JPS6330381A - Manufacture of lightweight cement product - Google Patents

Manufacture of lightweight cement product

Info

Publication number
JPS6330381A
JPS6330381A JP17064886A JP17064886A JPS6330381A JP S6330381 A JPS6330381 A JP S6330381A JP 17064886 A JP17064886 A JP 17064886A JP 17064886 A JP17064886 A JP 17064886A JP S6330381 A JPS6330381 A JP S6330381A
Authority
JP
Japan
Prior art keywords
cement
molding
molding material
hollow foam
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17064886A
Other languages
Japanese (ja)
Other versions
JPH0427196B2 (en
Inventor
守 太田
保 赤阪
雅春 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17064886A priority Critical patent/JPS6330381A/en
Publication of JPS6330381A publication Critical patent/JPS6330381A/en
Publication of JPH0427196B2 publication Critical patent/JPH0427196B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [技術分野1 本発明は、軽量セメント製品を押出し成形によって製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to a method for manufacturing lightweight cement products by extrusion.

[背景技術] !lli量セメント製品を押出し成形によって11!逍
するにあたっては、セメントに骨材や補強繊維を配合す
ると共にさらに軽量骨材を配合してこれを水と混練する
ことによってセメント成形材料を調製し、このセメント
成形材料を押出し成形機の金型に通すことによっておこ
なうことができる。そしてit骨材によってセメント製
品を軽量化することができるが、軽量骨材としては従来
上りパーライトや発泡ポリスチレン、ガラスバルーンや
熱硬化性樹脂中空発泡体などの硬質微少中空球体等が用
いられている。しかしこれらのものは次のような欠点が
あった。
[Background technology]! lli quantity cement products by extrusion molding 11! Before the molding process, a cement molding material is prepared by blending aggregate and reinforcing fibers with cement, as well as lightweight aggregate and kneading this with water. This can be done by passing it through. Cement products can be made lighter by using IT aggregate, but conventionally used lightweight aggregates include hard microscopic hollow spheres such as up-grown perlite, expanded polystyrene, glass balloons, and thermosetting resin hollow foam. . However, these had the following drawbacks.

すなわち[を骨材としてパーライトを用いると、パーラ
イトはセメント成形材料を調製する混線の際や押出し成
形する際に破壊され易く、十分な軽量化を達成すること
が困難になり、また押出し成形機やその金型を摩耗させ
易いという問題がある。
In other words, if pearlite is used as an aggregate, pearlite is likely to be destroyed during mixing when preparing cement molding materials or during extrusion molding, making it difficult to achieve sufficient weight reduction, and the extrusion molding machine and There is a problem that the mold is easily worn out.

またこのパーライトを配合したセメント成形材料にパル
プや良識Al[が補強繊維として多重に配合されるとセ
メント成形材料の流れ性が悪くなり、押出し金型内の薄
肉異形部や端部での流れ変動が発生し易く、材料切れが
発生した9セメン)製品の直線性が悪くなったりするお
それがある。従ってa維類やパルプを充分に配合するこ
とができず比較的柔軟性のない硬質で且つやや高比重の
セメント製品が製造されることになる。
In addition, if pulp or common aluminum is added as reinforcing fibers to the cement molding material containing pearlite, the flowability of the cement molding material will deteriorate, resulting in flow fluctuations at thin irregularly shaped parts and edges in the extrusion mold. 9) There is a risk that the linearity of the product may deteriorate. Therefore, a sufficient amount of a fibers and pulp cannot be blended, and a relatively inflexible, hard cement product with a slightly high specific gravity is produced.

また軽量骨材として発泡ポリスチレンを用いる場合、発
泡ポリスチレンは粒径が(0,5〜2mm)500μ〜
2000μと比較的大きく形成されるために、セメント
成形材料の混練物硬さが高くなって、パーライトの場合
とl1ffJ様にセメント成形材料にパルプや艮aJI
類が補強繊維として多量に配合されるとセメント成形材
料の流れ性が悪くなり、押出し金型内の薄肉異形部や端
部での流れ変動が発生し易く、材料切れが発生したりセ
メント製品の直線性が悪くなったりするおそれがある。
In addition, when using expanded polystyrene as a lightweight aggregate, the expanded polystyrene has a particle size (0.5~2 mm) of 500 μ~
Because it is formed relatively large (2000μ), the hardness of the kneaded cement molding material becomes high, and pulp and aJI are added to the cement molding material, as in the case of pearlite and l1ffJ.
If large amounts of reinforcing fibers are mixed in, the flowability of the cement molding material will deteriorate, and flow fluctuations will likely occur at thin irregularly shaped parts and edges in the extrusion mold, leading to material breakage and damage to the cement product. There is a risk that linearity may deteriorate.

