 유지할 수 있는 기술의 개발과 아울러 수지 사용량을 최대로 저감시켜 경제성을 확보하고자 하였다. 이를 위해 폐 FRP의 분쇄 입경에 따라 골재혼합비를 조절하였으며 충전재-결합재비를 조절하였다. 따라서 기존 시멘트 콘크리트를 이용한 투수성 건자재에 비하여 강도 및 내구성이 뛰어나면서 소요의 투수성능을 가질 수 있는 콘크리트 2차제품을 제공하는데 그 목적이 있다.In the present invention, in order to maximize the treatment effect of the waste FRP, while maintaining the required strength while maximizing the mixing amount of the waste FRP, and to reduce the amount of resin used to maximize the economic feasibility. For this purpose, the aggregate mixing ratio was adjusted according to the pulverized particle size of the waste FRP and the filler-binding ratio was adjusted. Therefore, it is an object of the present invention to provide a concrete secondary product that can have the required permeability performance while having excellent strength and durability compared to the permeable construction materials using the cement concrete.

상기 목적을 달성하기 위한 본 발명은, 폐 FRP 골재를 결합시킬 수 있는 최소의 수지사용량에 따른 투수성능과 역학적 성질 및 내구성을 확보하기 위하여 결합재인 수지량을 6∼13중량%로, 충전재를 1∼10중량%, 폐 FRP를 70∼92중량%의 범위로 혼합하는 공정과 형틀에 상기 조성물을 타설하여 진동가압하고 상온 또는 가온하여 건자재를 성형시키는 공정에 의하여 이루어지는 것으로 경제적이며 간단한 방법에 의해 폐 FRP를 재활용하는 것을 특징으로 한다.The present invention for achieving the above object, 6 to 13% by weight of the amount of resin as a binder in order to ensure the permeability and mechanical properties and durability according to the minimum amount of resin that can bind the waste FRP aggregate, the filler 1 By the process of mixing the composition in the form of -10% by weight, waste FRP in the range of 70-92% by weight, and placing the composition in a mold, vibrating-pressurizing and forming a dry material at room temperature or warming. It is characterized by recycling the FRP.

본 발명에 따른 투수성 건자재 제조에서 가장 주요한 것은 폐 FRP의 혼입량이 총중량의 75∼92%로서 폐FRP를 다량 사용하여 자원으로의 재활용을 극대화 할 수 있다는 점이다.The most important thing in the manufacture of permeable building materials according to the present invention is that the mixing amount of waste FRP is 75-92% of the total weight, thereby maximizing recycling to resources by using a large amount of waste FRP.

이하 실시예를 통하여 본 발명의 구체적인 제조방법 및 그 효과에 대하여 구체적으로 설명하고자 한다. 그러나 다음의 실시예가 본 발명의 권리를 한정하는 것은 아니다.Through the following examples will be described in detail with respect to the specific manufacturing method and effects of the present invention. However, the following examples do not limit the rights of the present invention.

(실시예)(Example)

모든 실시예에서 골재를 결합시킬 수 있는 최소의 수지사용량에 따른 투수성능과 역학적 성질 및 내구성을 고려할 수 있기 때문에 그것을 유도하기 위하여 결합재인 수지량을 7.5, 9, 10.5로, 충전재(중질탄산칼슘)- 결합제비를 0.25:.1, 0.5:1, 1:1로 변화시켰고 또한 폴리머 콘크리트의 투수성과 역학적 성질은 잔골재의 배합영향을 크게 받으므로 전체적인 최적배합을 유도하기 위하여 폐 FRP 잔골재를 2.5∼5mm와 1.0∼2.5mm로 분류하여 조정하였으며 조골재 5∼10mm를 사용하였는데 잔골재의 배합비율에 따라 조정하였다.In all the examples, the permeability, mechanical properties, and durability of the minimum amount of resin that can bind the aggregate can be considered, so that the amount of resin as a binder is 7.5, 9, 10.5, and the filler (heavy calcium carbonate) -The binder ratio was changed to 0.25: .1, 0.5: 1, 1: 1, and the permeability and mechanical properties of the polymer concrete were greatly influenced by the mixing of the fine aggregates so that the waste FRP fine aggregates were 2.5-5 mm in order to induce the overall optimum mixing. And 1.0 ~ 2.5mm were adjusted and 5 ~ 10mm coarse aggregate was used. It was adjusted according to the mixing ratio of fine aggregate.

