JPH08175861A - Formed plate of inorganic material and its production - Google Patents

Formed plate of inorganic material and its production

Info

Publication number
JPH08175861A
JPH08175861A JP33619294A JP33619294A JPH08175861A JP H08175861 A JPH08175861 A JP H08175861A JP 33619294 A JP33619294 A JP 33619294A JP 33619294 A JP33619294 A JP 33619294A JP H08175861 A JPH08175861 A JP H08175861A
Authority
JP
Japan
Prior art keywords
weight
mixture
cement
flakes
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33619294A
Other languages
Japanese (ja)
Other versions
JP2931768B2 (en
Inventor
Sonau Nagatomi
辨 永富
Takeo Shimizu
竹男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP33619294A priority Critical patent/JP2931768B2/en
Publication of JPH08175861A publication Critical patent/JPH08175861A/en
Application granted granted Critical
Publication of JP2931768B2 publication Critical patent/JP2931768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00336Materials with a smooth surface, e.g. obtained by using glass-surfaced moulds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: To obtain a formed plate of an inorganic material producible in a mass and having light weight and high strength. CONSTITUTION: This formed plate of inorganic material consists of the top and the reverse surface layers having a dense structure and composed of a cured product of a mixture consisting of 30-60wt.% of cement, 30-60wt.% of a silica-containing substance, 0-15wt.% of perlite and 5-25wt.% of flake and/or wood flour and a porous core layer composed of a cured product of a mixture consisting of 30-60wt.% of cement, 30-60wt.% of a silica-containing substance, 0-15wt.% of perlite, 5-25wt.% of woody fiber bundle and 4-10wt.% of flake.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内部に多孔構造を有し、
軽量でかつインシュレーション性に富む無機質成形板お
よびその製造方法に関するものである。
The present invention has a porous structure inside,
The present invention relates to an inorganic molded plate that is lightweight and has excellent insulation properties, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来からセメントに木片、パルプ繊維等
の補強材を混合し、更に発泡性プラスチックビーズを混
合した原料混合物を成形するとともに加熱して該原料混
合物中の発泡性プラスチックビーズを発泡させ、更には
該発泡性プラスチックビーズの発泡によって得られたプ
ラスチックビーズ発泡体粒を溶融して成形体内に多数の
空孔を形成せしめることによって軽量でかつ断熱性、防
音性等のインシュレーション性を有する多孔性セメント
板を製造する方法が提供されている(特開昭54−15
7125号、特公昭63−1276号)。
2. Description of the Related Art Conventionally, cement is mixed with reinforcing materials such as wood chips and pulp fibers, and a raw material mixture is further formed by mixing expandable plastic beads and the mixture is heated to foam the expandable plastic beads in the raw material mixture. In addition, by melting the plastic beads foam particles obtained by foaming the expandable plastic beads to form a large number of pores in the molded body, it is lightweight and has insulation properties such as heat insulating properties and soundproofing properties. A method for producing a porous cement board is provided (Japanese Patent Application Laid-Open No. 54-15).
7125, Japanese Patent Publication No. 63-1276).

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の多孔性セメント板では表面に気孔が存在するために表
面が滑かで化粧性に優れる板材を得ることが出来ず、ま
た透水性、透湿性も大きなものとなる。また補強材とし
て木片を用いた従来の木片セメント板の場合は木片相互
の絡み合いが殆どないので成形の際の圧締力を高くして
製品の密度を大きくしないと得られる製品の強度が充分
なものではなく、また補強材としてパルプ繊維を用いた
従来のパルプ混入セメント板の場合はセメント−パルプ
繊維混合物の密度が大きくなり発泡性プラスチックビー
ズの発泡が抑制される。
However, in the above-mentioned conventional porous cement board, since the surface has pores, it is not possible to obtain a board material having a smooth surface and excellent cosmetic properties, and also having water permeability and moisture permeability. It will be big. Further, in the case of a conventional wood chip cement board using wood chips as a reinforcing material, there is almost no entanglement of wood chips, so the strength of the product obtained is sufficient unless the pressing force is increased during molding to increase the product density. However, in the case of a conventional pulp-mixed cement board using pulp fibers as a reinforcing material, the density of the cement-pulp fiber mixture is increased, and foaming of the expandable plastic beads is suppressed.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来の課題
を解決するための手段として、セメント30〜60重量
%、ケイ酸含有物質30〜60重量%、パーライト0〜
15重量%、フレークおよび/または木粉5〜25重量
%の混合物の硬化物からなる表裏層と、セメント30〜
60重量%、ケイ酸含有物質30〜60重量%、パーラ
イト0〜15重量%、木質繊維束5〜25重量%、フレ
ーク4〜10重量%の混合物の硬化物からなり多孔性の
芯層とからなる無機質成形板を提供するものであり、更
に望ましくは該木質繊維束として分枝および/または彎
曲および/または折曲させることによって嵩高くされた
ものを用いる。上記本発明の無機質成形板の製造方法と
して望ましい製造方法は生産効率の高い乾式製造方法で
あって該乾式製造方法とはセメント30〜60重量%、
ケイ酸含有物質30〜60重量%、パーライト0〜15
重量%、フレークおよび/または木粉5〜25重量%、
および水30〜45重量%との混合物Aを型板上にマッ
ト状に散布し、更にセメント30〜60重量%、ケイ酸
含有物質30〜60重量%、パーライト0〜15重量
%、木質繊維束5〜25重量%、フレーク4〜10重量
%、発泡性熱可塑性プラスチックビーズ0.5〜5重量
%、および水30〜45重量%との混合物Bをその上か
らマット状に散布し、更に上記混合物Aをその上からマ
ット状に散布して三層構造のマットを形成する工程1上
記三層構造のマットを圧締して予備硬化させる工程2上
記予備硬化物を加熱オートクレーブ養生することにより
発泡性熱可塑性プラスチックビーズを発泡させるととも
に硬化を進める工程3以上の工程1,2,3からなる無
機質成形板の製造方法である。以下に本発明を詳細に説
明する。
As a means for solving the above-mentioned conventional problems, the present invention provides 30 to 60% by weight of cement, 30 to 60% by weight of silicic acid-containing substance, 0 to pearlite.
Front and back layers composed of a cured product of a mixture of 15% by weight, flakes and / or 5 to 25% by weight of wood flour, and cement 30 to
60% by weight, 30 to 60% by weight of silicic acid-containing substance, 0 to 15% by weight of perlite, 5 to 25% by weight of wood fiber bundle, and 4 to 10% by weight of flakes. The present invention further provides an inorganic molded plate, and more preferably, the wood fiber bundle is made bulky by branching and / or bending and / or bending. A desirable production method as the production method of the above-mentioned inorganic molded plate of the present invention is a dry production method with high production efficiency, which is 30 to 60% by weight of cement,
Silicic acid-containing substance 30 to 60% by weight, perlite 0 to 15
% By weight, flakes and / or wood flour 5-25% by weight,
And a mixture A of 30 to 45% by weight of water are spread on a template in a mat form, and further 30 to 60% by weight of cement, 30 to 60% by weight of a silicic acid-containing substance, 0 to 15% by weight of perlite, and a wood fiber bundle. 5 to 25% by weight of flakes, 4 to 10% by weight of flakes, 0.5 to 5% by weight of expandable thermoplastic beads, and 30 to 45% by weight of water, are sprayed on the mixture B in the form of a mat. Step 1 of spraying the mixture A in a mat shape from above to form a mat having a three-layer structure Step 1 Pre-curing by pressing the mat having the three-layer structure 2 Foaming by curing the pre-cured material by heating in an autoclave Is a method for manufacturing an inorganic molded plate, which comprises steps 1, 2, and 3 of foaming thermoplastic resin beads and advancing curing. The present invention will be described in detail below.

【0005】〔表裏層〕本発明の無機質成形板の表裏層
はセメント30〜60重量%、ケイ酸含有物質30〜6
0重量%、パーライト0〜15重量%、フレークおよび
/または木粉5〜25重量%との混合物Aの硬化物であ
る。上記セメントとはポルトランドセメント、高炉セメ
ント、シリカセメント、フライアッシュセメント、アル
ミナセメント等種々のセメント類を包含するものであ
り、上記ケイ酸含有物質とは例えば珪砂、珪石砂、シリ
カヒューム、高炉スラグ、フライアッシュ、シラスバル
ーン、パーライト、ケイ酸物質を含む木質セメント板廃
材の粉末等のケイ酸を含有する種々の無機粉体を包含す
るものである。上記セメントと上記ケイ酸含有物質とは
ケイ酸カルシウム反応によって反応し硬化する。このよ
うなケイ酸カルシウム反応による硬化を円滑ならしめる
には本発明の無機質成形板の表裏層を構成する混合物A
中セメント30〜60重量%、ケイ酸含有物質30〜6
0重量%が含有されていることが必要である。パーライ
トは製造される無機質成形板の重量を軽減しかつ寸法安
定性を向上せしめるので、本発明にとっては望ましいも
のではあるが必須成分ではない。しかしパーライトの含
有量が該混合物中15重量%以上になると得られる無機
質成形板の強度が低下しかつ表裏面が粗になる。フレー
クおよび/または木粉は表裏層の補強材として用いられ
るもので、フレークとしては網目10mmを全通し平均網
目4.5mmのサイズで厚みが1mm以下のものが望まし
く、木粉は5〜100メッシュ、望ましくは10〜30
メッシュの粒径を有するものを使用する。フレークは補
強作用が木粉よりも大であるがフレークのみでは得られ
る表裏層の緻密性が若干低下するが、一方木粉のみでは
得られる表裏層の強度が若干低下する。したがってフレ
ークと木粉とは併用されることが好ましく、その場合フ
レークと木粉との混合重量比は80:20〜20:80
程度とする。しかしフレーク単独または木粉単独の使用
でも本発明の目的は充分達成される。フレークおよび/
または木粉が混合物A中5重量%以下であると表裏層の
強度が充分でなくなり、また25重量%以上であると難
燃性が低下する。更に表裏層にはセメントと木質補強材
とからなる木質セメント板の廃材の粉末を5〜20重量
%程度混合してもよい。該木質セメント板廃材粉末は通
常16メッシュ以下の微粉であり、該粉末はセメントマ
トリクス中に存在する空隙に充填してセメントマトリク
スを補強し、製品の吸湿吸水性を改良する。上記本発明
の無機質成形板の表裏層を構成する混合物Aには更に塩
化マグネシウム、硫酸マグネシウム、塩化カルシウム、
硫酸カルシウム、アルミン酸ナトリウム、アルミン酸カ
リウム、硫酸アルミニウム、水ガラス等の硬化促進剤が
添加されてもよい。
[Front and Back Layers] The front and back layers of the inorganic molded plate of the present invention include 30 to 60% by weight of cement and 30 to 6 of silicic acid-containing substance.
It is a cured product of Mixture A with 0% by weight, 0 to 15% by weight perlite, 5 to 25% by weight of flakes and / or wood flour. The above-mentioned cement includes Portland cement, blast furnace cement, silica cement, fly ash cement, various cements such as alumina cement, and the silicic acid-containing substance is, for example, silica sand, silica sand, silica fume, blast furnace slag, It includes various inorganic powders containing silicic acid, such as fly ash, shirasu balloon, perlite, and powder of wood cement board waste material containing silicic acid substances. The cement and the silicic acid-containing substance react by the calcium silicate reaction and harden. In order to smooth the curing by such calcium silicate reaction, the mixture A constituting the front and back layers of the inorganic molded plate of the present invention
Medium cement 30-60% by weight, silicic acid-containing substance 30-6
It is necessary to contain 0% by weight. Perlite is a desirable but not essential component of the present invention because it reduces the weight of the inorganic molded sheet produced and improves dimensional stability. However, when the content of pearlite is 15% by weight or more in the mixture, the strength of the obtained inorganic molded plate decreases and the front and back surfaces become rough. Flake and / or wood powder is used as a reinforcing material for the front and back layers, and it is desirable that the flake has a mesh size of 10 mm and an average mesh size of 4.5 mm and a thickness of 1 mm or less. , Preferably 10-30
A material having a mesh particle size is used. Although flakes have a stronger reinforcing effect than wood flour, the denseness of the front and back layers obtained with flakes only slightly decreases, whereas the strength of the front and back layers obtained with wood flour only slightly decreases. Therefore, it is preferable to use the flakes and the wood flour together, and in that case, the mixing weight ratio of the flakes and the wood flour is 80:20 to 20:80.
The degree. However, the use of flakes or wood flour alone achieves the object of the present invention. Flakes and /
If the amount of wood powder in the mixture A is 5% by weight or less, the strength of the front and back layers becomes insufficient, and if it is 25% by weight or more, the flame retardancy decreases. Further, the front and back layers may be mixed with about 5 to 20% by weight of powder of a waste wood cement board comprising cement and a wood reinforcing material. The wood cement board waste powder is usually a fine powder of 16 mesh or less, and the powder is filled in the voids existing in the cement matrix to reinforce the cement matrix and improve the moisture absorption and water absorption of the product. The mixture A constituting the front and back layers of the inorganic molded plate of the present invention further contains magnesium chloride, magnesium sulfate, calcium chloride,
A hardening accelerator such as calcium sulfate, sodium aluminate, potassium aluminate, aluminum sulfate, and water glass may be added.

【0006】〔芯層〕本発明の無機質成形板の芯層はセ
メント30〜60重量%、ケイ酸含有物質30〜60重
量%、パーライト0〜15重量%、木質繊維束5〜25
重量%、フレーク4〜10重量%の混合物Bの硬化物か
らなり多孔性である。上記セメント、ケイ酸含有物質、
パーライトは上記表裏層と同様なものが同様な比率で用
いられる。木質繊維束は芯層の補強材として用いられる
もので、望ましくは径が約0.1〜2.0mm、長さが約
2〜35mm、更に望ましくは10〜30mmの範囲にある
ものを用いるが、望ましい木質繊維束の形状としては分
枝および/または彎曲および/または折曲させることに
よって嵩高くされたものである。このような分枝および
/または彎曲および/または折曲させることによって嵩
高くされた木質繊維束を製造するには水酸化ナトリウ
ム、亜硫酸ナトリウム、亜硫酸カルシウム等の薬液に木
材を浸漬したり、木材を蒸気で加熱したり、あるいは上
記薬液浸漬と蒸気加熱とを併用したりすることによって
木材中に含まれる木質単繊維のバインダーの役割をして
いるリグニン、ヘミセルロース、樹脂等を完全に溶解さ
せることなく膨潤させるにとどめた上で上記バインダー
を残存させつゝ解繊したものであり、上記バインダーの
うち特にリグニンを略完全に除去して解繊したパルプ繊
維に比して径が大である。なお木質繊維束が分枝してい
る場合には分枝前の木質繊維束を仮定してその径が約
0.1〜2.0mmの範囲にあり、また木質繊維束が彎曲
および/または折曲している場合は末端間距離ではなく
木質繊維束の実長が10〜30mmの範囲にあることが望
ましい。該木質繊維束は上記のサイズおよび形状により
嵩高くなっているが、その嵩比重は約0.03〜0.0
5g/cm3 の範囲にある。ここに嵩比重は内径8cm、容
積2000mlのメスシリンダーに絶乾状態の該木質繊維
束を2000ml充填して全体の重量を測定し、該全体の
重量からメスシリンダーの重量を差引いて該木質繊維束
の重量を求め、該メスシリンダーの内径に丁度はまる円
板を充填した該木質繊維束上に載置して該円板上に重り
をのせ1kgの重量を該木質繊維束に及ぼした時の該木質
繊維束の容積を測定し、該木質繊維束の重量(g)を該
容積(cm3)で割ることによって求められる。該木質繊
維束を分枝および/または彎曲および/または折曲させ
ることによって嵩高くせしめるには上記バインダーの膨
潤の程度および解繊の程度を調節する。解繊は例えばグ
ライディングディスクにより行なわれ、解繊の程度の調
節は該グライディングディスクのディスク間隙を調節す
ることによって行なわれる。上記分枝および/または彎
曲および/または折曲させることによって嵩高くせしめ
られている木質繊維束は混合物B中では該繊維束相互は
ある程度の距離を介して絡み合うが、該繊維束はパルプ
繊維に比して径が大であるからある程度の剛性を有し糸
まり状に絡み合いにくい。しかし木質繊維束の実長が長
くなると30mm以下でも糸まり状に絡み合う傾向が大き
くなる。そこで本発明ではフレークを添加することによ
って製品の強度を低下せしめることなく該木質繊維束の
糸まり状の絡み合いを防止するのである。即ちフレーク
を添加すると該フレークは螺旋状の木質繊維束の内部に
入り込み、該木質繊維束が螺旋状から糸まり状に転移す
るのを阻止する。該フレークは表裏層に使用するフレー
クと同様なものが使用される。上記したように該フレー
クは芯層に4〜10重量%の範囲で添加されるが、4重
量%未満では木質繊維束の糸まり状の絡み合いを防止す
る効果が顕著でなく、10重量%を越えると製品の強度
に悪影響が及ぼされる。このようにしてフレーク存在下
において絡み合った繊維束相互間にセメントおよびケイ
酸含有物質が抱き込まれる。上記したフレークは該繊維
束の剛性と相まってこのような繊維束相互間の距離を保
持し、もって嵩高さを維持するのに役立つのである。し
たがって本発明の無機質成形板の製造に乾式製造方法を
適用した場合、硬化性無機粉体と該木質繊維束とフレー
クとの混合物は機械的攪拌等によって充分ほぐすことが
可能で、該混合物を型板上に均一に散布することが極め
て容易であるし、一方散布後は上記したようにフレーク
存在下における該木質繊維束のある程度の距離を介して
の絡み合いによって硬化性無機粉体が抱き込まれ、型崩
れしないマットを形成することが出来る。そして製品に
おいてもマトリクス中で該木質繊維束は上記のようにフ
レーク存在下において繊維束相互がある程度の距離を介
して強固に絡み合うと言う特異的な補強効果により比重
の小さいしたがって軽量でしかも比較的強度が大きい芯
層を与えるのである。本発明において、芯層を多孔質に
するには通常該混合物に熱可塑性プラスチック発泡体粒
を混合して硬化させるとともに該熱可塑性プラスチック
発泡体粒を加熱して軟化収縮させる方法を適用する。該
混合物Bに熱可塑性プラスチック発泡体粒を混合するに
は既に発泡している熱可塑性プラスチック発泡体粒を混
合する以外、発泡性熱可塑性プラスチックビーズを混合
し、該混合物Bの硬化前または硬化時に該発泡性熱可塑
性プラスチックビーズを発泡させて熱可塑性プラスチッ
ク発泡体粒としてもよい。この場合、木質繊維束として
上記分枝および/または彎曲および/または折曲させる
ことによって嵩高くされたものを用いると、混合物Bの
構造が疎になるので該発泡性熱可塑性プラスチックビー
ズの発泡が均一かつ円滑に行なわれると言う利点があ
る。上記本発明に用いられる発泡性熱可塑性プラスチッ
クビーズとはプロパン、ブタン、ペンタン、石油エーテ
ルのような揮発性発泡剤を含浸したポリエチレン、ポリ
プロピレン、ポリスチレン等の熱可塑性プラスチックの
ビーズである。また該熱可塑性プラスチック発泡体粒ま
たは該発泡性熱可塑性プラスチックビーズの添加量は通
常混合物B中0.5〜5重量%である。該熱可塑性プラ
スチック発泡体粒または該発泡性熱可塑性プラスチック
ビーズの添加量が0.5重量%以下であると芯層中の空
孔の割合が低下してインシュレーション性が充分でなく
なるが、5重量%以上になると本発明の無機質成形板中
の有機質の割合が過大となって本発明の無機質成形板の
難燃性が低下する。更に芯層には表裏層と同様、木質セ
メント板廃材粉末が5〜20重量%添加されてもよい。
[Core Layer] The core layer of the inorganic molded plate of the present invention comprises 30 to 60% by weight of cement, 30 to 60% by weight of silicic acid-containing substance, 0 to 15% by weight of perlite, and 5 to 25 of wood fiber bundles.
It is made of a cured product of the mixture B containing 4% to 10% by weight of flakes and is porous. The above cement, silicic acid-containing substance,
The same pearlite as the front and back layers is used in the same ratio. The wood fiber bundle is used as a reinforcing material for the core layer, and preferably has a diameter of about 0.1 to 2.0 mm, a length of about 2 to 35 mm, and more preferably 10 to 30 mm. The desirable shape of the wood fiber bundle is that which is made bulky by branching and / or bending and / or bending. In order to produce a wood fiber bundle which is made bulky by branching and / or bending and / or bending, the wood is immersed in a chemical solution such as sodium hydroxide, sodium sulfite, calcium sulfite, or the wood is Without completely dissolving the lignin, hemicellulose, resin, etc. that play the role of the binder of the wood monofilament contained in the wood by heating with steam, or by using the chemical solution immersion and steam heating together It is swelled only after it is swelled and then the above binder is left to be defibrated, and has a larger diameter than pulp fibers defibrated by removing lignin almost completely from the binder. If the wood fiber bundle is branched, the diameter of the wood fiber bundle is in the range of about 0.1 to 2.0 mm, assuming that the wood fiber bundle is not branched, and the wood fiber bundle is bent and / or folded. When bent, the actual length of the wood fiber bundle is preferably in the range of 10 to 30 mm, not the distance between the ends. The wood fiber bundle is bulky due to the above size and shape, but its bulk specific gravity is about 0.03 to 0.0.
It is in the range of 5 g / cm 3 . Here, the volume specific gravity is 8 cm in inner diameter and the volume of 2000 ml is filled with 2000 ml of the absolutely dried wood fiber bundle, and the whole weight is measured, and the weight of the whole graduated cylinder is subtracted from the total weight to obtain the wood fiber bundle. Of the graduated cylinder is placed on the wood fiber bundle filled with a disk that fits exactly into the inner diameter of the graduated cylinder, a weight is placed on the disk, and a weight of 1 kg is applied to the wood fiber bundle. It is determined by measuring the volume of the wood fiber bundle and dividing the weight (g) of the wood fiber bundle by the volume (cm 3 ). In order to make the wood fiber bundle bulky by branching and / or bending and / or bending, the degree of swelling and defibration of the binder is adjusted. The defibration is performed by, for example, a gliding disc, and the degree of defibration is adjusted by adjusting the disc gap of the gliding disc. In the mixture B, the wood fiber bundles that have been made bulky by branching and / or bending and / or bending are entangled with each other over a certain distance, but the fiber bundles become pulp fibers. In comparison, since the diameter is large, it has some rigidity and is unlikely to be entangled in a thread-like shape. However, if the actual length of the wood fiber bundle becomes longer, the tendency to be entangled in a thread-like shape becomes greater even if it is 30 mm or less. Therefore, in the present invention, the addition of flakes prevents the entanglement of the wood fiber bundle in the form of a string without reducing the strength of the product. That is, when flakes are added, the flakes enter the inside of the spiral wood fiber bundle and prevent the wood fiber bundle from being transformed from a spiral shape into a string shape. As the flakes, the same flakes as those used for the front and back layers are used. As described above, the flakes are added to the core layer in the range of 4 to 10% by weight, but if the amount is less than 4% by weight, the effect of preventing the string-like entanglement of the wood fiber bundles is not remarkable and 10% by weight is added. If it exceeds, the strength of the product is adversely affected. In this manner, the cement and the silicic acid-containing substance are held between the intertwined fiber bundles in the presence of the flakes. The above-mentioned flakes, in combination with the rigidity of the fiber bundles, serve to maintain the distance between such fiber bundles and thus to maintain bulkiness. Therefore, when the dry production method is applied to the production of the inorganic molded plate of the present invention, the mixture of the curable inorganic powder, the wood fiber bundle and the flakes can be sufficiently loosened by mechanical stirring or the like, and the mixture can be molded into a mold. It is extremely easy to evenly spread on the plate, and after spraying, the curable inorganic powder is entangled by the entanglement of the wood fiber bundles in the presence of flakes over a certain distance as described above. It is possible to form a mat that does not lose its shape. In the product, the wood fiber bundles in the matrix have a small specific gravity due to the specific reinforcing effect that the fiber bundles are strongly entangled with each other over a certain distance in the presence of flakes as described above. It provides a core layer with high strength. In the present invention, in order to make the core layer porous, a method is generally applied in which the thermoplastic foam particles are mixed with the mixture to be hardened and the thermoplastic foam particles are heated to be softened and shrunk. In order to mix the thermoplastic foam particles in the mixture B, the expandable thermoplastic beads are mixed in addition to the thermoplastic foam particles which have already been expanded, and the mixture B is mixed before or during curing. The expandable thermoplastic beads may be expanded to form thermoplastic foam particles. In this case, when a wood fiber bundle that is made bulky by branching and / or bending and / or bending is used as the wood fiber bundle, the structure of the mixture B becomes sparse, so that foaming of the expandable thermoplastic beads does not occur. There is an advantage that it is performed uniformly and smoothly. The expandable thermoplastic beads used in the present invention are beads of thermoplastic such as polyethylene, polypropylene and polystyrene impregnated with a volatile foaming agent such as propane, butane, pentane and petroleum ether. The amount of the thermoplastic foam particles or the expandable thermoplastic beads to be added is usually 0.5 to 5% by weight in the mixture B. When the addition amount of the thermoplastic plastic foam particles or the expandable thermoplastic plastic beads is 0.5% by weight or less, the ratio of pores in the core layer is reduced and the insulation property becomes insufficient. When the content is more than 5% by weight, the proportion of the organic matter in the inorganic molded plate of the present invention becomes excessive and the flame retardancy of the inorganic molded plate of the present invention decreases. Further, like the front and back layers, 5 to 20% by weight of wood cement board waste material powder may be added to the core layer.

【0007】〔製造方法〕本発明の無機質成形板の製造
方法としては工程の連続化が容易で装置も簡単な乾式製
造方法を採用することが望ましい。乾式製造方法の工程
1においては、型板上に上記混合物Aをマット状に散布
し、次いでその上に上記混合物Bをマット状に散布し、
更にその上に上記混合物Aをマット状に散布するのであ
るが、この際混合物Aおよび混合物Bには硬化反応のた
めに夫々水を30〜45重量%添加しておく。混合物B
にフレークを添加し、そして木質繊維束として上記分枝
および/または彎曲および/または折曲させることによ
って嵩高くされたものを用いると、混合物Bがほぐれ易
くなり、型板上に均一に散布し易くなる。連続製造法に
おいては上記型板は多数個ベルトコンベアー上に載置せ
しめられる。型板上に散布された原料混合物は所望なれ
ばロール等によって若干押圧され、該マットはそれから
工程2において水分存在下に圧締予備硬化され所望の形
状に成形される。圧締条件は通常圧締圧10〜20kgf
/cm2 、温度60〜80℃、時間20〜30時間程度で
行なわれ、加熱は通常蒸気にて行なわれる。圧締は二つ
の型板間に上記マットを挾圧することによって行なわれ
るが、該型板面には所定の形状、凹凸模様等が施されて
もよい。上記工程2の圧締予備硬化によって得られた予
備硬化物は工程3においてオートクレーブ中にて養生さ
れる。養生条件は通常圧力10〜20kgf /cm2 、温度
160〜180℃、時間5〜10時間程度である。上記
オートクレーブ養生によりセメントとケイ酸含有物質と
のケイ酸カルシウム反応は完全に行なわれ、かつ芯層に
発泡性熱可塑性プラスチックビーズを添加した場合には
該発泡性熱可塑性プラスチックビーズは完全に発泡し、
同時に該発泡性熱可塑性プラスチックビーズの発泡によ
って形成されたプラスチック発泡体粒は溶融してセル中
の発泡剤が外界へ逃散し、該プラスチック発泡体は急速
に収縮して芯層内部に多数の空孔が形成される。そして
該空孔内壁面には熱可塑性プラスチック発泡体粒に起因
するプラスチックコーティング層が形成される。このよ
うにして本発明の無機質成形板が製造されるが、本発明
の無機質成形板の表裏層の厚みは通常全体の厚みの10
〜30%、密度は通常0.9〜1.1g/cm3 とする。
[Manufacturing Method] As a method for manufacturing the inorganic molded plate of the present invention, it is desirable to adopt a dry manufacturing method in which the steps are easily continuous and the apparatus is simple. In step 1 of the dry manufacturing method, the mixture A is sprinkled on the template in a mat shape, and then the mixture B is sprinkled on the mat in a mat shape,
Further, the above-mentioned mixture A is sprayed on it in the form of a mat. At this time, 30 to 45% by weight of water is added to each of the mixture A and the mixture B for the curing reaction. Mixture B
When flakes are added to the mixture and the wood fiber bundles are made bulky by branching and / or bending and / or bending as described above, the mixture B becomes easy to loosen, and the mixture B is evenly dispersed on the template. It will be easier. In the continuous manufacturing method, a large number of the templates are placed on the belt conveyor. The raw material mixture sprinkled on the template is slightly pressed by a roll or the like if desired, and the mat is then pre-cured in the presence of water in step 2 to be formed into a desired shape. Clamping conditions are normally 10 to 20 kgf.
/ Cm 2 , the temperature is 60 to 80 ° C., the time is about 20 to 30 hours, and the heating is usually performed by steam. Pressing is performed by clamping the mat between two mold plates, but the mold plate surface may be given a predetermined shape, an uneven pattern, or the like. The pre-cured product obtained by the compression pre-curing in the above step 2 is cured in an autoclave in step 3. The curing conditions are usually a pressure of 10 to 20 kgf / cm 2 , a temperature of 160 to 180 ° C., and a time of 5 to 10 hours. The calcium silicate reaction between the cement and the silicic acid-containing substance is completely carried out by the autoclave curing, and when expandable thermoplastic beads are added to the core layer, the expandable thermoplastic beads are completely expanded. ,
At the same time, the plastic foam particles formed by the foaming of the expandable thermoplastic beads are melted and the foaming agent in the cells escapes to the outside, the plastic foam shrinks rapidly, and a large number of voids are formed inside the core layer. A hole is formed. Then, a plastic coating layer derived from the thermoplastic foam particles is formed on the inner wall surface of the pores. In this way, the inorganic molded plate of the present invention is produced, and the thickness of the front and back layers of the inorganic molded plate of the present invention is usually 10 of the total thickness.
-30%, and the density is usually 0.9-1.1 g / cm 3 .

【0008】[0008]

【作用】本発明においては表裏層、芯層ともにセメント
30〜60重量%、ケイ酸含有物質30〜60重量%を
含んでいるからケイ酸カルシウム反応にもとづく各層の
硬化が円滑に進行する。更に乾式製造方法を採用した場
合オートクレーブ養生により該ケイ酸カルシウム反応は
略完全に進行して成形体の最終的な寸法状態で硬化する
ので、一旦硬化した成形体は外界の影響を受けることが
少なく製品の寸法安定性が向上する。また表裏層にはフ
レークおよび/または木粉が5〜25重量%含有される
から、該表裏層は緻密性が高い表面平滑性に富むものと
なる。更に芯層には木質繊維束5〜25重量%およびフ
レーク4〜10重量%を含みかつ多孔性であるから軽量
で防音断熱性に富むものとなる。なお表裏層および芯層
において、フレーク、木粉、木質繊維束等の木質補強材
は25重量%以下で含まれるから本発明の無機質成形板
は難燃性のものとなる。また芯層には4〜10重量%の
範囲でフレークが存在するから木質繊維束の糸まり状の
絡み合いが阻止され、本発明の無機質成形板を乾式製造
方法で製造する場合、原料混合物を型板上に均一に散布
することが出来る。芯層に用いられる木質繊維束とし
て、分枝および/または彎曲および/または折曲させる
ことによって嵩高くされたものを用いると、芯層の嵩比
重が小さくなるが強度は低下せず、また発泡性熱可塑性
プラスチックビーズの発泡も均一かつ円滑に行なわれ
る。本発明の無機質成形板の表裏面にエンボスが施され
てもよいが、その場合には緻密な表裏層と多孔性であり
それ故にクッション性を有する芯層とにより極めて鮮明
なかつ深いエンボスを施すことが出来る。
In the present invention, both the front and back layers and the core layer contain 30 to 60% by weight of cement and 30 to 60% by weight of the silicic acid-containing substance, so that the hardening of each layer based on the calcium silicate reaction proceeds smoothly. Further, when the dry manufacturing method is adopted, the calcium silicate reaction proceeds almost completely due to autoclave curing and hardens in the final dimensional state of the molded body, so the molded body once cured is less affected by the external environment. The dimensional stability of the product is improved. Further, since the front and back layers contain 5 to 25% by weight of flakes and / or wood powder, the front and back layers are highly dense and rich in surface smoothness. Furthermore, since the core layer contains 5 to 25% by weight of wood fiber bundles and 4 to 10% by weight of flakes and is porous, the core layer is lightweight and has excellent sound insulation and heat insulating properties. The front and back layers and the core layer contain 25% by weight or less of the wood reinforcing material such as flakes, wood powder, and wood fiber bundles, so that the inorganic molded plate of the present invention is flame-retardant. In addition, since the flakes are present in the core layer in the range of 4 to 10% by weight, the entanglement of the wood fiber bundles in the form of a string is prevented, and when the inorganic molded plate of the present invention is manufactured by the dry manufacturing method, the raw material mixture is molded. It can be sprayed evenly on the board. If the wood fiber bundle used for the core layer is made bulky by branching and / or bending and / or bending, the bulk specific gravity of the core layer will be reduced but the strength will not decrease, and foaming will also occur. The foaming of the hydrophilic thermoplastic beads is also carried out uniformly and smoothly. The front and back surfaces of the inorganic molded plate of the present invention may be embossed, but in that case, a very sharp and deep emboss is applied to the dense front and back layers and the core layer which is porous and therefore has cushioning properties. Can be done.

【0009】[0009]

【実施例】【Example】

〔実施例1〜10〕 (1) 混合物A(表裏層用)の処方を表1に示す。 [Examples 1 to 10] (1) Table 1 shows the formulation of the mixture A (for front and back layers).

【表1】 *1 :平均網目4.5mm、平均厚み0.6mmのものを使用。 *2 :平均粒径20メッシュのものを使用。 *3 :セメントに対する重量%。 (2) 混合物B(芯層用)の処方を表2に示す。[Table 1] * 1: Uses an average mesh of 4.5 mm and an average thickness of 0.6 mm. * 2: Use an average particle size of 20 mesh. * 3: Weight% based on cement. (2) The formulation of the mixture B (for core layer) is shown in Table 2.

【表2】 *1 :混合物Aと同一のものを使用。 *2 :平均粒径1.0mm、長さ20mmの分枝および/または彎曲および/ま たは折曲させられたものを使用。 *3 :セメントに対する重量%。 (3) 混合物Aの各々に固形分に対し水30重量%、およ
び混合物Bの各々に固形分に対し水35重量%を夫々添
加した上で、該混合物Aを下型板上に散布して8mm厚の
マットとし、更にその上に該混合物Bを散布して50mm
厚のマットとし、更にその上に該混合物Aを散布して8
mm厚のマットとし、その上から上型板を当接してプレス
成形後に圧力10kgf /cm2 、温度70℃にて25時間
圧締硬化を行なう。得られた積層成形体は厚さ18mmの
板状体であり、該積層成形体はその後オートクレーブ中
にて圧力15kgf /cm2 、温度165℃にて7時間養生
され、該積層成形体中のセメントとケイ酸含有物資とは
ケイ酸カルシウム反応によって硬化し、かつ芯層の発泡
性ポリスチレンビーズは発泡し、その後軟化収縮する。
このようにして混合物1A,2Aの各々に対して混合物
1B,2B,3B,4B,5Bを組合せて実施例1〜1
0の無機質成形板試料が得られた。
[Table 2] * 1: Uses the same mixture A. * 2: Branched and / or curved and / or bent pieces with an average particle size of 1.0 mm and a length of 20 mm are used. * 3: Weight% based on cement. (3) To each of the mixture A, 30% by weight of water based on the solid content, and to each of the mixture B, 35% by weight of water based on the solid content, were added, and the mixture A was sprayed onto the lower template. 8mm thick mat, and sprinkle mixture B on it, 50mm
Make a thick mat and sprinkle mixture A on it
A mat having a thickness of mm is formed, and an upper mold plate is brought into contact with the mat from above, and after press molding, pressure hardening is performed at a pressure of 10 kgf / cm 2 and a temperature of 70 ° C. for 25 hours. The obtained laminated molded body was a plate-like body having a thickness of 18 mm, and the laminated molded body was then aged in an autoclave at a pressure of 15 kgf / cm 2 and a temperature of 165 ° C. for 7 hours to obtain the cement in the laminated molded body. And the silicic acid-containing material are hardened by a calcium silicate reaction, and the expandable polystyrene beads in the core layer are foamed and then softened and shrunk.
In this way, the mixture 1B, 2B, 3B, 4B, 5B is combined with each of the mixture 1A, 2A and Examples 1 to 1 are combined.
0 inorganic molded plate samples were obtained.

【0010】〔比較例1,2〕 (1) 混合物Aとしては実施例の表1に示される1Aおよ
び2Aを使用する。 (2) 混合物B’としては表3に示す処方のものを使用す
る。
Comparative Examples 1 and 2 (1) As the mixture A, 1A and 2A shown in Table 1 of the examples are used. (2) As the mixture B ′, the one having the formulation shown in Table 3 is used.

【表3】 *1 :実施例において使用したと同一のものを使用 *2 :セメントに対する重量% (3) 混合物Aの各々および混合物B' の各々に実施例と
同様に水を添加した上で、実施例と同様にして乾式製造
方法によって比較例1〜4の無機質板試料を作成した。
この際処方1B' ,2B' の混合物B' は木質繊維束の
糸まり状の絡み合いが存在したため、下型板上に形成し
た混合物Aのマット上に該混合物B' を散布した場合、
若干の不均一部分が生じた。
[Table 3] * 1: Use the same one used in the example. * 2: Weight% relative to cement. (3) Add water to each of the mixture A and the mixture B'as in the example, and then Similarly, the inorganic plate samples of Comparative Examples 1 to 4 were prepared by the dry manufacturing method.
At this time, since the mixture B ′ of the formulations 1B ′ and 2B ′ had a string-like entanglement of the wood fiber bundles, when the mixture B ′ was sprayed on the mat of the mixture A formed on the lower template,
Some non-uniformity occurred.

【0011】〔物性評価〕上記実施例1〜10および比
較例1〜4の試料について、見掛け比重、曲げ強度、耐
凍結融解性(耐凍性)、表面状態を測定評価した結果を
表4および表5に示す。
[Evaluation of Physical Properties] Table 4 and Table 4 show the results of measuring and evaluating the apparent specific gravity, bending strength, freeze-thaw resistance (freezing resistance), and surface condition of the samples of Examples 1 to 10 and Comparative Examples 1 to 4 above. 5 shows.

【0012】[0012]

【表4】 [Table 4]

【0013】[0013]

【表5】 物性試験条件は実施例1〜10と同様に行なった。[Table 5] The physical property test conditions were the same as in Examples 1-10.

【0014】表4および表5を参照すれば、実施例の試
料はいずれも軽量でしかも高強度であり、かつ表面状態
は良好で、その中で木質セメント板廃材粉末を用いた実
施例6〜10においても耐凍性が維持され表面が極めて
緻密で平滑である。しかしフレークが添加されていない
混合物B’を用いた比較例1〜4の試料は混合物B’の
均一散布がやゝ困難であり、したがって強度および表面
状態が実施例のものに比して劣る。
With reference to Tables 4 and 5, all the samples of the examples are lightweight and have high strength, and the surface condition is good. Even in No. 10, freeze resistance was maintained and the surface was extremely dense and smooth. However, in the samples of Comparative Examples 1 to 4 using the mixture B ′ to which flakes were not added, it was difficult to uniformly disperse the mixture B ′, and therefore the strength and the surface condition were inferior to those of the examples.

【0015】[0015]

【発明の効果】したがって本発明においては、軽量でか
つ強度が大であり、そして表面状態が緻密かつ平滑な無
機質成形板が得られ、該無機質成形板は乾式製造方法に
よって容易に大量生産することが出来る。
Therefore, according to the present invention, an inorganic molded plate which is lightweight and has high strength, and whose surface state is dense and smooth can be obtained, and the inorganic molded plate can be easily mass-produced by a dry manufacturing method. Can be done.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 16:02) Z 111:40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area C04B 16:02) Z 111: 40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セメント30〜60重量%、ケイ酸含有物
質30〜60重量%、パーライト0〜15重量%、フレ
ークおよび/または木粉5〜25重量%の混合物の硬化
物からなる表裏層と、セメント30〜60重量%、ケイ
酸含有物質30〜60重量%、パーライト0〜15重量
%、木質繊維束5〜25重量%、フレーク4〜10重量
%の混合物の硬化物からなり多孔性の芯層とからなるこ
とを特徴とする無機質成形板
1. Front and back layers comprising a cured product of a mixture of 30 to 60% by weight of cement, 30 to 60% by weight of silicic acid-containing substance, 0 to 15% by weight of perlite, 5 to 25% by weight of flakes and / or wood flour. , 30 to 60% by weight of cement, 30 to 60% by weight of silicic acid-containing substance, 0 to 15% by weight of perlite, 5 to 25% by weight of wood fiber bundle, and 4 to 10% by weight of flakes. An inorganic molded plate characterized by comprising a core layer
【請求項2】該木質繊維束は分枝および/または彎曲お
よび/または折曲させることによって嵩高くされている
請求項1に記載の無機質成形板
2. The inorganic molded plate according to claim 1, wherein the wood fiber bundle is made bulky by branching and / or bending and / or bending.
【請求項3】セメント30〜60重量%、ケイ酸含有物
質30〜60重量%、パーライト0〜15重量%、フレ
ークおよび/または木粉5〜25重量%、および水30
〜45重量%との混合物Aを型板上にマット状に散布
し、更にセメント30〜60重量%、ケイ酸含有物質3
0〜60重量%、パーライト0〜15重量%、木質繊維
束5〜25重量%、フレーク4〜10重量%、発泡性熱
可塑性プラスチックビーズ0.5〜5重量%、および水
30〜45重量%との混合物Bをその上からマット状に
散布し、更に上記混合物Aをその上からマット状に散布
して三層構造のマットを形成する工程1上記三層構造の
マットを圧締して予備硬化させる工程2上記予備硬化物
を加熱オートクレーブ養生することにより発泡性熱可塑
性プラスチックビーズを発泡させるとともに硬化を進め
る工程3以上の工程1,2,3からなる無機質成形板の
製造方法
3. Cement 30-60% by weight, silicic acid-containing substance 30-60% by weight, perlite 0-15% by weight, flakes and / or wood flour 5-25% by weight, and water 30.
~ 45 wt% of mixture A is spread on the template in the form of a mat, and further 30-60 wt% of cement and silicic acid-containing substance 3
0-60% by weight, perlite 0-15% by weight, wood fiber bundles 5-25% by weight, flakes 4-10% by weight, expandable thermoplastic beads 0.5-5% by weight, and water 30-45% by weight. And a mixture B is sprayed on the mat in the form of a mat, and the mixture A is further sprinkled on the mat in the form of a mat to form a mat having a three-layer structure. Step 2 for curing Step 3 for curing the pre-cured product by heating and curing the pre-cured autoclave to promote foaming of the expandable thermoplastic beads, and a method for producing an inorganic molded plate comprising steps 1 and 2 above
JP33619294A 1994-12-22 1994-12-22 Method for producing inorganic molded plate Expired - Lifetime JP2931768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33619294A JP2931768B2 (en) 1994-12-22 1994-12-22 Method for producing inorganic molded plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33619294A JP2931768B2 (en) 1994-12-22 1994-12-22 Method for producing inorganic molded plate

Publications (2)

Publication Number Publication Date
JPH08175861A true JPH08175861A (en) 1996-07-09
JP2931768B2 JP2931768B2 (en) 1999-08-09

Family

ID=18296602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33619294A Expired - Lifetime JP2931768B2 (en) 1994-12-22 1994-12-22 Method for producing inorganic molded plate

Country Status (1)

Country Link
JP (1) JP2931768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151730A (en) * 2004-11-29 2006-06-15 Nichiha Corp Light-weight inorganic plate and its manufacturing method
JP2012096944A (en) * 2010-10-29 2012-05-24 Nichiha Corp Woody cement board and method for manufacturing the same
JP2018052767A (en) * 2016-09-28 2018-04-05 ニチハ株式会社 Manufacturing method of housing material and housing material
JP2018052769A (en) * 2016-09-28 2018-04-05 ニチハ株式会社 Housing material and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129941B2 (en) * 2006-09-26 2013-01-30 ニチハ株式会社 Inorganic molded body and method for producing the same
JP4950611B2 (en) * 2006-09-26 2012-06-13 ニチハ株式会社 Inorganic molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218955A (en) * 1990-01-23 1991-09-26 Nichiha Kk Inorganic formed board and its production
JPH06199554A (en) * 1992-12-28 1994-07-19 Nichiha Kk Production of flexible fire-resistive building board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218955A (en) * 1990-01-23 1991-09-26 Nichiha Kk Inorganic formed board and its production
JPH06199554A (en) * 1992-12-28 1994-07-19 Nichiha Kk Production of flexible fire-resistive building board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151730A (en) * 2004-11-29 2006-06-15 Nichiha Corp Light-weight inorganic plate and its manufacturing method
JP2012096944A (en) * 2010-10-29 2012-05-24 Nichiha Corp Woody cement board and method for manufacturing the same
JP2018052767A (en) * 2016-09-28 2018-04-05 ニチハ株式会社 Manufacturing method of housing material and housing material
JP2018052769A (en) * 2016-09-28 2018-04-05 ニチハ株式会社 Housing material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2931768B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JPH0688823B2 (en) Inorganic molded plate and method for manufacturing the same
US3865661A (en) Process for manufacturing a porous thermoplastic resin article reinforced by a glass matt
US4555448A (en) Biogenetic silica insulation
CZ257399A3 (en) Process for producing expanded material
JP2931768B2 (en) Method for producing inorganic molded plate
JPH09328350A (en) Backing material for roof and its production
JP4348001B2 (en) Wood cement board and manufacturing method thereof
JP4119086B2 (en) Manufacturing method of wood cement board
JP4097870B2 (en) Wood cement board
JPH0569785B2 (en)
JPH0653627B2 (en) Method for producing porous inorganic molded body
JP4226805B2 (en) Wood cement board and manufacturing method thereof
JPH06144950A (en) Production of ceramic lightweight building material
JP3037683B1 (en) Wood cement board and method for producing the same
JPH0769692A (en) Inorganic molded articles and production thereof
CA1258746A (en) Biogenetic silica insulation
JPH0493237A (en) Inorganic formed board
JP3225025B2 (en) Wood cement board and method for producing the same
JP4262393B2 (en) Manufacturing method for ceramics exterior materials
JPS63210082A (en) Manufacture of lightweight cement products
JP3737173B2 (en) Light wood cement board with fiber
CN113563017A (en) Perlite insulation board and manufacturing process thereof
EP0218762A1 (en) Biogenetic silica insulation
JPS6374947A (en) Extrusion formed product and manufacture
JP2002240025A (en) Method for manufacturing woody cement board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511