またこのように発泡ポリスチレンは粒径が大きくしかも
発泡ポリスチレンは弾性変形に富むために、セメント成
形材料を押出し成形する際の成形圧力で発泡ポリスチレ
ンは圧縮されると共にこののちの成形圧力の解放によっ
て弾性復元し、セメント製品の表面に発泡ポリスチレン
が突出して表れたり発泡ポリスチレンの近傍に内部歪み
ゃクラックが発生し易い、そこでこれらのことを防止す
るために水の配合量を多(してセメント成形材料の流動
性を良(し、成形圧力を低くすることが試みられるが、
このものでは押出し成形後の保形性が不十分となって複
雑な異形製品を製造することが困難になり、また混合水
が多量であるためにセメントマトリックス部分が脆弱に
なって充分な強度を得ることができなくなる。セメント
成形材料の流動性を良くするためには成形助剤を多量に
配合することも考えられるが、成形助剤を多量に配合す
ると不経済であってコストアップの原因となる。
In addition, since the particle size of foamed polystyrene is large and it is highly elastically deformable, the foamed polystyrene is compressed by the molding pressure when extruding the cement molding material, and then returns to its elastic state when the molding pressure is released. However, foamed polystyrene tends to protrude on the surface of cement products, and cracks tend to occur due to internal distortion in the vicinity of foamed polystyrene. Therefore, in order to prevent these problems, a large amount of water is added to the cement molding material. Attempts are made to improve fluidity and lower molding pressure, but
With this product, the shape retention after extrusion molding is insufficient, making it difficult to manufacture complex shaped products, and the large amount of mixed water makes the cement matrix part brittle, making it difficult to maintain sufficient strength. you won't be able to get it. In order to improve the fluidity of the cement molding material, it is conceivable to mix a large amount of a molding aid, but adding a large amount of a molding aid is uneconomical and causes an increase in cost.

さらに軽量骨材としてガラスバルーンや熱硬化性樹脂中
空発泡体などの硬質微少中空球体を用いると、硬質のこ
れらのものは比較的脆いためにセメント成形材料の調製
の際の混練による高剪断力の作用で破壊され易く、十分
な軽量化を達成することが困難になる。このために高剪
断力が加わらないようにセメント成形材料を混練するよ
うにし・Cいるが、中空球体の分散性が不十分になって
セメント製品の欠陥が生じ易くなる。
Furthermore, if hard microscopic hollow spheres such as glass balloons or thermosetting resin hollow foams are used as lightweight aggregates, these hard objects are relatively brittle, so they are subject to high shear forces during kneading during the preparation of cement molding materials. It is easily destroyed by the action, making it difficult to achieve sufficient weight reduction. For this reason, the cement molding material is kneaded so as not to apply high shearing force, but the dispersibility of the hollow spheres becomes insufficient and defects in the cement product are likely to occur.

〔発明の目的] 本発明は、上記の点に鑑みて為されたものであり、軽量
効果が高いと共に欠陥の発生が少なく、また耐凍害性に
優れ、さらに成形性に優れた軽量セメント製品の製造方
法を提供することを目的とするものである。
[Object of the Invention] The present invention has been made in view of the above points, and provides a lightweight cement product that has a high light weight effect, less occurrence of defects, excellent freeze damage resistance, and excellent formability. The purpose is to provide a manufacturing method.

[発明の開示] しかして本発明に係る軽量セメント製品の製造方法は、
セメントに骨材、補強a継を配合すると共に粒径が1〜
100μで発泡倍率が20〜100倍の熱可塑性樹脂の
中空発泡体を配合してセメント成形材料を調製し、これ
を押出し成形したのちに養生することを特徴とするもの
であり、以下本発明の詳細な説明する。
[Disclosure of the Invention] However, the method for manufacturing a lightweight cement product according to the present invention is as follows:
Adding aggregate and reinforcing joints to cement, the grain size is 1~
The method is characterized in that a cement molding material is prepared by blending a thermoplastic resin hollow foam with a size of 100μ and an expansion ratio of 20 to 100 times, and this is extruded and then cured. Detailed explanation.

セメント成形材料は、セメントに骨材や補強繊維を混合
したセメント混合物に中空発泡体その他メチルセルロー
スなどの成形助剤を配合し、これに、水を加えて均一に
混合することによって調製されるものであり、ここで中
空発泡体の配合量はセメント混合物100重量部に対し
て0.05〜3重量部に、成形助剤の配合量はセメント
混合物1oo1]!量部に対して0.2〜1.5重量部
に設定するのが好ましい、また、セメントとしてはポル
Fランドセメントなど任意のものを用いることができ、
さらに骨材としてはケイ石粉やそのe!、フライアッシ
ュや高炉水砕スラグ、石膏などを用いることができる。
Cement molding materials are prepared by adding hollow foam and other molding aids such as methyl cellulose to a cement mixture of cement, aggregate and reinforcing fibers, and then adding water and mixing uniformly. Here, the amount of the hollow foam is 0.05 to 3 parts by weight per 100 parts by weight of the cement mixture, and the amount of the molding aid is 100 parts by weight of the cement mixture! It is preferable to set the amount to 0.2 to 1.5 parts by weight, and any cement such as Pol F land cement can be used.
In addition, silica powder and e! , fly ash, granulated blast furnace slag, gypsum, etc. can be used.

補強繊維としては石綿や〃ラス繊維などの無機質繊維、
ビニロン繊維やポリプロピレンam、パルプなどの有機
質繊維を用いることができ、これらのうちポリプロピレ
ン繊維やポリプロピレン繊維などの合成繊維はam艮が
4III11以上であることが補強効果のうえで好まし
い。これら補強繊維の配合量はセメント混合物100重
量物に対して3〜15重量部に設定するのが好ましい。
As reinforcing fibers, inorganic fibers such as asbestos and lath fibers,
Organic fibers such as vinylon fibers, polypropylene fibers, and pulp can be used, and among these, synthetic fibers such as polypropylene fibers and polypropylene fibers preferably have an AM value of 4III11 or more in view of the reinforcing effect. The blending amount of these reinforcing fibers is preferably set at 3 to 15 parts by weight per 100 parts by weight of the cement mixture.

3重量部未満であると補強効果が不十分になり、また1
5fi量部を超えると成形性が低下すると共に補強N&
維が特に有機質繊維の場合にはセメント製品が準不燃で
なくなる。
If it is less than 3 parts by weight, the reinforcing effect will be insufficient;
If the amount exceeds 5fi parts, the formability will decrease and the reinforcement N&
If the fibers are particularly organic fibers, the cement product will no longer be quasi-inflammable.

また、中空発泡体としては熱可塑性U(脂の発泡体を用
いるものであり、なかでもポリ塩化ビニリデン系の樹脂
で形成されたものを用いるのがよい。
Further, as the hollow foam, a thermoplastic U (oil foam) is used, and among them, one formed of a polyvinylidene chloride resin is preferably used.

このポリ塩化ビニリデンの中空発泡体としては特開昭4
9−44094号公報によって提供されているものを発
泡させて得ることができ、例えば松本油脂製薬株式会社
製の「マツモトマイクロスフェア−」を発泡させたもの
などを用いることができる。ポリ塩化ビニリデン系のも
のはポリスチレン系のものに比べて微小中空の球形に発
泡させることが容易であり、すなわち発泡ポリスチレン
としては粒径が0.5mm(500μ)以下のものを得
ることが困難であるが、ポリ塩化ビニリデン系のもので
は粒径が0.1mm(100μ)以下の微小球状のもの
が容易に得ることができるために、本発明においては熱
可塑性樹脂の中空発泡体としてポリ塩化ビニリデン系の
ものを用いるのが好ましいものであり、中空発泡体とし
ては1〜100μの粒径の小さいものを用いるものであ
る0粒径が100μより大きいと後述するように本発明
の目的を達成することができない。また粒径が1μ未溝
の中空発泡体を得ることは困難であると共に粒径が1μ
未満ではセメント製品の軽量化の効果が不十分になる。
This hollow polyvinylidene foam was developed in Japanese Patent Application Publication No. 4
It can be obtained by foaming the material provided in Japanese Patent No. 9-44094, for example, "Matsumoto Microspheres" manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. can be used. Polyvinylidene chloride-based products are easier to foam into microscopic hollow spheres than polystyrene-based products; in other words, it is difficult to obtain foamed polystyrene with a particle size of 0.5 mm (500 μ) or less. However, since polyvinylidene chloride-based products can be easily obtained in the form of microspheres with a particle size of 0.1 mm (100μ) or less, polyvinylidene chloride is used as a hollow foam of thermoplastic resin in the present invention. It is preferable to use a hollow foam with a small particle size of 1 to 100μ.If the particle size is larger than 100μ, the purpose of the present invention will be achieved as described later. I can't. In addition, it is difficult to obtain a hollow foam with a particle size of 1 μm without grooves, and the particle size is 1 μm.
If it is less than that, the effect of reducing the weight of cement products will be insufficient.

また、中空発泡体がポリ塩化ビニリデン系の場合、発泡
ポリスチレンよりも弾性復元性が小さく、セメント成形
材料を押出し成形した後の成形圧力の解放による弾性復
元を小さくすることができるものであり、この点からも
熱可塑性樹脂の中空発泡体としてポリ塩化ビニリデン系
のものを用いるのが好ましい、さらに中空発泡体はその
発泡倍率(:a倍率でな(真の倍率)が20〜100倍
のもの、好ましくは30〜70倍のものとし形成される
ものである1発泡倍率が100倍を超えると後述するよ
うに本発明の目的を達成することができないものであり
、逆に発泡倍率が20未満であるとセメント製品の軽量
化の効果を十分に得ることができず、また軽量化のため
には多量の配合が必要になって経済性が悪くなる。
In addition, if the hollow foam is made of polyvinylidene chloride, it has less elastic recovery than expanded polystyrene, and the elastic recovery due to the release of molding pressure after extruding the cement molding material can be reduced. From this point of view, it is preferable to use a polyvinylidene chloride-based hollow foam as the thermoplastic resin hollow foam, and furthermore, the hollow foam should have an expansion magnification (:a magnification (true magnification)) of 20 to 100 times, Preferably it is 30 to 70 times.If the foaming ratio exceeds 100 times, the purpose of the present invention cannot be achieved, as will be described later.On the contrary, if the foaming ratio is less than 20 times, the purpose of the present invention cannot be achieved. If so, the effect of reducing the weight of the cement product cannot be fully obtained, and a large amount of compounding is required to reduce the weight, making it uneconomical.

上記のようにしてセメントに骨材や補強繊維、中空発泡
体その他戒形助剤を配合して水と混線することによって
セメント成形材料を調製するのであるが、この混合は水
の存在下で200 rpm以上の高速攪拌羽根を有する
混合機を用いて均一におこなわれるようにするのがよい
、また混合水の配合量はセメント成形材料の固形分全量
に対して35〜60重量%に設定するのがよく、またこ
のようにして調製されるセメント成形材料は硬度が粘土
硬度計で7以下の混線物となるようにするのがよい。そ
してこのセメント成形材料を押出し成形機に供給し″ζ
金型を通過させることによって押出し成形をおこなう。
As described above, a cement molding material is prepared by mixing cement with aggregate, reinforcing fibers, hollow foam, and other additives, and mixing it with water. It is best to use a mixer with high-speed stirring blades at rpm or higher to ensure uniform mixing, and the amount of mixing water should be set at 35 to 60% by weight based on the total solid content of the cement molding material. The cement molding material thus prepared should preferably have a hardness of 7 or less on a clay hardness scale. This cement molding material is then fed to an extrusion molding machine.
Extrusion is performed by passing the material through a mold.

この押出し成形はその成形圧力を10 kg/ am2
以下、好ましくは8kg/am2以下に設定しておこな
うのがよい。このように押出し成形をおこなったのち、
セメント押出し成形品を養生硬化してセメント製品を得
ることができるが、養生は70℃以上の温熱養生、及び
こののちの最終段階での2〜6気圧の高温高圧でのオー
トクレーブ養生でおこなうのがよい。
This extrusion molding has a molding pressure of 10 kg/am2.
Below, it is preferable to set it to 8 kg/am2 or less. After extrusion molding in this way,
Cement products can be obtained by curing and hardening cement extrudates, but curing is carried out by heat curing at 70°C or higher, followed by autoclave curing at a high temperature and pressure of 2 to 6 atm in the final stage. good.

しかして、本発明においては軽量骨材として熱可塑性a
f脂の中空発泡体を用いているものであり、パーライト
や硬質微小中空球対などと異なり、中空発泡体はその塑
性のためにセメント成形材料を調製する混練の際の剪断
力や押出し成形の際の剪断力で破壊されることを低減す
ることができ、軽量化の効果を十分に発揮させることが
できると共に、セメント成形材料の混線を高速でおこな
ってセメント成形材料を均一な組成に調製することがで
きる。そしてこのように本発明で用いる中空発泡体は破
壊さh難いために、破壊された部分が強度上の欠陥にな
ることもなく強度補強のために過剰に補強繊維を配合す
る必要がなくなる。
Therefore, in the present invention, thermoplastic a is used as a lightweight aggregate.
Unlike pearlite or hard micro-hollow sphere pairs, hollow foam is less susceptible to shearing forces during kneading and extrusion molding to prepare cement molding materials due to its plasticity. It is possible to reduce the risk of breakage due to shearing force during the process, fully exhibit the effect of weight reduction, and mix the cement molding material at high speed to prepare the cement molding material to have a uniform composition. be able to. As described above, since the hollow foam used in the present invention is difficult to break, the broken portion does not become a strength defect, and there is no need to add an excessive amount of reinforcing fiber to strengthen the foam.

また、本発明においては中空発泡体として発泡倍率が1
00倍以下のものを用いているものであり、発泡倍率が
大き過ぎて強度が低下するということがなく、この点に
おいても中空発泡体が破壊されることを防止することが
でき、しかも中空発泡体は発泡倍率が20倍以上であっ
て、軽量化の効果を十分に得ることができる。
In addition, in the present invention, the foaming ratio is 1 as a hollow foam.
00 times or less, the foaming ratio is not too large and the strength does not decrease, and in this respect, it is possible to prevent the hollow foam from being destroyed. The foaming ratio of the body is 20 times or more, and the weight reduction effect can be fully obtained.

さらに本発明においては中空発泡体として粒径が100
μ以下の微小なものを用いているものであり、中空発泡
体が熱可塑性樹脂で形成されているものであるにもかか
わらずこのように粒径が小さいために、押出し成形後の
成形圧力の解放によって中空発泡体が大きく弾性復元(
スプリングバック)するおそれがなく、セメント製品に
内部歪みやクラックなどの欠陥が発生することを防止し
て十分な強度を得ることがでさる。また粒径が100μ
以下の本発明の微小中空発泡体は粒径が小さく滑り性が
あって、混線物として調製されるセメント成形材料の流
れ性を良くすることができ、比較的混合水の少ない領域
でもセメント成形材料は十分に柔らか(形成することが
でき、従っ−ζ押出し成形の際の成形圧力も低くするこ
とができ、この点においても押出し後の成形圧力の解放
による中空発泡体の弾性復元を小さく抑えることができ
る・と共に、また高速での押出し成形も可能になる。
Furthermore, in the present invention, the particle size of the hollow foam is 100 mm.
Even though the hollow foam is made of thermoplastic resin, the particle size is small, so the molding pressure after extrusion molding is low. Upon release, the hollow foam greatly recovers its elasticity (
There is no risk of springback (springback), and it is possible to obtain sufficient strength by preventing defects such as internal distortion and cracks from occurring in cement products. Also, the particle size is 100μ
The following micro hollow foam of the present invention has a small particle size and is slippery, and can improve the flowability of cement molding materials prepared as mixed materials, and can be used as a cement molding material even in areas with relatively little mixing water. is sufficiently soft (can be formed, therefore, the molding pressure during extrusion molding can be lowered, and in this respect, the elastic recovery of the hollow foam due to the release of molding pressure after extrusion can be kept small) In addition to this, high-speed extrusion molding is also possible.

さらにはこのようにセメント成形材料の流れ性を良(す
ることがで終るために、押出し成形磯の金型内の薄肉異
形部や端部でのセメント成形材料の流れをスムーズにす
ることができ、材料切れや直線性の不良などが発生する
ことを低減することができる。特に粒径の小さい中空発
泡体を用いている本発明のものでは、セメント成形材料
に補強繊維として比較的長い合成繊維やパルプ類などが
配合されていても、セメント成形材料の流れ性を高く保
持することかでか、長い合成繊維やパルプ類を充分な量
で配合して強度や靭性に優れると共により軽量化したセ
メント製品を複雑な異形成形品として容易に得ることが
できるものである。また中空発泡体は微小粒径であるた
めに補強#&雑はその配向性が充分に発揮され、補強繊
維による補強の向きを設定することが容易になる。さら
に粒径が微小な中空発泡体間の空隙は小さくセメント製
品内の空隙も小さくなり、従って中空発泡体によってu
i化の効果を充分に発揮させることができる割に強度低
下を小さく抑えることができる。
Furthermore, since the flowability of the cement molding material is improved in this way, it is possible to make the flow of the cement molding material smooth at the thin irregularly shaped parts and edges of the extrusion mold. This can reduce the occurrence of material breakage and poor linearity.In particular, in the case of the present invention, which uses hollow foam with a small particle size, relatively long synthetic fibers are added to the cement molding material as reinforcing fibers. In order to maintain the high flowability of the cement molding material even when it contains fibers and pulps, it is possible to blend long synthetic fibers and pulps in sufficient amounts to achieve excellent strength and toughness as well as to be lighter. Cement products can be easily obtained as complex irregularly shaped products.In addition, because the hollow foam has a microscopic particle size, the orientation of the reinforced #& miscellaneous material is fully demonstrated, and the reinforcement with reinforcing fibers is effective. In addition, the voids between the hollow foams with small particle sizes are small and the voids within the cement product are also small, so the hollow foams
Although the effect of i-ization can be fully exhibited, the decrease in strength can be suppressed to a small level.

また、粒径が1〜100μの微小中空発泡体が含有され
るセメント製品においては、中空発泡体によって独立気
泡としての気泡が多量に形成されることになり、この気
泡によって凍結融解時の応力発生を充分に緩和すること
ができ、耐凍害性を高めることができるものである。発
泡ポリスチレンのように粒径の大きな中空発泡体の場合
は既述のように弾性復元で内部歪みやクラックが発生し
、この箇所に凍結融解時の応力が集中することになって
耐凍害性はかえって悪くなるが、本発明では熱可塑性樹
脂の中空発泡体を使用するにもかかわらず粒径が微細で
あるために、このような弾性復元での内部歪みやクラッ
クの発生がなく、耐凍害性の低下の問題は生じない。し
かも本発明では上記のように流動性を損なうことなくセ
メント成形材料に長繊維やパルプ類を充分に配合するこ
とができるものであり、これらによっても凍結融解時の
応力緩和を高めることができ、耐凍害性を高めることが
できるものである。さらには軽量骨材としてパーライト
を用いる場合、パーライトは吸水率の高いものが多くて
セメント製品の吸水率も^くなり、凍結融解の応力を受
は易くて耐凍害性を高めることは難しいが、本発明で用
いる熱可塑性樹脂の中空発泡体では独立気泡を成立させ
ることができるためにこのような吸水の問題はなく、容
易に耐凍害性を高めることができる。またパーライトハ
コのように吸水性が高いためにセメント成形材料の流動
性を商めるためには混合水量を多くする必要があり、こ
の結果養生過程で外部雰囲気との温度の平衡が崩れると
セメント(品の表面に白華が生じ易くなり、また粗大な
発泡ポリスチレンの場合においてもセメントマトリック
スやamn分では多少の白華が発生し易いが、本発明の
ように熱可塑性樹脂の微小中空発泡体を用いた場合には
微細な独立中空部分が多量にセメント成形品中に含まれ
て毛細管中での水分の移行が抑制されることになり、後
述の実施例でみられるように白華の発生を殆どな(すこ
とができる、そして白華が発生したり、あるいは粗大粒
子の発泡ポリスチレンの場合のように弾性復元で表面に
突出物が発生した場合には、セメント製品の表面を切削
やバフ研摩などをする必要があって、この切削や研摩部
分での塗膜の密着性低下や塗膜の剥離の問題があるが、
白華や突出物の発生がない本発明ではこのような問題は
ない。
In addition, in cement products containing micro hollow foams with a particle size of 1 to 100 μm, the hollow foams form a large number of closed cells, and these air bubbles generate stress during freezing and thawing. It is possible to sufficiently alleviate the damage caused by freezing and improve frost damage resistance. In the case of hollow foams with large particle diameters, such as expanded polystyrene, internal distortions and cracks occur due to elastic recovery, as mentioned above, and stress during freezing and thawing is concentrated in these areas, resulting in poor freeze-damage resistance. However, in the present invention, although the thermoplastic resin hollow foam is used, the particle size is fine, so there is no internal distortion or cracking due to elastic recovery, and the frost damage resistance is improved. There is no problem of decrease in . Moreover, in the present invention, as mentioned above, long fibers and pulps can be sufficiently blended into the cement molding material without impairing fluidity, and these can also enhance stress relaxation during freezing and thawing. It can improve frost damage resistance. Furthermore, when using pearlite as a lightweight aggregate, pearlite often has a high water absorption rate, and the water absorption rate of cement products also decreases, and it is easy to receive stress from freezing and thawing, making it difficult to improve frost damage resistance. Since the thermoplastic resin hollow foam used in the present invention can form closed cells, there is no such problem of water absorption, and the frost damage resistance can be easily improved. In addition, since pearlite boxes have high water absorption, it is necessary to increase the amount of water mixed in order to improve the fluidity of the cement forming material, and as a result, if the temperature equilibrium with the external atmosphere is disrupted during the curing process, the cement (Efflorescence is likely to occur on the surface of the product, and even in the case of coarse expanded polystyrene, some efflorescence is likely to occur in the cement matrix and amn content, but as in the present invention, micro hollow foam of thermoplastic resin When using a cement molded product, a large amount of fine independent hollow parts are contained in the cement molded product, which suppresses the movement of moisture in the capillary tubes, and the occurrence of efflorescence as seen in the examples below. However, if efflorescence occurs or protrusions appear on the surface due to elastic recovery, as in the case of coarse-grained expanded polystyrene, the surface of the cement product should be cut or buffed. It is necessary to perform polishing, etc., and there are problems with the adhesion of the paint film decreasing and peeling of the paint film at this cutting and polishing part.
The present invention, which does not generate efflorescence or protrusions, does not have such problems.

次に本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

t   1〜6   1〜6 第1表に示す配合で混合混練することによってセメント
成形材料を調製した。ここで、第1表中「マイクロスフ
ェア−」としては松本油脂製薬株式会社製の「マツモト
マイクロスフェア−」を用いた。
t 1-6 1-6 Cement molding materials were prepared by mixing and kneading the formulations shown in Table 1. Here, as the "microsphere" in Table 1, "Matsumoto Microsphere" manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. was used.

またセメント成形材料の固さを粘土硬度計で測定し、結
果を第2表に示した。このセメント成形材料を第2表に
示す成形圧力で押出し成形することによって、第1図に
示す異形断面の押出し成形品Aを得た。この押出し成形
品Aの外観を検査し、また直線性を測定し、結果を第2
表に示した。ここで、第2表において「成形品の直線性
」は、押出し成形品の押出し方向3111での側端部の
偏移寸法を測定して示した。次にこの押出し成形品Aを
第2表に示す条件で湿熱養生及びオートクレーブ養生す
ることによって、軽量セメント製品を得た。
Further, the hardness of the cement molding material was measured using a clay hardness meter, and the results are shown in Table 2. By extrusion molding this cement molding material at the molding pressure shown in Table 2, an extrusion molded product A having an irregular cross section shown in FIG. 1 was obtained. The appearance of this extruded product A was inspected, the linearity was measured, and the results were
Shown in the table. Here, in Table 2, "linearity of the molded product" is shown by measuring the deviation dimension of the side end portion of the extrusion molded product in the extrusion direction 3111. Next, this extruded product A was subjected to moist heat curing and autoclave curing under the conditions shown in Table 2 to obtain a lightweight cement product.

このようにして得た軽量セメント製品について各種特性
を測定し、結果を第2表に示した。ここで第2表におい
て「耐凍害性」はASTMC−666A法における凍結
融解試験に準拠して測定をお第2表の結果、粒径の大き
な発泡ポリスチレンを用いた比較例2やパーライトを用
いた比較例3、ガラスバルーンを用いた比較例4ではセ
メント成形材料が硬くて大きな成形圧力が必要であり、
押出し成形の際に材料切れが発生すると共に押出し成形
品の直線性が悪いものであり、東だセメント製品の表面
に白華が発生し易く、さらには耐凍害性も悪いものであ
ったが、平均粒径が40μで平均発泡倍率が60倍のマ
イクロスフェア−を用いた実施例1〜5及び平均粒径が
30μで平均発泡倍率が30倍のマイクロスフェア−を
用いた実施例6ではこれらの問題は発生しないことが確
認される。またマイクロス7エ7−を用いたものであっ
ても、発泡倍率が110倍の比較例1のものではマイク
ロスフェア−の破壊によって軽量化の効果が低くなると
共に耐凍害性が低下することになることが確認される。
Various properties of the lightweight cement product thus obtained were measured, and the results are shown in Table 2. Here, in Table 2, "freeze damage resistance" was measured in accordance with the freeze-thaw test in ASTM C-666A method. In Comparative Example 3 and Comparative Example 4 using glass balloons, the cement molding material is hard and requires high molding pressure.
Material breakage occurred during extrusion molding, the straightness of the extruded product was poor, efflorescence was likely to occur on the surface of Toda cement products, and the frost resistance was also poor. In Examples 1 to 5 using microspheres with an average particle size of 40 μ and an average expansion ratio of 60 times, and Example 6 using microspheres with an average particle size of 30 μ and an average expansion ratio of 30 times, these It is confirmed that no problems occur. In addition, even if Micros 7E7- is used, in Comparative Example 1 with a foaming ratio of 110 times, the weight reduction effect will be reduced due to the destruction of the microspheres, and the frost damage resistance will be reduced. It is confirmed that

さらに発泡倍率が10倍の比較例5のものではセメント
製品の比重を小さくすることができず、軽量化の効果を
充分に得ることができないものであり、軽量化の効果を
得るためには比較例6のようにマイクロスフェア−の配
合量を多くする必要があって経済性に劣ることになるこ
とが確認される。
Furthermore, in Comparative Example 5, where the foaming ratio is 10 times, it is not possible to reduce the specific gravity of the cement product, and the weight reduction effect cannot be sufficiently obtained. It is confirmed that as in Example 6, it is necessary to increase the amount of microspheres blended, resulting in poor economic efficiency.

また、比較例2、比較例3及び実施例1のセメント成形
材料についてその押出し成形性の評価試験をおこなった
。試験は第2図に示す入り口がφ16(断面積2cm”
)で出口がφ11のシリンダーBにセメント成形材料を
入れ、φ16の押出し棒Cを使ってセメント成形材料を
押出し物りとして押し出すことによっておこない、この
とき押出しの流It Q (am3/ win)を2.
4.6.10と変えた場合の単位面積当たりの押出し圧
力P (kgf/ 0m2)がどのように変わるかを検
討した。結果は第3表に示す通りであってこれらをグラ
フで示すと第3図のようになる。すなわち比較例2の結
果を第3図(a)のグラフで、比較例3の結果を第3図
(b)のグラフで、実施例1の結果を第3図(c)のグ
ラフでそれぞれ示したが、比較例2,3のものは流量Q
と圧力Pとの関係が負の関係にあり、実施例1のものは
正の関係にある。このことは比較例2゜3のものでは押
出し圧力を高くしても吐出量が増加しない、つまり仕置
骨材が圧縮されていく傾向があって不安定な成形流れと
なるが、実施例1のものでは押出し圧力を高(すると吐
出量が増加す4るものであって安定な成形流れとなるこ
とを意味するものである。
Further, the cement molding materials of Comparative Example 2, Comparative Example 3, and Example 1 were evaluated for their extrudability. In the test, the entrance shown in Figure 2 was φ16 (cross-sectional area 2 cm).
), the cement molding material is put into a cylinder B with an outlet of φ11, and the cement molding material is extruded as an extrudate using an extrusion rod C of φ16. At this time, the extrusion flow It Q (am3/win) is 2. ..
We investigated how the extrusion pressure P (kgf/0m2) per unit area changes when changing from 4.6.10. The results are shown in Table 3, and the graph shown in FIG. 3 shows these results. That is, the results of Comparative Example 2 are shown in the graph of FIG. 3(a), the results of Comparative Example 3 are shown in the graph of FIG. 3(b), and the results of Example 1 are shown in the graph of FIG. 3(c). However, in Comparative Examples 2 and 3, the flow rate Q
The relationship between P and pressure P is negative, and that of Example 1 is positive. This means that in Comparative Example 2 and 3, the discharge rate does not increase even if the extrusion pressure is increased, that is, the aggregate tends to be compressed, resulting in unstable forming flow, but in Example 1, the discharge rate does not increase even if the extrusion pressure is increased. In some cases, the extrusion pressure is increased (which increases the amount of extrusion), which means that a stable molding flow is achieved.

[発明の効果1 上述のように本発明は、セメントに骨材、補強繊維を配
合すると共に粒径が1〜100μで発泡倍率が20〜1
00倍の熱可塑性樹脂の中空発泡体を配合してセメント
成形材料を31i製し、これを押出し成形したのちに養
生するようにしたものであるから、この中空発泡体は破
壊され難くて軽量効果を充分に発揮させたセメント製品
を得ることができると共に、この中空発泡体は押出し成
形後の弾性復元が小さくて欠陥の発生が少ないセメント
製品を得ることができるものであり、またこの中空発泡
体はセメント成形材料の流れ性を低下させることがなく
材料切れや直線性の低下などの成形性を低下させること
がなく、さらには中空発泡体による独立気泡の形成でセ
メント製品の耐凍害性を高めることができるものである
[Effect of the invention 1 As described above, the present invention combines cement with aggregate and reinforcing fibers, has a particle size of 1 to 100μ, and has an expansion ratio of 20 to 1.
The cement molding material 31i is made by blending a hollow foam of thermoplastic resin with a weight of 0.00 times, and this is extruded and then cured, so this hollow foam is difficult to break and has a lightweight effect. It is possible to obtain a cement product that fully exhibits the properties of the hollow foam, and it is also possible to obtain a cement product that has a small elastic recovery after extrusion molding and has fewer defects. does not reduce the flowability of cement molding materials and does not reduce moldability such as material breakage or deterioration of linearity, and also improves the freeze damage resistance of cement products by forming closed cells with hollow foam. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は押出し成形品の異形断面を示す図、第2図は成
形性の評価に用いるシリンダーの斜視図、第3図(a)
(b)(c)はセメント成形材料の流量と押出し圧力と
の関係を示すグラフである。 代理人 弁理士 石 1)艮 七 第1図 第2図
Figure 1 is a diagram showing an irregular cross section of an extruded product, Figure 2 is a perspective view of a cylinder used for evaluating moldability, and Figure 3 (a).
(b) and (c) are graphs showing the relationship between the flow rate of cement molding material and extrusion pressure. Agent Patent Attorney Ishi 1) Ai 7 Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)セメントに骨材、補強繊維を配合すると共に粒径
が1〜100μで発泡倍率が20〜100倍の熱可塑性
樹脂の中空発泡体を配合してセメント成形材料を調製し
、これを押出し成形したのちに養生することを特徴とす
る軽量セメント製品の製造方法。
(1) Prepare a cement molding material by blending aggregate and reinforcing fibers with cement, as well as thermoplastic resin hollow foam with a particle size of 1 to 100μ and a foaming ratio of 20 to 100 times, and extrude it. A method for manufacturing a lightweight cement product characterized by curing after molding.
(2)中空発泡体はポリ塩化ビニリデン系樹脂で形成さ
れたものであることを特徴とする特許請求の範囲第1項
記載の軽量セメント製品の製造方法。
(2) The method for manufacturing a lightweight cement product according to claim 1, wherein the hollow foam is made of polyvinylidene chloride resin.
(3)中空発泡体はセメント成形材料に、セメントと骨
材、補強繊維の合計量100重量部に対して0.05〜
3重量部の割合で配合されていることを特徴とする特許
請求の範囲第1項又は第2項記載の軽量セメント製品の
製造方法。
(3) The hollow foam is added to the cement molding material from 0.05 to 100 parts by weight of the total amount of cement, aggregate, and reinforcing fibers.
3. The method for producing a lightweight cement product according to claim 1 or 2, characterized in that the content is 3 parts by weight.
(4)補強繊維はセメント成形材料に、セメントと骨材
、補強繊維の合計量100重量部に対して3〜15重量
部の割合で配合されていることを特徴とする特許請求の
範囲第1項乃至第3項のいずれかに記載の軽量セメント
製品の製造方法。
(4) The reinforcing fibers are blended into the cement molding material at a ratio of 3 to 15 parts by weight based on 100 parts by weight of the total amount of cement, aggregate, and reinforcing fibers. A method for producing a lightweight cement product according to any one of items 1 to 3.
JP17064886A 1986-07-18 1986-07-18 Manufacture of lightweight cement product Granted JPS6330381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17064886A JPS6330381A (en) 1986-07-18 1986-07-18 Manufacture of lightweight cement product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17064886A JPS6330381A (en) 1986-07-18 1986-07-18 Manufacture of lightweight cement product

Publications (2)

Publication Number Publication Date
JPS6330381A true JPS6330381A (en) 1988-02-09
JPH0427196B2 JPH0427196B2 (en) 1992-05-11

Family

ID=15908770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17064886A Granted JPS6330381A (en) 1986-07-18 1986-07-18 Manufacture of lightweight cement product

Country Status (1)

Country Link
JP (1) JPS6330381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310780A (en) * 1987-06-10 1988-12-19 Nichias Corp Production of cement-based lightweight molded body
JPH0365532A (en) * 1989-07-31 1991-03-20 Narumi China Corp Lustered crystallized glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150452B2 (en) * 2012-04-19 2015-10-06 Construction Research & Technology, Gmbh Method for manufacturing a cementitious composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828523A (en) * 1971-08-16 1973-04-16
JPS4833967A (en) * 1971-09-03 1973-05-15
JPS5027819A (en) * 1973-07-11 1975-03-22
JPS5855360A (en) * 1981-09-22 1983-04-01 都築 哲也 Manufacture of lightweight sound-absorptive heat-insulating inorganic extrusion panel
JPS5912617A (en) * 1982-07-01 1984-01-23 バ−・ブラウン・コ−ポレ−ション Latch circuit with voltage swing using gate current proportional to temperature
JPS59162167A (en) * 1983-03-03 1984-09-13 株式会社クボタ Manufacture of inorganic construction material
JPS6042010A (en) * 1983-08-17 1985-03-06 株式会社クボタ Extrusion molding method of light inorganic product
JPS60210577A (en) * 1984-04-04 1985-10-23 松下電工株式会社 Manufacture of cement formed body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828523A (en) * 1971-08-16 1973-04-16
JPS4833967A (en) * 1971-09-03 1973-05-15
JPS5027819A (en) * 1973-07-11 1975-03-22
JPS5855360A (en) * 1981-09-22 1983-04-01 都築 哲也 Manufacture of lightweight sound-absorptive heat-insulating inorganic extrusion panel
JPS5912617A (en) * 1982-07-01 1984-01-23 バ−・ブラウン・コ−ポレ−ション Latch circuit with voltage swing using gate current proportional to temperature
JPS59162167A (en) * 1983-03-03 1984-09-13 株式会社クボタ Manufacture of inorganic construction material
JPS6042010A (en) * 1983-08-17 1985-03-06 株式会社クボタ Extrusion molding method of light inorganic product
JPS60210577A (en) * 1984-04-04 1985-10-23 松下電工株式会社 Manufacture of cement formed body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310780A (en) * 1987-06-10 1988-12-19 Nichias Corp Production of cement-based lightweight molded body
JPH0587472B2 (en) * 1987-06-10 1993-12-16 Nichias Corp
JPH0365532A (en) * 1989-07-31 1991-03-20 Narumi China Corp Lustered crystallized glass

Also Published As

Publication number Publication date
JPH0427196B2 (en) 1992-05-11

Similar Documents

Publication Publication Date Title
CA2505594A1 (en) Reinforced wallboard
JPH04114937A (en) Fiber-reinforced lightweight cement composition
JPH04193748A (en) Fiber-reinforced cement composition
JP2003104766A (en) Fiber reinforced hydraulic composition and fiber reinforced hydraulic formed body obtained by using the composition
JPS6330381A (en) Manufacture of lightweight cement product
JPH01320243A (en) Lightweight cement composition
JPH06293546A (en) Production of hydraulic and inorganic material molding
JP2008050185A (en) Perlite for building materials and perlite mortar composition for building materials
JP2511443B2 (en) Manufacturing method for lightweight cement products
JPH07277794A (en) Lightweight concrete aggregate
Petropavlovskaya et al. Gypsum composites with glass granules
JPS60264375A (en) Cement composition
JPH06144950A (en) Production of ceramic lightweight building material
JPS6219385B2 (en)
JPS6149271B2 (en)
JPH08333152A (en) Cement composition and auxiliary for its extrusion molding
JP2018192703A (en) Method for producing extrusion-molded product
JP2744396B2 (en) Lightweight cement composition for extrusion molding
JP2755505B2 (en) Extrusion molding method for cement products
JPH02229752A (en) Cement composition
JPS63206369A (en) Manufacture of lightweight cement products
KR960012713B1 (en) Method for preparing carbon fiber reinforced cement composites
JP2511437B2 (en) Lightweight cement products
JP2001139360A (en) Fiber-reinforced hydraulic formed body and its production process
JPH0489339A (en) Cement composition to be extrusion-molded

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term