조골재, 잔골재 및 충전재를 중량비에 따라 계량한 다음 3분 동안 건비빔을 하고 소요의 수지에 수지의 1.5%에 해당하는 경화제를 넣어 균일하게 혼입시킨 다음 골재와 함께 3분 동안 비벼서 몰드에 타설하여 진동가압하였다.After weighing the coarse aggregate, fine aggregate and filler according to the weight ratio, make a dry beam for 3 minutes and mix it uniformly by adding the curing agent corresponding to 1.5% of the resin in the required resin, and then mix it with the aggregate for 3 minutes and shake it with a mold to vibrate. Pressurized.

제작된 폴리머 투수성 콘크리트의 공시체는 6시간후에 탈형하고 온도 20±1℃, 습도 50±2%인 상태에서 3 일간 양생한 후 단위용적중량, 공극율, 압축강도, 휨강도 및 투수계수를 측정하였다.The specimens of the polymer-permeable concrete were demoulded after 6 hours and cured for 3 days at a temperature of 20 ± 1 ° C. and a humidity of 50 ± 2%, and then the unit volume weight, porosity, compressive strength, flexural strength, and permeability coefficient were measured.

측정된 결과는 다음의 표1과 같다.The measured results are shown in Table 1 below.

표1에서 알수 있듯이 폴리머 투수성 콘크리트는 투수를 위한 공극을 인위적으로 확대하기 때문에 단위용적 중량은 감소되기 마련이며 그 감소량은 사용골재의 종류, 크기, 표면상태 및 배합비에 따라 일정한 차이가 있다. 본 발명에 의한 실시예에서는 보통 시멘트 콘크리트의 평균 단위용적중량의(2.400kg/㎥이라고 할 때) 약 55%로서 경량재료로서 활용가치가 크다고 판단되었다. 세부적으로 충전재량의 증가에 따라 중량이 증가하는 추세를 보였지만 증가량은 아주 미소하였고 수지의 사용량이 증가에 따라 증가하는 1.5%씩 증가할 때마다 1%씩 증가하는 것으로 나타났으며 폐 FRP 잔골재의 사용량이 10%씩 증가할 때마다 2%씩 증가하였다.As can be seen from Table 1, the polymer permeable concrete artificially enlarges the voids for permeability, so the unit volume weight is reduced, and the amount of reduction is constant depending on the type, size, surface condition and mixing ratio of the aggregate used. In the embodiment according to the present invention, it is usually judged that the utilization value is large as a lightweight material as about 55% of the average unit volume weight of cement concrete (when it is 2.400 kg / m 3). In detail, the weight increased as the amount of filler increased, but the increase was very small and increased by 1% for each 1.5% increase in resin usage. Every 10% of this increase is 2%.

공극율은 2.5∼5mm 잔골재가 10%씩 증가할 때마다 저감되는 것으로 나타났다. 또한 동일한 조건에서 충전재의 사용량이 적을수록 공극율은 커졌으며 수지의 사용량이 1.5%씩 증가할 때마다 평균 7.8%씩 저감하는 것으로 나타났다.The porosity was found to decrease with every 10% increase in 2.5-5mm fine aggregate. In addition, the smaller the amount of filler used under the same conditions, the larger the porosity and the average decrease of 7.8% for each 1.5% increase in resin usage.

강도 및 투수특성은 수지의 사용량이 7.5, 9, 10.5% 범위에서는 모두 양호하였으나 일정량 이하로 되면 수지량의 부족으로 강도가 크게 저감되었으며 시공성도 크게 떨어져 현장 적용이 어렵다. 또 수지의 사용량이 7.5, 9, 10.5% 범위에서 압축강도와 휨강도의 평균 차는 7kg/㎠ 와 2.7kg/㎠로서 수지량이 1%씩 증가할 때마다 압축강도와 휨강도는 평균 3%와 4%씩 증가하는 것으로 나타났으며 상대적으로 투수계수는 감소하는 것으로 나타났다. 특히 수지량이 일정량을 초과하면 공시체의 밑바닥에 수지가 흘러내려 층을 이룸으로서 투수계수가 현저히 작아져 폴리머 투수성 콘크리트의 제작에 문제가 있는 것으로 나타났다. 전체적으로 볼 때 적은양의 수지로도 배합비에 따른 공시체의 강도성상이 좋게 나타나는 것은 폐 FRP와 불포화 폴리에스테르가 동질재료로서 부착성이 좋고 폐 FRP의 유리섬유가 이들을 더욱 견고히 잡아주는 역할을 도모하기 때문이다.The strength and permeability characteristics were good in the amount of resin used in the range of 7.5, 9, and 10.5%, but when the amount is below a certain amount, the strength is greatly reduced due to the lack of the resin amount, and the workability is also largely difficult, so it is difficult to apply on site. In addition, the average difference between compressive strength and flexural strength was 7kg / cm2 and 2.7kg / cm2 when the amount of resin used was 7.5, 9, 10.5%, and the average compressive strength and flexural strength were increased by 3% and 4% each time the resin content increased by 1%. It was found to increase, while the permeability coefficient decreased. In particular, when the amount of the resin exceeds a certain amount, the resin flowed down the bottom of the specimen to form a layer, which significantly reduced the permeability coefficient. Overall, even with a small amount of resin, the strength properties of the specimens are good according to the mixing ratio because waste FRP and unsaturated polyester have good adhesion as homogeneous materials, and the glass fiber of waste FRP plays a role of holding them more firmly. to be.

본 발명에 의해 전혀 공해를 유발시키지 않고 폐 FRP의 근원적 처리가 가능하고 폐 FRP의 처리비용을 감소시킬 수 있으며, 폐 FRP를 친환경적이면서 경제성 있는 건설재료로의 제조가 가능하다. 또한 제조된 건자재는 역학적 특성 및 내구적 특성이 우수하고 경량이며 투수성능을 부여하고 있어 투수성 보도블록, 옥상 녹화용 투수블록 등 고부가성 건설재료로서의 활용이 가능하다.According to the present invention, it is possible to fundamentally treat waste FRP without causing pollution at all, to reduce the disposal cost of waste FRP, and to manufacture waste FRP as an environmentally friendly and economical construction material. In addition, the manufactured building materials have excellent mechanical and durable characteristics, are lightweight and impart water permeability, and thus can be utilized as high value-added construction materials such as permeable sidewalk blocks and roofing permeable blocks.

Claims (2)

결합재인 수지량을 6∼13중량%로, 충전재를 1∼10중량%, 폐 FRP를 70∼92중량%의 범위로 혼합하는 공정과 형틀에 상기 조성물을 타설하여 진동가압하고 상온 또는 가온하여 건자재를 성형시키는 공정에 의하여 제조되는 것을 특징으로 하는 폐 FRP를 이용한 투수성 건자재 제조방법.The amount of resin as a binder is 6 to 13% by weight, the filler is 1 to 10% by weight, and the waste FRP is mixed in the range of 70 to 92% by weight. Permeable building materials manufacturing method using waste FRP, characterized in that it is manufactured by a process for molding. 제1항에 있어서, 수지는 불포화폴리에스테르인 것을 특징으로 하는 폐 FRP를 이용한 건자재 제조방법.The method of claim 1, wherein the resin is an unsaturated polyester.
KR10-2001-0087644A 2001-12-22 2001-12-22 Water-permeable construction materials using waste fiber reinforced plastics KR100466285B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0087644A KR100466285B1 (en) 2001-12-22 2001-12-22 Water-permeable construction materials using waste fiber reinforced plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0087644A KR100466285B1 (en) 2001-12-22 2001-12-22 Water-permeable construction materials using waste fiber reinforced plastics

Publications (2)

Publication Number Publication Date
KR20030053420A true KR20030053420A (en) 2003-06-28
KR100466285B1 KR100466285B1 (en) 2005-01-13

Family

ID=29578028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0087644A KR100466285B1 (en) 2001-12-22 2001-12-22 Water-permeable construction materials using waste fiber reinforced plastics

Country Status (1)

Country Link
KR (1) KR100466285B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718949B1 (en) * 2005-06-03 2007-05-16 이동익 Method for Preparing lightweight panel of Waste Fiber Reinforced Plastics and lightweight panel manufactured thereof
CN112895497A (en) * 2021-02-25 2021-06-04 杭州临安腾泰实业有限公司 Method for manufacturing traffic safety facilities by using glass fiber reinforced plastic waste
CN113799295A (en) * 2021-07-29 2021-12-17 蓝月再生资源(山东)有限公司 Waste resin-based composite material glass fiber reinforced plastic recovery process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321650A (en) * 1993-05-10 1994-11-22 Sansou:Kk Lightweight concrete material, lightweight concrete using the same and production of lightweight concrete using the same
JP2905958B2 (en) * 1994-06-23 1999-06-14 株式会社イナックス Resin lining material
JPH09254156A (en) * 1996-03-26 1997-09-30 Matsushita Electric Works Ltd Building board
KR20010046210A (en) * 1999-11-11 2001-06-05 황의환 Recycling of waste fiber reinforced plastics
KR20010046209A (en) * 1999-11-11 2001-06-05 황의환 Recycling of waste fiber reinforced plastics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718949B1 (en) * 2005-06-03 2007-05-16 이동익 Method for Preparing lightweight panel of Waste Fiber Reinforced Plastics and lightweight panel manufactured thereof
CN112895497A (en) * 2021-02-25 2021-06-04 杭州临安腾泰实业有限公司 Method for manufacturing traffic safety facilities by using glass fiber reinforced plastic waste
CN113799295A (en) * 2021-07-29 2021-12-17 蓝月再生资源(山东)有限公司 Waste resin-based composite material glass fiber reinforced plastic recovery process

Also Published As

Publication number Publication date
KR100466285B1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US8969464B2 (en) Synthetic construction aggregate and method of manufacturing same
US10059626B2 (en) Non-load bearing masonry block containing crumb rubber
US8545748B2 (en) Building bricks including plastics
KR102120445B1 (en) Artificial Aggregate Made of Industrial By-products And Recycled Plastic, And Method for Manufacturing the Same
KR101402856B1 (en) Manufacturing method of artificial light weight aggregate that combines Scrap vinyl and wood
Gamalath et al. Use of waste rubber granules for the production of concrete paving blocks
WO2020148786A1 (en) Method for producing angular shaped fly ash aggregate
KR20030053420A (en) Water-permeable construction materials using waste fiber reinforced plastics
WO2013064849A2 (en) Glass fiber reinforced thermoset plastic waste doped concrete composition and process for preparation the same
Kibria et al. Effect of Recycled Polystyrene Polymer in Concrete as a Coarse Aggregate
KR20030070251A (en) Fiber reinforced permeating concrete block and method for manufacturing same
KR100386969B1 (en) The method for manufacturing and Unsaturated Polyester Mortar
CN109081652A (en) It is pressed and molded rubber iron tailings sand cement plate and preparation method
KR101333051B1 (en) product method of SPB concrete manufacture
JPH03275548A (en) Cement-based composite material containing organic polymer made of waste fiber reinforced plastic powder as aggregate and hardened body thereof
KR100547946B1 (en) A manufacturing process of polymer concrete using unsaturated polyester resin based on PET wasted and glass wasted
Aljubori et al. Thermal properties of lead-acid battery plastic lightweight concrete
Lupo et al. Manufactured aggregate from waste materials
KR102307383B1 (en) Mortar composition for sidewalk block using seaweed and waste and method for manufacturing sidewalk block using same
Topacio et al. Use of Recycled Rubber Tire Crumbs for Waterproofing of Concrete
Rohilla Waste plastic material for concrete pavement
Yang et al. Study on the performance of road cement stabilized base using natural graded gravel
Ravi Kiran et al. COMPARISION OF STRENGTH PROPERTIES OF PASTIC BASED CEMENT BLOCKS WITH NORMAL CEMENT BLOCKS
KR20010046209A (en) Recycling of waste fiber reinforced plastics
Hamza et al. Study of the tensile and compressive strength of fiber-reinforced concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131230

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee