JPH0653627B2 - Method for producing porous inorganic molded body - Google Patents

Method for producing porous inorganic molded body

Info

Publication number
JPH0653627B2
JPH0653627B2 JP1285956A JP28595689A JPH0653627B2 JP H0653627 B2 JPH0653627 B2 JP H0653627B2 JP 1285956 A JP1285956 A JP 1285956A JP 28595689 A JP28595689 A JP 28595689A JP H0653627 B2 JPH0653627 B2 JP H0653627B2
Authority
JP
Japan
Prior art keywords
fiber bundle
wood fiber
molded body
plastic beads
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1285956A
Other languages
Japanese (ja)
Other versions
JPH03146480A (en
Inventor
辨 永富
和彦 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP1285956A priority Critical patent/JPH0653627B2/en
Publication of JPH03146480A publication Critical patent/JPH03146480A/en
Publication of JPH0653627B2 publication Critical patent/JPH0653627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内部に多数の空孔を形成し、軽量でかつインシ
ュレーション性に富む多孔性無機質成形体の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a method for producing a porous inorganic molding which has a large number of pores inside, is lightweight, and has excellent insulation properties.

〔従来の技術〕[Conventional technology]

従来からセメントに木片、パルプ繊維等の補強材を混合
し、更に発泡性プラスチックビーズを混合した原料混合
物を成形するとともに加熱して該原料混合物中の発泡性
プラスチックビーズを発泡させ、更には該発泡性プラス
チックビーズの発泡によって得られたプラスチックビー
ズ発泡体粒を溶融して成形体内に多数の空孔を形成せし
めることによって軽量でかつ断熱性、防音性等のインシ
ュレーション性を有する多孔性セメント板を製造する方
法が提供されている(特開昭54−157125号、特
公昭63−1276号)。
Conventionally, cement is mixed with reinforcing materials such as wood chips and pulp fiber, and a raw material mixture is further formed by mixing expandable plastic beads, and the mixture is heated to foam the expandable plastic beads in the raw material mixture. A porous cement board that is lightweight and has insulation properties such as heat insulation and soundproofing by melting a large number of pores in the molded body by melting the plastic beads foam particles obtained by foaming the plastic beads A manufacturing method is provided (JP-A-54-157125, JP-B-63-1276).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら補強材として木片を用いた場合は木片相互
の絡み合いが殆どないので成形の際の圧締力を高くして
製品の密度を大きくしないと得られる製品の強度が充分
なものではなく、また補強材としてパルプ繊維を用いた
場合はセメント−パルプ繊維混合物の密度が大きくなり
発泡性プラスチックビーズの発泡が抑制される。
However, when wood pieces are used as the reinforcing material, there is almost no entanglement among the wood pieces, so the strength of the product obtained is not sufficient unless the pressing force during molding is increased to increase the product density, and When pulp fibers are used as the material, the density of the cement-pulp fiber mixture is increased, and foaming of the expandable plastic beads is suppressed.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記従来の課題を解決するための手段として、
分枝および/または弯曲および/または折曲させること
によって嵩高くせしめた木質繊維束と硬化性無機粉体
と、発泡性プラスチックビーズとの混合物を、所定形状
に成形し、かつ加熱して該発泡性プラスチックビーズを
発泡させるとともに該硬化性無機粉体を硬化させる多孔
性無機質成形体の製造方法を提供するものである。
The present invention, as a means for solving the above conventional problems,
A mixture of a wood fiber bundle, curable inorganic powder, and expandable plastic beads, which are made bulky by branching and / or bending and / or bending, is molded into a predetermined shape and the foamed by heating. The present invention provides a method for producing a porous inorganic molded body which foams a flexible plastic bead and cures the curable inorganic powder.

本発明は補強材として木質繊維束を用いることを特徴と
するものである。そして本発明においては該木質繊維束
は木質単繊維の集束体であり、そして該木質繊維束は分
枝および/または弯曲および/または折曲させることに
よって嵩高くせしめられる。このような分枝および/ま
たは弯曲および/または折曲させることにより嵩高くさ
れた木質繊維束を製造するには苛性ソーダ、亜硫酸ソー
ダ、亜硫酸カルシウム等の薬液に木材を浸漬したり、木
材を蒸気で加熱したり、あるいは上記薬液浸漬と蒸気加
熱とを併用したりすることによって木材中に含まれる木
質単繊維のバインダーの役割をしているリグニン、ヘミ
セルロース、樹脂等を完全に溶解させることなく膨潤さ
せるにとどめた上で上記バインダーを残存させつゝ解繊
したものであり、したがってセメント等の硬化性無機粉
体の硬化反応を阻害せず、上記バインダーのうち特にリ
グニンを略完全に除去して解繊したパルプ繊維に比して
径が大である。そして該木質繊維束の径は約0.1〜2.0mm
の範囲にあり、長さは約2〜35mmの範囲、望ましくは
10〜30mmの範囲にある。
The present invention is characterized by using a wood fiber bundle as a reinforcing material. And in the present invention, the wood fiber bundle is a bundle of wood single fibers, and the wood fiber bundle is made bulky by branching and / or bending and / or bending. In order to produce a wood fiber bundle that is made bulky by branching and / or bending and / or bending, the wood is immersed in a chemical solution such as caustic soda, sodium sulfite, calcium sulfite, or the wood is steamed. By heating, or by using the above-mentioned chemical solution immersion and steam heating together, swelling without completely dissolving lignin, hemicellulose, resin, etc., which plays a role of a binder of wood single fibers contained in wood It is defibrated by allowing the binder to remain after it has been retained, and therefore does not inhibit the curing reaction of the curable inorganic powder such as cement, and the lignin is removed from the binder by almost completely removing it. It has a larger diameter than fine pulp fibers. And the diameter of the wood fiber bundle is about 0.1 to 2.0 mm
And the length is in the range of about 2-35 mm, preferably in the range of 10-30 mm.

なお木質繊維束が分枝している場合には分枝前の木質繊
維束を仮定してその径が約0.1〜2.0mmの範囲にあり、ま
た木質繊維束が弯曲および/または折曲している場合は
長さは末端間距離ではなく木質繊維束の実長を指すもの
とする。
When the wood fiber bundle is branched, the diameter of the wood fiber bundle is within the range of about 0.1 to 2.0 mm assuming that the wood fiber bundle is not branched, and the wood fiber bundle is curved and / or bent. If so, the length refers to the actual length of the wood fiber bundle, not the distance between the ends.

該木質繊維束は上記サイズおよび形状により嵩高くなっ
ているが、その嵩比重は約0.03〜0.05g/cm3の範囲に
ある。ここに嵩比重は内径8cm、容積2000mlのメス
シリンダーに絶乾状態の該木質繊維束を2000ml充填
して全体の重量を測定し、該全体の重量からメスシリン
ダーの重量を差引いて該木質繊維束の重量を求め、該メ
スシリンダーの内径に丁度はまる円板を充填した該木質
繊維束上に載置して該円板上に重りをのせ1kgの重量を
該木質繊維束に及ぼした時の該木質繊維束の容積を測定
し、該木質繊維束の重量(g)を該容積(cm3)で割る
ことによって求められる。
The wood fiber bundle is bulky due to the above size and shape, but its bulk specific gravity is in the range of about 0.03 to 0.05 g / cm 3 . Here, the volume specific gravity is 8 cm in inner diameter and the volume of 2000 ml is filled with 2000 ml of the absolutely dried wood fiber bundle, and the whole weight is measured, and the weight of the whole graduated cylinder is subtracted from the total weight to obtain the wood fiber bundle. Of the graduated cylinder is placed on the wood fiber bundle filled with a disk that fits exactly into the inner diameter of the graduated cylinder, a weight is placed on the disk, and a weight of 1 kg is applied to the wood fiber bundle. It is determined by measuring the volume of the wood fiber bundle and dividing the weight (g) of the wood fiber bundle by the volume (cm 3 ).

該木質繊維束を分枝および/または弯曲および/または
折曲させることによって嵩高くせしめるには上記バイン
ダーの膨潤の程度および解繊の程度を調節する。解繊は
例えばグラインディングディスクにより行なわれ、解繊
の程度の調節は該グラインディングディスクのディスク
間隙を調節することによって行われる。
In order to make the wood fiber bundle bulky by branching and / or bending and / or bending, the degree of swelling and defibration of the binder is adjusted. The defibration is performed, for example, by a grinding disc, and the degree of defibration is adjusted by adjusting the disc gap of the grinding disc.

本発明に用いられる硬化性無機粉体とはセメント、石膏
等の水和反応により硬化する無機粉体、セメント、石膏
等のカルシウム含有無機粉体と珪砂、珪石粉、シリカヒ
ューム、シラスバルーン等の珪酸含有無機粉末との混合
物のような珪酸カルシウム反応により硬化する混合無機
粉体、炭酸マグネシウム等の結晶転位により硬化する無
機粉体等であり、本発明にとって望ましい硬化性無機粉
体はセメントと珪砂のような珪酸含有無機粉体との混合
物であり、該混合物中セメントの含有量は30〜70重
量%とされることが望ましい。セメントと珪酸含有無機
粉体とを上記比率に混合することにより硬化性無機粉体
の珪酸カルシウム反応による硬化が非常に円滑に進むの
である。
Curable inorganic powder used in the present invention, cement, inorganic powder that hardens by hydration reaction such as gypsum, cement, calcium-containing inorganic powder such as gypsum and silica sand, silica stone powder, silica fume, shirasu balloon and the like. A mixed inorganic powder that hardens by a calcium silicate reaction such as a mixture with a silicic acid-containing inorganic powder, an inorganic powder that hardens due to crystal rearrangement of magnesium carbonate, and the like, and a desirable curable inorganic powder for the present invention is cement and silica sand. It is preferable that the content of cement in the mixture is 30 to 70% by weight. By mixing the cement and the silicic acid-containing inorganic powder in the above ratio, the hardening of the curable inorganic powder due to the calcium silicate reaction proceeds very smoothly.

上記木質繊維束と上記硬化性無機粉体とは混合され無機
質成形体の原料とされる。該原料混合物は乾式製造法の
場合には型板上に散布させるのであるが、該原料混合物
中に上記木質繊維束が通常5〜25重量%程度添加され
る。
The wood fiber bundle and the curable inorganic powder are mixed and used as a raw material for an inorganic molded body. In the case of the dry manufacturing method, the raw material mixture is sprayed on a template, and the wood fiber bundle is usually added to the raw material mixture in an amount of about 5 to 25% by weight.

更にパーライト、ベントナイト、高炉スラグ、ライスア
ッシュ、フライアッシュ、珪藻土等の無機充填材、合成
樹脂、合成樹脂発泡体、木片、木粉等の有機充填材が添
加されてもよい。これら成分のうちでパーライトは製品
を軽量化し更に原料に滑性を与えて混合容易とするので
添加成分として望ましいものである。該パーライトは通
常該原料中5〜15重量%含まれる。また硬化性無機粉
体がセメントの場合には塩化マグネシウム、塩化カルシ
ウム、硫酸アルミニウム、水ガラス、アルミン酸塩等の
硬化促進剤等が添加されてもよい。上記硬化促進剤は通
常セメントに対して2〜4重量%添加される。
Further, inorganic fillers such as perlite, bentonite, blast furnace slag, rice ash, fly ash, diatomaceous earth, etc., organic fillers such as synthetic resins, synthetic resin foams, wood chips, wood flour, etc. may be added. Of these components, perlite is desirable as an additive component because it reduces the weight of the product and imparts lubricity to the raw materials to facilitate mixing. The perlite is usually contained in the raw material in an amount of 5 to 15% by weight. When the curable inorganic powder is cement, a curing accelerator such as magnesium chloride, calcium chloride, aluminum sulfate, water glass, or aluminate may be added. The hardening accelerator is usually added in an amount of 2 to 4% by weight with respect to cement.

上記例示は本発明を限定するものではない。The above examples do not limit the present invention.

本発明に用いられる発泡性プラスチックビーズとはプロ
パン、ブタン、ペンタン、石油エーテルのような揮発性
発泡剤を含浸したポリエチレン、ポリプロピレン、ポリ
スチレン等の熱可塑性プラスチックのビーズである。本
発明では上記原料混合物に該発泡性プラスチックビーズ
をそのまま添加してもよいが、通常は該発泡性プラスチ
ックビーズを95〜105℃程度に加熱して予備発泡さ
せたものを原料に添加する。該発泡性プラスチックビー
ズの添加量は通常原料混合物中0.5〜5重量%であ
る。該発泡性プラスチックビーズの添加量が0.5重量
%以下であると成形物中の空孔の場合が低下してインシ
ュレーション性が充分でなくなるが、5重量%以上にな
ると空孔の割合が過大となって成形物の強度が低下す
る。
The expandable plastic beads used in the present invention are beads of thermoplastics such as polyethylene, polypropylene and polystyrene impregnated with a volatile foaming agent such as propane, butane, pentane and petroleum ether. In the present invention, the expandable plastic beads may be added to the raw material mixture as they are, but usually, the expandable plastic beads are heated to about 95 to 105 ° C. and pre-expanded and added to the raw material. The amount of the expandable plastic beads added is usually 0.5 to 5% by weight in the raw material mixture. When the amount of the expandable plastic beads added is 0.5% by weight or less, the case of voids in the molded article is reduced and the insulation property becomes insufficient, but when it is 5% by weight or more, the proportion of voids is increased. It becomes too large and the strength of the molded product decreases.

上記原料混合物は型板上に散布してマット状にされる
が、連続製造法においては上記型板は多数個ベルトコン
ベアー上に載置せしめられる。型板上に散布された原料
混合物は所望なればロール等によって若干押圧され、該
マットはそれから水分存在下に圧締硬化され所望の形状
に成形される。水分添加量は通常上記原料混合物中に3
0〜45重量%含まれるようにする。圧締条件は通常圧
締圧10〜20kg/cm2、温度60〜80℃、時間20
〜30時間程度で行われ、加熱は通常蒸気にて行われ
る。圧締は二つの型板間に上記マットを挟圧することに
よって行われるが、該型板面には所定の形状、凹凸模様
等が施されてもよい。
The above raw material mixture is sprinkled on a template to form a mat, but in the continuous production method, a large number of the templates are placed on a belt conveyor. The raw material mixture sprinkled on the template is slightly pressed by a roll or the like if desired, and the mat is then pressure-hardened in the presence of water to be molded into a desired shape. The amount of water added is usually 3 in the above raw material mixture.
0 to 45% by weight is included. Clamping conditions are usually 10 to 20 kg / cm 2 of pressure, temperature of 60 to 80 ° C., time of 20
It is performed in about 30 hours, and heating is usually performed with steam. The pressing is performed by sandwiching the mat between two mold plates, but the mold plate surface may be provided with a predetermined shape, an uneven pattern or the like.

本発明の無機質成形体は通常板状に成形されるが所望に
よりブロック状等に成形されてもよい。
The inorganic molded body of the present invention is usually molded into a plate shape, but may be molded into a block shape or the like if desired.

本発明の無機質成形体は圧締硬化後所望なればオートク
レーブ中にて養生される。養生条件は通常圧量10〜2
0kg/cm2、温度160〜180℃、時間5〜10時間
である。
The inorganic molded body of the present invention is cured in an autoclave if desired after compression hardening. Curing conditions are usually pressure of 10-2
It is 0 kg / cm 2 , the temperature is 160 to 180 ° C., and the time is 5 to 10 hours.

上記オートクレーブ養生により発泡性プラスチックビー
ズは完全に発泡し、同時に該発泡性プラスチックビーズ
の発泡によって形成されたプラスチック発泡体粒は溶融
してセル中の発泡剤が外界へ逃散し、該プラスチック発
泡体は急速に収縮して無機質成形体内部に多数の空孔が
形成される。そして該空孔内壁面にはプラスチック発泡
体粒に帰因するプラスチックコーティング層が形成され
る。
By the autoclave curing, the expandable plastic beads are completely expanded, and at the same time, the plastic foam particles formed by the expansion of the expandable plastic beads are melted and the foaming agent in the cells escapes to the outside, and the plastic foam is It rapidly shrinks to form a large number of pores inside the inorganic molded body. A plastic coating layer attributed to the plastic foam particles is formed on the inner wall surface of the pores.

上記オートクレーブ養生は必ずしも必須のものではな
く、圧締後に常圧加熱によって発泡性プラスチックビー
ズを発泡させ、その後自然養生を行なってもよい。また
上記乾式製造法以外、押圧し成形等を適用してもよい
し、成形時に加熱して発泡性プラスチックビーズを成形
と同時に発泡させてもよい。
The above-mentioned autoclave curing is not always essential, and after compression, the expandable plastic beads may be foamed by heating at normal pressure, and then natural curing may be performed. In addition to the dry manufacturing method, pressing molding or the like may be applied, or the foamable plastic beads may be foamed simultaneously with molding by heating during molding.

このようにして本発明の多孔性無機質成形体が得られ
る。
In this way, the porous inorganic molded body of the present invention is obtained.

〔作用〕[Action]

本発明の多孔性無機質成形体に用いられる木質繊維束は
分枝および/または弯曲および/または折曲させること
により嵩高くせしめられているので硬化性無機粉体等と
混合して原料混合物とした状態では該繊維束相互はある
程度の距離を介して絡み合うが、該繊維束はパルプ繊維
のような木質単繊維に比して径が大であるからある程度
の剛性を有し糸まり状に絡み合うことはなく、このよう
にして絡み合った繊維束相互間に該硬化性無機粉体や発
泡性プラスチックビーズ等が抱き込まれる。上記した該
繊維束の剛性はこのような繊維束相互間の距離を保持し
もって嵩高さを維持するのに役立つのである。したがっ
てこのような嵩高状態は成形圧が及ぼされても維持され
るから成形時または成形後の加熱による発泡性プラスチ
ックビーズの発泡が繊維束に干渉されることが少なく、
発泡が円滑に行なわれるのである。また本発明の多孔性
無機質成形体の製造に乾式製造法を適用した場合、原料
混合物は機械的攪拌等によってほぐすことが可能で、該
原料混合物を型板上に均一に散布することが容易である
し、一方散布後は上記したように該木質繊維束のある程
度の距離を介しての絡み合いによって硬化性無機粉体や
発泡性プラスチックビーズ等の原料成分が抱き込まれ、
形崩れせずかつ発泡性プラスチックビーズが円滑に発泡
することが可能なマットを形成することが出来る。
Since the wood fiber bundle used in the porous inorganic molded body of the present invention is made bulky by branching and / or bending and / or bending, it is mixed with a curable inorganic powder or the like to form a raw material mixture. In the state, the fiber bundles are entangled with each other through a certain distance, but since the fiber bundle has a diameter larger than that of a wood single fiber such as pulp fiber, it has a certain degree of rigidity and is entangled in a thread-like shape. Instead, the curable inorganic powder, expandable plastic beads, and the like are held between the fiber bundles entwined in this way. The rigidity of the fiber bundles described above serves to maintain the distance between such fiber bundles and maintain bulkiness. Therefore, since such a bulky state is maintained even when the molding pressure is exerted, foaming of the expandable plastic beads due to heating during molding or after molding is less likely to interfere with the fiber bundle,
The foaming is done smoothly. Further, when the dry production method is applied to the production of the porous inorganic molded body of the present invention, the raw material mixture can be loosened by mechanical stirring or the like, and the raw material mixture can be easily dispersed evenly on the template. However, after spraying, as described above, the raw material components such as curable inorganic powder and expandable plastic beads are entangled by the entanglement of the wood fiber bundle through a certain distance.
It is possible to form a mat which does not lose its shape and in which the expandable plastic beads can be smoothly foamed.

そして製品においてもマトリクス中で発泡性プラスチッ
クビーズの円滑な発泡によって得られたプラスチック発
泡体にもとづく多孔性と、該木質繊維束の上記のように
繊維束相互がある程度の距離を介して強固に絡み合うと
云う特異的な補強効果が相乗して比重の小さいしたがっ
て軽量でインシュレーション性に富み、しかも高強度な
多孔性無機質成形体を与えるのである。また本発明の多
孔性無機質成形体の製造においては圧締後オートクレー
ブ養生するが、該オートクレーブ養生中に該発泡性プラ
スチックビーズの発泡および溶融と該硬化性無機粉体の
硬化反応は殆んど完全に終了する。本発明の繊維束は従
来の木質繊維と異なり、解繊時のクッキングタイムを短
くしてセメントの硬化阻害物質であるリグニン、ヘミセ
ルロース、樹脂等を溶解させることなく解繊したもので
あるから、硬化性無機粉体の硬化は阻害されることなく
順調に進行するのである。したがって製品中の空孔の内
壁面には該発泡性プラスチックビーズの発泡溶融物に帰
因するプラスチックコーティングが施され、多孔であり
ながら透水性の小さいしたがって耐凍性の高い製品が得
られ、かつ製品において該硬化性無機粉体の硬化反応が
進むことは殆んどなく、該硬化反応に伴う製品の寸法変
化は回避される。
Also in the product, the porosity based on the plastic foam obtained by the smooth foaming of the expandable plastic beads in the matrix and the fiber bundles of the wood fiber bundle are firmly entangled with each other through a certain distance as described above. That is, the specific reinforcing effect synergizes with each other to provide a porous inorganic molded body having a small specific gravity and therefore a light weight, a high insulation property and a high strength. Further, in the production of the porous inorganic molded body of the present invention, autoclave curing is carried out after pressing, but the foaming and melting of the expandable plastic beads and the curing reaction of the curable inorganic powder during the autoclave curing are almost complete. To end. Unlike conventional wood fibers, the fiber bundle of the present invention is defibrated without dissolving the lignin, hemicellulose, resin, etc., which are the curing inhibitors of cement by shortening the cooking time during defibration, and thus cured. The hardening of the water-soluble inorganic powder proceeds smoothly without being hindered. Therefore, a plastic coating attributed to the foamed melt of the expandable plastic beads is applied to the inner wall surface of the pores in the product, and a product having low porosity but low water permeability and therefore high freeze resistance is obtained, and the product is In the above, the curing reaction of the curable inorganic powder hardly progresses, and the dimensional change of the product due to the curing reaction is avoided.

〔発明の効果〕〔The invention's effect〕

したがって本発明においては軽量でインシュレーション
性に富み、かつ高強度であり、寸法安定性が極めて良好
な多孔性無機質成形体が得られ、該多孔性無機質成形体
を乾式製造法で製造することが可能であり、該乾式製造
法により均質な製品を得ることが容易である。更に本発
明の木質繊維束は補強効果が大きいから添加量を25重
量%以下としても充分大きい強度の多孔性成形体が得ら
れ、したがって不燃性にも優れた多孔性成形体を得るこ
とが出来る。
Therefore, in the present invention, it is possible to obtain a porous inorganic molded body that is lightweight, rich in insulation properties, has high strength, and has extremely good dimensional stability, and to manufacture the porous inorganic molded body by a dry manufacturing method. It is possible and it is easy to obtain a homogeneous product by the dry manufacturing method. Further, since the wood fiber bundle of the present invention has a large reinforcing effect, a porous molded product having a sufficiently large strength can be obtained even when the amount of addition is 25% by weight or less, and therefore a porous molded product excellent in nonflammability can be obtained. .

〔実施例〕〔Example〕

実施例1〜10 下記組成を混合機により混合する。 Examples 1-10 The following composition is mixed with a mixer.

セメント 46重量% 珪砂 28 〃 パーライト 10 〃 木質繊維束 10 〃 発泡性ポリスチレンビーズ (予備発泡品) 3 〃 硫酸アルミニウム 3 〃 上記木質繊維束としては下記の寸法および嵩比重の分枝
および/または弯曲および/または折曲させられたもの
を用いる。
Cement 46% by weight Silica sand 28 〃 Perlite 10 〃 Wood fiber bundle 10 〃 Expandable polystyrene beads (pre-expanded product) 3 〃 Aluminum sulfate 3 〃 The above-mentioned wood fiber bundle has branching and / or bending with the following dimensions and bulk specific gravity / Or use a bent one.

上記混合物に水を添加して含水率40重量%とした上で
下型板上に散布して厚さ55mmのマットとし、該マット
上に上型板を当接してプレス成形後に圧力10kg/c
m2、温度70℃にて25時間圧締硬化を行なう。得られ
た成形体は厚さ15mmの板状体であり、該成形体はその
後オートクレーブ中にて圧力15kg/cm2、温度165
℃にて7時間養生され、該成形体中の発泡性ポリスチレ
ンビーズは発泡し、その後溶融する。
Water was added to the above mixture to make the water content 40% by weight, and then the mixture was sprayed on the lower mold plate to form a mat having a thickness of 55 mm. The upper mold plate was brought into contact with the mat, and the pressure was 10 kg / c after press molding.
Press-cure and cure at m 2 and temperature of 70 ° C. for 25 hours. The obtained molded body was a plate-shaped body having a thickness of 15 mm, and the molded body was then placed in an autoclave at a pressure of 15 kg / cm 2 and a temperature of 165.
After being cured at 7 ° C. for 7 hours, the expandable polystyrene beads in the molded product foam and then melt.

このようにして多孔性の成形体1〜10を得る。In this way, porous molded bodies 1 to 10 are obtained.

比較例1〜8 実施例1〜10の組成において木質繊維束として下記の
寸法および嵩比重の分枝および/または弯曲および/ま
たは折曲させられたものを用い他は同様にして多孔性の
成形体11〜18を得る。
Comparative Examples 1 to 8 In the compositions of Examples 1 to 10, the wood fiber bundles having the following dimensions and bulk specific gravity, which were branched and / or curved and / or bent, were used, but otherwise the porous molding was performed in the same manner. Get bodies 11-18.

上記実施例および比較例の散布作業性、マットの形崩れ
性、および成形体1〜18の比重、曲げ強度および耐凍
性を測定した。その結果を第1表および第2表に示す。
なおマットの形崩れ性はマットを載置した下型板を2cm
のストローク、1秒間のサイクルで3回上下動させた場
合のマットの形崩れの有無を調べ、耐凍性はASTMC-
666B法により凍結融解試験を行ない300サイクル後の
成形体の状態を調べる。
The spraying workability, the deformability of the mat, and the specific gravities, bending strengths and freeze resistance of the molded products 1 to 18 of the above Examples and Comparative Examples were measured. The results are shown in Tables 1 and 2.
The shape of the mat is 2 cm on the lower template on which the mat is placed.
The stroke is checked for the shape of the mat when it is moved up and down three times in a cycle of 1 second. Freezing resistance is ASTMC-
A freeze-thaw test is performed by the 666B method, and the state of the molded article after 300 cycles is examined.

上記第1表を参照すると平均径0.1〜2.0mm、長さ10〜
30mmの範囲にありかつ分枝および/または弯曲および
/または折曲させられた木質繊維束を用いた実施例1〜
10は混合物がほぐれ易く散布作業性が容易であるし形
成されたマットの形崩れもなく、乾式製造法にとっては
上記木質繊維束は極めて有用であることが理解される。
一方平均径が0.1mm以下の木質繊維束を用いた比較例1
および2、あるいは平均長さ30mm以上の木質繊維束を
用いた比較例7および8は木質繊維束の絡み合いが糸ま
り状になり易く、したがって散布作業性に問題を生ず
る。また平均径が2.0mm以上の木質繊維束を用いた比較
例3および4あるいは平均長さが10mm以下の木質繊維
束を用いた比較例5および6は木質繊維束の絡み合いが
充分でないからマットの強度が劣る。したがって比較例
1〜8の木質繊維束を用いた場合は乾式製造法が適用し
にくい。
Referring to Table 1 above, an average diameter of 0.1 to 2.0 mm and a length of 10
Examples 1 to 30 with a bundle of wood fibers in the range of 30 mm and branched and / or curved and / or bent
It is understood that No. 10 is easy to loosen the mixture, easy to spread and does not lose the shape of the formed mat, and that the above wood fiber bundle is extremely useful for the dry manufacturing method.
On the other hand, Comparative Example 1 using a wood fiber bundle having an average diameter of 0.1 mm or less
And 2, or Comparative Examples 7 and 8 using the wood fiber bundles having an average length of 30 mm or more, the entanglement of the wood fiber bundles is likely to become a thread-like shape, thus causing a problem in spraying workability. Further, Comparative Examples 3 and 4 using the wood fiber bundles having an average diameter of 2.0 mm or more, or Comparative Examples 5 and 6 using the wood fiber bundles having an average length of 10 mm or less are not sufficiently entangled with the wood fiber bundles. Inferior strength. Therefore, when the wood fiber bundles of Comparative Examples 1 to 8 are used, the dry manufacturing method is difficult to apply.

また上記第2表を参照すると平均径0.1mm以下の木質繊
維束を用いた成形体11および12は比重が1以上と大
きくなり、また平均径2.0mm以上の木質繊維束を用いた
成形体13および14、あるいは平均長さが10mm以下
の木質繊維束を用いた成形体15および16は木質繊維
束の絡み合いが不足して曲げ強度が低下する。更に木質
繊維束の平均長さ30mm以上になっても成形体17およ
び18の場合のように散布むらが生ずる結果、均一組織
の成形体が得られず、曲げ強度が低下していることが分
かる。更に成形体12においては高比重であっても発泡
体が若干つぶれているために耐凍性がやゝ劣り、成形体
13,14においては低比重であり、内部空隙率が大で
耐凍性に劣っている。
Further, referring to Table 2 above, the molded bodies 11 and 12 using the wood fiber bundle having an average diameter of 0.1 mm or less have a large specific gravity of 1 or more, and the molded body 13 using the wood fiber bundle having an average diameter of 2.0 mm or more. And 14, or the molded bodies 15 and 16 using the wood fiber bundle having an average length of 10 mm or less, the entanglement of the wood fiber bundle is insufficient and the bending strength is reduced. Further, even if the average length of the wood fiber bundle is 30 mm or more, uneven distribution occurs as in the case of the molded bodies 17 and 18, and as a result, a molded body having a uniform structure cannot be obtained and the bending strength is lowered. . Further, in the molded body 12, even if it has a high specific gravity, the freezing resistance is slightly inferior because the foam is slightly crushed, and in the molded bodies 13 and 14, the specific gravity is low, the internal porosity is large and the freeze resistance is poor. ing.

実施例11 平均径1.0mm、平均長さ18mm、嵩比重0.040g/cm3
分枝かつ弯曲した木質繊維束を用いて下記組成を混合機
により混合する。
Example 11 A branched and curved wood fiber bundle having an average diameter of 1.0 mm, an average length of 18 mm, and a bulk specific gravity of 0.040 g / cm 3 was mixed with the following composition by a mixer.

セメント 48重量% ライスアッシュ 20 〃 珪藻土 10 〃 木質繊維束 15 〃 発泡性ポリスチレンビーズ (予備発泡品) 2 〃 塩化カルシウム 5 〃 上記混合物に水を添加して含水率35重量%とした上で
下型板上に散布して厚さ75mmのマットとし、該マット
上に上型板を当接してプレス成形後に、圧力15kg/cm
2、温度75℃にて30時間圧締硬化を行なう。得られ
た成形体は厚さ20mmの板状体であり、該成形体はその
後オートクレーブ中にて圧力17kg/cm2、温度170
℃にて8時間養生される。
Cement 48% by weight Rice ash 20 〃 Diatomaceous earth 10 〃 Wood fiber bundle 15 〃 Expandable polystyrene beads (pre-expanded product) 2 〃 Calcium chloride 5 〃 Water content of the above mixture was adjusted to 35% by weight It is sprinkled on the plate to form a mat with a thickness of 75 mm, the upper mold plate is brought into contact with the mat, and after press molding, the pressure is 15 kg / cm.
2. Press-cure for 30 hours at a temperature of 75 ° C. The obtained molded body was a plate-shaped body having a thickness of 20 mm, and the molded body was then placed in an autoclave at a pressure of 17 kg / cm 2 and a temperature of 170.
It is aged at ℃ for 8 hours.

このようにして多孔性の成形体19を得る。In this way, the porous molded body 19 is obtained.

比較例9 実施例11の組成において木質繊維束を平均径0.08mm、
平均長さ18mm、嵩比重0.059g/cm3のパルプ繊維7、
太さ2デニール、長さ15mmのポリエステル繊維を3重
量部の混合繊維に代え、他は同様にして成形体21を製
造するが、混合物中にてパルプ繊維およびポリエステル
繊維が糸まり状に絡み合うので実施例11に比し下型板
上に混合物を均一に散布することが困難であった。
Comparative Example 9 An average diameter of the wood fiber bundle in the composition of Example 11 was 0.08 mm,
Pulp fiber 7 having an average length of 18 mm and a bulk specific gravity of 0.059 g / cm 3 ;
A molded body 21 is manufactured in the same manner except that the polyester fiber having a thickness of 2 denier and the length of 15 mm is replaced with 3 parts by weight of the mixed fiber, but the pulp fiber and the polyester fiber are entangled in a string in the mixture. As compared with Example 11, it was difficult to uniformly spread the mixture on the lower template.

比較例10 実施例11の組成において木質繊維束を10mm網目を通
過する厚み0.4〜1.0mm、嵩比重0.095g/cm3の木片に代
え、他は同様にして成形体22を製造する。該木片は混
合物中では殆ど絡み合いがないので機械攪拌によって均
一に混合され易くかつ下型板上に混合物を均一に散布す
ることは容易であった。
Comparative Example 10 A molded product 22 is manufactured in the same manner as in Example 11 except that the wood fiber bundle is replaced with wood chips having a thickness of 0.4 to 1.0 mm and a bulk specific gravity of 0.095 g / cm 3 which pass through a 10 mm mesh. Since the wood chips had almost no entanglement in the mixture, it was easy to uniformly mix them by mechanical stirring, and it was easy to uniformly spread the mixture on the lower template.

試験 上記実施例11,12および比較例9,10のマットの
形崩れ性、および成形体19〜21の比重および曲げ強
度を測定した。その結果を第3表に示す。
Test The shape deformability of the mats of Examples 11 and 12 and Comparative Examples 9 and 10 and the specific gravity and bending strength of the molded bodies 19 to 21 were measured. The results are shown in Table 3.

第3表によれば実施例11はマットの形崩れがないが、
比較例9ではポリエステル繊維を混合してもなお若干の
形崩れが認めらる。また実施例11の成形体は比較例
9,10の成形体20,21と比較すると明らかにより
軽量でより強度が大きい。
According to Table 3, Example 11 does not lose the shape of the mat,
In Comparative Example 9, even if the polyester fibers were mixed, some deformation was still observed. Further, the molded body of Example 11 is obviously lighter in weight and stronger than the molded bodies 20 and 21 of Comparative Examples 9 and 10.

また成形体21の機械的強度は極めて弱く殆ど実用には
供することが出来ない。実施例11と同等の強度、即ち
曲げ強度で70kgf/cm2程度の強度を持たせるためには
木片添加量を30重量%程度とし、圧締圧力を30kg/
cm2程度に上げる必要がある。しかしこのような木片添
加量を増加すると成形体の不燃性が劣化し、また圧締圧
力を上げると成形体の比重が1.3程度に増加し重くな
り、発泡性プラスチックビーズの発泡も阻害され、軽量
かつ高強度の製品は得られない。
Moreover, the mechanical strength of the molded body 21 is extremely weak and it cannot be practically used. In order to have a strength equivalent to that of Example 11, that is, a bending strength of about 70 kgf / cm 2, the amount of wood chips added was about 30% by weight, and the clamping pressure was 30 kg /
It is necessary to raise it to about cm 2 . However, if the amount of wood chips added is increased, the incombustibility of the molded product deteriorates, and if the clamping pressure is increased, the specific gravity of the molded product increases to about 1.3 and becomes heavier. Moreover, high strength products cannot be obtained.

比較例11 実施例1の木質繊維束に代えて、平均径0.10mm、平均長
さ20mm、嵩比重0.054g/cm3の非分枝直線状木質繊維
束を用い、実施例1と同様にして得た成形体22は比重
1.16g/cm3、曲げ強度60kgf/cm2であり、第2表記
載の成形体1に比して比重は大であるが強度は劣ってい
る。
Comparative Example 11 Instead of the wood fiber bundle of Example 1, an unbranched linear wood fiber bundle having an average diameter of 0.10 mm, an average length of 20 mm and a bulk specific gravity of 0.054 g / cm 3 was used, and the same procedure as in Example 1 was performed. The obtained molded body 22 has a specific gravity
It has a bending strength of 1.16 g / cm 3 and a bending strength of 60 kgf / cm 2 , and has a specific gravity higher than that of the molded product 1 shown in Table 2, but is inferior in strength.

比較例12 実施例5の木質繊維束に代えて、平均径2.3mm、平均長
さ20mm、嵩比重0.028g/cm3の分枝および/または弯
曲および/または折曲させられた木質繊維束を用い、実
施例5と同様にして得た成形体23は比重0.86g/c
m3、曲げ強度56kgf/cm2であり、第2表記載の成形体
5に比して強度が劣っている。
Comparative Example 12 Instead of the wood fiber bundle of Example 5, a branched and / or curved and / or bent wood fiber bundle having an average diameter of 2.3 mm, an average length of 20 mm and a bulk specific gravity of 0.028 g / cm 3 is used. A molded body 23 obtained by using the same method as in Example 5 has a specific gravity of 0.86 g / c.
It had m 3 and a bending strength of 56 kgf / cm 2 , which was inferior to the molded product 5 shown in Table 2.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 22:14 2102−4G 24:00 2102−4G 22:12) 2102−4G Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 22:14 2102-4G 24:00 2102-4G 22:12) 2102-4G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】分枝および/または弯曲および/または折
曲させることによって嵩高くせしめた木質繊維束と硬化
性無機粉体と、発泡性プラスチックビーズとの混合物
を、所定形状に成形し、かつ加熱して該発泡性プラスチ
ックビーズを発泡させるとともに該硬化性無機粉体を硬
化させることを特徴とする多孔性無機質成形体の製造方
1. A mixture of a wood fiber bundle, which is made bulky by branching and / or bending and / or bending, curable inorganic powder, and expandable plastic beads, is molded into a predetermined shape, and A method for producing a porous inorganic molded body, which comprises heating to foam the expandable plastic beads and curing the curable inorganic powder.
【請求項2】分枝および/または弯曲および/または折
曲させることによって嵩高くせしめた木質繊維束と、硬
化性無機粉体と、発泡性プラスチックビーズとの混合物
を型板上に散布してマットとし、該マットを圧締して水
分存在下に予備硬化させた後、加熱オートクレーブ養生
することにより発泡性プラスチックビーズを発泡させる
とともに硬化を進めることを特徴とする多孔性無機質成
形体の製造方法
2. A template comprising a mixture of a wood fiber bundle, which is made bulky by branching and / or bending and / or bending, curable inorganic powder, and expandable plastic beads. A method for producing a porous inorganic molded article, which comprises forming a mat, pre-curing the mat under pressure in the presence of water, and then curing the foamed plastic beads by curing by heating in an autoclave and curing the foamed plastic beads.
【請求項3】該木質繊維束は径が0.1〜2.0mm、長さが2
〜35mmの範囲である特許請求の範囲1または2に記載
の多孔性無機質成形体の製造方法
3. The wood fiber bundle has a diameter of 0.1 to 2.0 mm and a length of 2.
The method for producing a porous inorganic molded body according to claim 1 or 2, wherein the porous inorganic molded body has a diameter of ˜35 mm.
【請求項4】該木質繊維束の嵩比重は0.03〜0.05g/cm
3の範囲である特許請求の範囲1または2に記載の多孔
性無機質成形体の製造方法
4. The bulk specific gravity of the wood fiber bundle is 0.03 to 0.05 g / cm.
The method for producing a porous inorganic molded body according to claim 1 or 2, which is in the range of 3
JP1285956A 1989-10-31 1989-10-31 Method for producing porous inorganic molded body Expired - Fee Related JPH0653627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285956A JPH0653627B2 (en) 1989-10-31 1989-10-31 Method for producing porous inorganic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285956A JPH0653627B2 (en) 1989-10-31 1989-10-31 Method for producing porous inorganic molded body

Publications (2)

Publication Number Publication Date
JPH03146480A JPH03146480A (en) 1991-06-21
JPH0653627B2 true JPH0653627B2 (en) 1994-07-20

Family

ID=17698132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285956A Expired - Fee Related JPH0653627B2 (en) 1989-10-31 1989-10-31 Method for producing porous inorganic molded body

Country Status (1)

Country Link
JP (1) JPH0653627B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524532A (en) * 1975-06-30 1977-01-13 Ibigawa Electric Ind Co Ltd Production of cement moldings
JPS541327A (en) * 1977-06-06 1979-01-08 Akio Nunomura Method of making lighttweight fire preventing plate
JPS54157125A (en) * 1978-06-01 1979-12-11 Kenzou Okuya Production of cement plate containing wood strip
JPS553339A (en) * 1978-06-21 1980-01-11 Shimizu Construction Co Ltd Vegetable fiber cement slab
JPS57135787A (en) * 1981-02-13 1982-08-21 Kenzou Okuya Cloth surface treated excelsior cement board and manufacture
JPS60226448A (en) * 1984-04-23 1985-11-11 旭化成株式会社 Manufacture of excelsior cement board
JPS60226440A (en) * 1984-04-26 1985-11-11 旭化成株式会社 Excelsior cement composition for extrusion forming
JPS61136950A (en) * 1984-12-06 1986-06-24 三井木材工業株式会社 Manufacture of excelsior fiber cement moldings
JPS631276A (en) * 1986-06-20 1988-01-06 Olympus Optical Co Ltd Color image pickup device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524532A (en) * 1975-06-30 1977-01-13 Ibigawa Electric Ind Co Ltd Production of cement moldings
JPS541327A (en) * 1977-06-06 1979-01-08 Akio Nunomura Method of making lighttweight fire preventing plate
JPS54157125A (en) * 1978-06-01 1979-12-11 Kenzou Okuya Production of cement plate containing wood strip
JPS553339A (en) * 1978-06-21 1980-01-11 Shimizu Construction Co Ltd Vegetable fiber cement slab
JPS57135787A (en) * 1981-02-13 1982-08-21 Kenzou Okuya Cloth surface treated excelsior cement board and manufacture
JPS60226448A (en) * 1984-04-23 1985-11-11 旭化成株式会社 Manufacture of excelsior cement board
JPS60226440A (en) * 1984-04-26 1985-11-11 旭化成株式会社 Excelsior cement composition for extrusion forming
JPS61136950A (en) * 1984-12-06 1986-06-24 三井木材工業株式会社 Manufacture of excelsior fiber cement moldings
JPS631276A (en) * 1986-06-20 1988-01-06 Olympus Optical Co Ltd Color image pickup device

Also Published As

Publication number Publication date
JPH03146480A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
US5188889A (en) Inorganic board and method of manufacture thereof
RU2006104713A (en) LIGNO CELLULAR COMPOSITE MATERIALS OF LIGHTENED STRENGTH PLATES AND METHODS FOR THEIR MANUFACTURE
CZ257399A3 (en) Process for producing expanded material
JPH09328350A (en) Backing material for roof and its production
JP4348001B2 (en) Wood cement board and manufacturing method thereof
JPH08175861A (en) Formed plate of inorganic material and its production
JPH0653627B2 (en) Method for producing porous inorganic molded body
JPH03131554A (en) Inorganic formed article and production thereof
US4093488A (en) Process for the production of building material elements, particularly building boards
KR100641811B1 (en) The foamed ceramics shape of high strength and the making method thereof
JPS60191047A (en) Manufacture of cement lightweight cured body
JP4198889B2 (en) Manufacturing method of wood cement board
JPH0769692A (en) Inorganic molded articles and production thereof
JPH07124926A (en) Production of inorganic molded plate
JPH0513098B2 (en)
JP4226805B2 (en) Wood cement board and manufacturing method thereof
JP4097870B2 (en) Wood cement board
JP3225025B2 (en) Wood cement board and method for producing the same
JPS58181750A (en) Gypsum composite material composition and manufacture of gypsum composite formed body
JP2001139363A (en) Cemented wooden board
JP2003011110A (en) Wood cement board and its manufacturing method
SU1647012A1 (en) Method for preparing reinforced foam plastic
JPH0567581B2 (en)
JP2003300767A (en) Inorganic board and manufacturing method therefor
CA1258746A (en) Biogenetic silica insulation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees