JPH0569785B2 - - Google Patents
Info
- Publication number
- JPH0569785B2 JPH0569785B2 JP21191789A JP21191789A JPH0569785B2 JP H0569785 B2 JPH0569785 B2 JP H0569785B2 JP 21191789 A JP21191789 A JP 21191789A JP 21191789 A JP21191789 A JP 21191789A JP H0569785 B2 JPH0569785 B2 JP H0569785B2
- Authority
- JP
- Japan
- Prior art keywords
- wood fiber
- wood
- fiber bundle
- molded
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920002522 Wood fibre Polymers 0.000 claims description 60
- 239000002025 wood fiber Substances 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 26
- 230000005484 gravity Effects 0.000 claims description 23
- 238000005452 bending Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 10
- 235000011613 Pinus brutia Nutrition 0.000 claims description 10
- 241000018646 Pinus brutia Species 0.000 claims description 10
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 27
- 239000002023 wood Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000004568 cement Substances 0.000 description 8
- 239000012779 reinforcing material Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000010425 asbestos Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229920006327 polystyrene foam Polymers 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000012209 synthetic fiber Substances 0.000 description 4
- 229920002994 synthetic fiber Polymers 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- 240000008669 Hedera helix Species 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Producing Shaped Articles From Materials (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
〔産業上の利用分野〕
本発明は木質繊維束と硬化性無機粉体との混合
物からなる無機質成形体およびその製造方法に関
するものである。
〔従来の技術〕
セメント等の硬化性無機粉体を主体とする無機
質成形体は例えば外壁材、内壁材、屋根材等の建
築用板材として用いられている。
この種の無機質成形体には木片が補強材として
混合される木片セメント板がある(特公昭39−
12950号)。木片とは木の削り片であり、通常長さ
20〜50mm、巾1.0〜6.0mm、厚さ0.1〜1.0mm程度の
フレーク状をしており、該無機質成形体中にあつ
てつなぎとして役割をしかつ該無機質成形体に可
撓性を与え、また軽量にするものである。
〔発明が解決しようとする課題〕
しかしながら補強材として木片を用いた場合、
木片相互の絡み合いは殆んど期待出来ず、そのた
めに補強効果が充分でなく、そのために成形の際
の圧締力を高くして製品の密度を大きくしないと
充分な強度が得られない。しかし製品の密度を大
きくすると製品あ重くなり持運びや釘打ちに困難
をきたす。製品の密度を大きくすることなく充分
な強度を得るためには木片の添加量を多くするこ
とが必要である。しかし木片の添加量を多くすれ
ば製品の不燃性が低下して来ると云う問題点があ
つた。
補強材として木片よりも形状的にみて絡み易い
パルプ繊維を混合した無機質成形体も提供されて
いるが、パルプ繊維の補強効果が充分でなく、石
綿や合成繊維を混合することが必要である(特開
昭63−256560号、特開昭63−256561号、特開昭56
−63858号)。
しかしながら石綿や合成繊維をパルプ繊維に混
合してもこれら繊維は嵩高くないので軽量でかつ
満足すべき強度を有する製品を得るためにはやは
り繊維の添加量を多くする必要がある。しかしこ
れらの繊維の添加量を多くすると材料費が高くな
るしパルプ繊維や合成繊維の添加量を多くすれば
製品の不燃性が低下する。石綿は不燃性ではある
が空中に飛散し易く人体に対する有害物質として
使用に厳しい制約がある。
またこの種の無機質成形体を製造するための効
率良い方法として、型板上に硬化性無機粉体と補
強材との混合物を散布してマツトとし、該マツト
を圧締成形する乾式製造法が推奨される。該乾式
製造法においては上記硬化性無機粉体と補強材と
の混合物が型板上に均一に散布され易いこと、型
板上に形成されたマツトが形崩れしにくいことが
必要とされる。しかし補強材として木片を用いる
場合には上記したように絡み合いが殆んどなく、
木片添加量を多くしないと型板上に形成されたマ
ツトが非常に形崩れし易く、また補強材としてパ
ルプ繊維あるいは該パルプ繊維に石綿や合成繊維
を混合した混合繊維を用いた場合には硬化性無機
粉体と混合すると糸まり状に絡み合つて該混合物
がほぐれにくゝなり、型板上に均一に散布するこ
とが非常に困難になつて来る。
〔課題を解決するための手段〕
本発明は上記従来の課題を解決するための手段
として、平均径が0.1〜2.0mm、平均長さが10〜30
mmの範囲でありかつ分枝および/または弯曲およ
び/または折曲させることによつて嵩高くせしめ
た木質繊維束と硬化性無機粉体との混合物を、所
定形状に成形するとともに該硬化性無機粉体を硬
化させた無機質成形体を提供するものであり、該
無機質成形体は該木質繊維束と硬化性無機粉体と
の混合物を型板上に均一に散布してマツトとし、
該マツトを圧締して水分存在下に硬化させた後、
オートクレーブ養生することによつて製造され
る。
本発明は補強材として木質繊維束と用いること
を特徴とするものである。そして本発明において
は該木質繊維束は木質単繊維の集束体であり、そ
して該木質繊維束は分枝および/または弯曲およ
び/または折曲させることによつて嵩高くせしめ
られる。このような分枝および/または弯曲およ
び/または折曲させることにより嵩高くされた木
質繊維束を製造するには苛性ソーダ、亜硫酸ソー
ダ、亜硫酸カルシウム等の薬液に木材を浸漬した
り、木材を蒸気で加熱したり、あるいは上記薬液
浸漬と蒸気加熱とを併用したりすることによつて
木材中に含まれる木質単繊維のバインダーの役割
をしているリグニン、ヘミセルロース、樹脂等を
完全に溶解させることなく膨潤させるにとどめた
上で上記バインダーを残存させつゝ解繊したもの
であり、上記バインダーのうち特にリグニンを略
完全に除去して解繊したパルプ繊維に比して径が
大である。そして該木質繊維束の平均径は約0.1
〜2.0mmの範囲にあり、平均長さは約10〜30mmの
範囲にある。
なお木質繊維束が分枝している場合には分枝前
の木質繊維束を仮定してその平均径が約0.1〜2.0
mmの範囲にあり、また木質繊維束が弯曲および/
または折曲している場合は長さは末端間距離では
なく木質繊維束の実長を指すものとする。
該木質繊維束は上記のサイズおよび形状により
嵩高くなつているが、この嵩比重は約0.03〜0.05
g/cm3の範囲にある。ここに嵩比重は内径8cm、
容積2000mlのメスシリンダーに絶乾状態の該木質
繊維束を2000ml充填して全体の重量を測定し、該
全体の重量からメスシリンダーの重量を差引いて
該木質繊維束の重量を求め、該メスシリンダーの
内径に丁度はまる円板を充填した該木質繊維束上
に載置して該円板上に重りをのせ1Kgの重量を該
木質繊維束に及ぼした時の該木質繊維束の容積を
測定し、該木質繊維束の重量(g)を該容積
(cm3)で割ることによつて求められる。
該木質繊維束を分枝および/または弯曲およ
び/または折曲させることによつて嵩高くせしめ
るには上記バインダーの膨潤の程度および解繊の
程度を調節する。解繊は例えばグラインデイング
デイスクにより行なわれ、解繊の程度の調節は該
グラインデイングデイスクのデイスク間隙を調節
することによつて行われる。
本発明に用いられる硬化性無機粉体とはセメン
ト、石膏等の水和反応により硬化する無機粉体、
セメント、石膏等のカルシウム含有無機粉体と珪
砂、珪石粉、シリカヒユーム、シラスバルーン等
の珪酸含有無機粉体との混合物のような珪酸カル
シウム反応により硬化する混合無機粉体、炭酸マ
グネシウム等の結晶転位により硬化する無機粉体
等である。
上記木質繊維束と上記硬化性無機粉体とは混合
され、該混合物は乾式製造法の場合には型板上に
散布させるのであるが、該混合物中に上記木質繊
維束は通常5〜25重量%程度添加される。
更にパーライト、ベントナイト、高炉スラグ、
籾殻の焼却灰であるライスアツシユ、フライアツ
シユ、珪藻土等の無機充填材、合成樹脂、合成樹
脂発泡体、木片、木粉等の有機充填材が添加され
てもよい。また硬化性無機粉体がセメントの場合
には塩化マグネシウム、塩化カルシウム、硫酸ア
ルミニウム、水ガラス等の硬化促進剤等が添加さ
れてもよい。
上記例示は本発明を限定するものではない。
上記混合物は型板上に散布してマツト状にされ
るが、連続製造法においては上記型板は多数個ベ
ルトコンベアー上に載置せしめられる。型板上に
散布された混合物は所望なればロール等によつて
若干押圧され、該マツトはそれから水分存在下に
圧締硬化され所望の形状に成形される。水分添加
量は通常上記混合物中に30〜45重量%含まれるよ
うにする。圧締条件は通常圧締圧10〜20Kg/cm2、
温度60〜80℃、時間20〜30時間程度で行われ、加
熱は通常蒸気にて行われる。圧締は二つの型板間
に上記マツトを挟圧することによつて行われる
が、該型板面には所定に形状、凹凸模様等が施さ
れてもよい。
本発明の無機質成形体は通常板状に成形される
が所望によりブロツク状等に成形されてもよい。
本発明の無機質成形は圧締硬化後所望なればオ
ートクレーブ中にて養生される。養生条件は通常
圧力10〜20Kg/cm2、温度160〜180℃、時間5〜10
時間である。
上記オートクレーブ養生は必ずしも必須のもの
ではなく、自然養生を行なつてもよい。
このようにして本発明の無機質成形体が得られ
る。
〔作用〕
本発明の無機質成形体に用いられる木質繊維束
は、平均径が0.1〜2.0mm、平均長さが10〜30mmの
範囲でありかつ分枝および/または弯曲および/
または折曲させることにより嵩高くせしめられて
いるので硬化性無機粉体と混合した状態では該繊
維束相互はある程度の距離を介して絡み合うが、
該繊維束はパルプ繊維に比して経が大であるから
ある程度の剛性を有し糸まり状に絡み合うことは
なく、このようにして絡み合つた繊維束相互間に
該硬化性無機粉体が抱き込まれる。上記した該繊
維束の剛性はこのような繊維束相互間の距離を保
持しもつて嵩高さを維持するのに役立つのであ
る。したがつて本発明の無機質成形体の製造に乾
式製造法を適用した場合、硬化性無機粉体と該木
質繊維束との混合物は機械的撹拌等によつてほぐ
すことが可能で、混合物を型板上に均一に散布す
ることが容易であるし、一方散布後は上記したよ
うに該木質繊維束のある程度の距離を介しての絡
み合いによつて硬化性無機粉体が抱き込まれ、形
崩れしないマツトを形成することが出来る。
そして製品においてもマトリクス中で該木質繊
維束は上記のように繊維束相互がある程度の距離
を介して強固に絡み合うと云う特異的な補強効果
により比重の小さいしたがつて軽量でしかも高強
度な無機質成形体を与えるのである。また本発明
の無機質成形体の製造においては圧締後オートク
レーブ養生するが、該オートクレーブ養生中に該
硬化性無機粉体の硬化反応は殆んど完全に終了す
る。したがつて製品において該硬化性無機粉体の
硬化反応が進むことは殆んどなく、該硬化反応に
伴う製品の寸法変化は回避される。
〔発明の効果〕
したがつて本発明においては軽量かつ高強度で
あり、寸法安定性が極めて良好な無機質成形体が
得られ、該無機質成形体を乾式製造法で製造する
ことが可能であり、該乾式製造法により均質な製
品を得ることが容易である。更に本発明の木質繊
維束は補強効果が大きいから添加量を25重量%以
下としても充分大きい強度の成形体が得られ、し
たがつて不燃性に優れた成形体を得ることが出来
る。
〔実施例〕
実施例 1〜10
下記組成を混合機により混合する。
セメント 47重量%
珪砂 30 〃
パーライト 10 〃
木質繊維束 10 〃
硫酸アルミニウム 3 〃
上記木質繊維束としては下記の寸法および嵩比
重の分枝および/または弯曲および/または折曲
させられたものを用いる。
実施例 平均径(mm) 平均長さ(mm) 嵩
比重(g/cm3)
1 0.10 20 0.048
2 0.50 20 0.046
3 1.00 20 0.042
4 1.50 20 0.039
5 2.00 20 0.036
6 0.80 10 0.045
7 0.80 15 0.043
8 0.80 20 0.042
9 0.80 25 0.040
10 0.80 30 0.038
上記混合物に水を添加して含水率40重量%とし
た上で下型板上に散布して厚さ55mmのマツトと
し、該マツト上に上型板を当接して圧力10Kg/
cm2、温度70℃にて25時間圧締硬化を行なう。得ら
れた成形体は厚さ15mmの板状体であり、該成形体
はその後オートクレーブ中にて圧力15Kg/cm2、温
度165℃にて7時間養生される。
このようにして成形体1〜10を得る。
比較例 1〜8
実施例1〜10の組成において木質繊維束として
下記の寸法および嵩比重の分枝および/または弯
曲および/または折曲させられたものを用い他は
同様にして成形体11〜18を得る。
比較例 平均径(mm) 平均長さ(mm) 嵩
比重(g/cm3)
1 0.06 20 0.050
2 0.08 20 0.049
3 2.20 20 0.033
4 2.40 20 0.030
5 0.80 6 0.046
6 0.80 8 0.045
7 0.80 32 0.038
8 0.80 34 0.036
上記実施例および比較例の散布作業性、マツト
の形崩れ性、および成形体1〜18の比重および曲
げ強度を測定した。その結果を第1表および第2
表に示す。なおマツトの形崩れ性はマツトを載置
した下型板を2cmのストローク、1秒間のサイク
ルで3回上下動させた場合のマツトの形崩れの有
無を調べる。
散布作業性 形崩れ性
実施例1 良 好 な し
2 良 好 な し
3 良 好 な し
4 良 好 な し
5 良 好 な し
6 良 好 な し
7 良 好 な し
8 良 好 な し
9 良 好 な し
10 良 好 な し
比較例1 ほぐれにくい な し
2 若干ほぐれにくい な し
3 良 好 若干あり
4 良 好 若干あり
5 良 好 あ り
6 良 好 若干あり
7 若干ほぐれにくい な し
8 ほぐれにくい な し
第1表
比重(g/cm3) 曲げ強度(Kgf/cm2)
成形体1 1.00 80
2 0.98 75
3 0.96 70
4 0.93 65
5 0.90 60
6 0.97 65
7 0.97 65
8 0.97 70
9 0.96 75
10 0.96 80
11 1.10 80
12 1.05 80
13 0.85 45
14 0.80 40
15 0.97 50
16 0.97 55
17 0.96 55
18 0.96 50
第2表
上記第1表を参照すると平均径0.1〜2.0mm、平
均長さ10〜30mmの範囲にありかつ分枝および/ま
たは弯曲および/または折曲させられた木質繊維
束を用いた実施例1〜10は混合物がほぐれ易く散
布作業性が容易であるし形成されたマツトの形崩
れもなく、乾式製造法にとつては上記木質繊維束
は極めて有用であることが理解される。一方平均
径が0.1mm以下の木質繊維束を用いた比較例1お
よび2、あるいは平均長さ30mm以上の木質繊維束
を用いた比較例7および8は木質繊維束の絡み合
いが糸まり状になり易く、したがつて散布作業性
に問題を生ずる。また平均径が2.0mm以上の木質
繊維束を用いた比較例3および4あるいは平均長
さが10mm以下の木質繊維束を用いた比較例5およ
び6は木質繊維束の絡み合いが充分でないからマ
ツトの強度が劣る。したがつて比較例1〜8の木
質繊維束を用いた場合は乾式製造法が適用しにく
い。
また上記第2表を参照すると平均径0.1mm以下
の木質繊維束を用いた成形体11および12は比重が
1以上と大きくなり、また平均径2.0mm以上の木
質繊維束を用いた成形体13および14、あるいは平
均長さが10mm以下の木質繊維束を用いた成形体15
および16は木質繊維束の絡み合いが不足して曲げ
強度が低下する。更に木質繊維束の平均長さ30mm
以上になつても成形体17および18の場合のように
散布むらが生ずる結果均一組織の成形体が得られ
ず、曲げ強度が低下していることが分かる。
実施例 11
平均径1.0mm、平均長さ18mm、嵩比重0.040g/
cm3の分枝かつ弯曲した木質繊維束を用いて下記組
成を混合機により混合する。
セメント 50重量%
ライスアツシユ 20 〃
珪藻土 10 〃
木質繊維束 15 〃
塩化カルシウム 5 〃
上記混合物に水を添加して含水率35重量%とし
た上で下型板上に散布して厚さ75mmのマツトと
し、該マツト上に上型板を当接して圧力15Kg/
cm2、温度75℃にて30時間圧締硬化を行なう。得ら
れた成形体は厚さ20mmの板状体であり、該成形体
はその後オートクレーブ中にて圧力17Kg/cm2、温
度170℃にて8時間養生される。
このようにして成形体19を得る。
実施例 12
平均径1.5mm、平均長さ15mm、嵩比重0.040g/
cm2の弯曲または折曲した木質繊維束を用いて下記
組成を混合機により混合する。
セメント 45重量%
シリカ 30 〃
フライアツシユ 10 〃
木質繊維束 10 〃
ポリスチレン一次発泡ビーズ 10 〃
塩化カルシウム 2 〃
上記混合物に水を添加して含水率40重量%とし
た上で下型板上に散布して厚さ90mmのマツトと
し、該マツト上に上型板を当接して圧力20Kg/
cm2、温度70℃にて25時間圧締硬化を行なう。得ら
れた成形体は厚さ25mmの板状体である。該成形体
はその後オートクレーブ中にて圧力15Kg/cm2、温
度175℃にて7時間養生される。上記養生により
ポリスチレン発泡ビーズは二次発泡してポリスチ
レン発泡体小球となり、更に該ポリスチレン発泡
体小球は溶融し、その跡は気泡となりポリスチレ
ン発泡体小球の溶融物は該気泡の壁面を被覆す
る。
このようにして成形体20を得る。
比較例 9
実施例11の組成において木質繊維束を平均径
0.08mm、平均長さ18mm、嵩比重0.059g/cm3のパ
ルプ繊維7、太さ2デニール、長さ15mmのポリエ
ステル繊維を3重量部の混合繊維に代え、他は同
様にして成形体21を製造するが、混合物中にてパ
ルプ繊維およびポリエステル繊維が糸まり状に絡
み合うので実施例11に比し下型板上に混合物を均
一に散布することが困難であつた。
比較例 10
実施例11の組成において木質繊維束を10mm網目
を通過する厚み0.4〜1.0mm、嵩比重0.095g/cm3の
木片に代え、他は同様にして成形体22を製造す
る。該木片は混合物中では殆ど絡み合いがないの
で機械撹拌によつて均一に混合され易くかつ下型
板上に混合物を均一に散布することは容易であつ
た。
試 験
上記実施例11,12および比較例9,10のマツト
の形崩れ性、および成形体19〜22の比重および曲
げ強度を測定した。その結果を第3表に示す。
[Industrial Application Field] The present invention relates to an inorganic molded body made of a mixture of wood fiber bundles and curable inorganic powder, and a method for producing the same. [Prior Art] Inorganic molded bodies mainly composed of curable inorganic powder such as cement are used as architectural board materials such as exterior wall materials, interior wall materials, roofing materials, and the like. This type of inorganic molded body includes a wood chip cement board in which wood chips are mixed as a reinforcing material (Special Publication Publication No. 39-1981).
No. 12950). A wood chip is a shaving of wood, usually of length
It has a flake shape of about 20 to 50 mm, width of 1.0 to 6.0 mm, and thickness of about 0.1 to 1.0 mm, and is placed in the inorganic molded body and acts as a binder and gives flexibility to the inorganic molded body, It is also lightweight. [Problem to be solved by the invention] However, when wood pieces are used as reinforcing material,
Intertwining of the wood pieces with each other is hardly expected, and therefore the reinforcing effect is not sufficient. Therefore, sufficient strength cannot be obtained unless the compacting force during molding is increased to increase the density of the product. However, increasing the density of the product makes it heavier, making it difficult to carry and nail. In order to obtain sufficient strength without increasing the density of the product, it is necessary to increase the amount of wood chips added. However, there was a problem in that if the amount of wood chips added was increased, the nonflammability of the product would decrease. Inorganic molded bodies mixed with pulp fibers, which are more easily entangled in shape than wood chips, are also available as reinforcing materials, but the reinforcing effect of pulp fibers is not sufficient, and it is necessary to mix asbestos or synthetic fibers ( JP-A-63-256560, JP-A-63-256561, JP-A-56
−63858). However, even if asbestos or synthetic fibers are mixed with pulp fibers, these fibers are not bulky, so in order to obtain a product that is lightweight and has satisfactory strength, it is still necessary to add a large amount of fiber. However, increasing the amount of these fibers added increases the material cost, and increasing the amount of pulp fibers or synthetic fibers decreases the nonflammability of the product. Although asbestos is nonflammable, it is easily dispersed into the air and has severe restrictions on its use as a harmful substance to the human body. In addition, as an efficient method for producing this type of inorganic molded body, a dry manufacturing method is used in which a mixture of curable inorganic powder and reinforcing material is sprinkled on a template to form a mat, and the mat is pressed and formed. Recommended. In this dry manufacturing method, it is necessary that the mixture of the curable inorganic powder and reinforcing material be easily spread evenly on the template, and that the mat formed on the template be difficult to lose its shape. However, when using wood pieces as reinforcing materials, there is almost no entanglement as mentioned above,
If the amount of wood chips added is not increased, the pine formed on the template will easily lose its shape, and if pulp fiber or a mixed fiber of pulp fiber mixed with asbestos or synthetic fiber is used as a reinforcing material, it will harden. When mixed with a synthetic inorganic powder, the mixture becomes entangled in a ball-like form, making it difficult to unravel the mixture, making it extremely difficult to spread it uniformly on the template. [Means for Solving the Problems] The present invention provides a means for solving the above-mentioned conventional problems, in which the average diameter is 0.1 to 2.0 mm and the average length is 10 to 30 mm.
A mixture of wood fiber bundles and curable inorganic powder, which are in the range of An inorganic molded body made of hardened powder is provided, and the inorganic molded body is made by uniformly scattering a mixture of the wood fiber bundle and the curable inorganic powder on a template to form a mat;
After pressing the mat and hardening it in the presence of moisture,
Manufactured by autoclave curing. The present invention is characterized in that a wood fiber bundle is used as a reinforcing material. In the present invention, the wood fiber bundle is a bundle of wood single fibers, and the wood fiber bundle is made bulky by branching and/or curving and/or bending. To produce wood fiber bundles made bulky by branching and/or curving and/or bending, wood is immersed in a chemical solution such as caustic soda, sodium sulfite, calcium sulfite, etc., or the wood is heated with steam. By heating, or by using the above-mentioned chemical immersion and steam heating in combination, the lignin, hemicellulose, resin, etc. that act as binders for the wood fibers contained in the wood are not completely dissolved. It is a pulp fiber that is only swollen and then defibrated with the binder remaining, and has a larger diameter than pulp fiber that is defibrated after almost completely removing the binder, especially lignin. The average diameter of the wood fiber bundles is approximately 0.1
~2.0 mm, with average lengths ranging from approximately 10 to 30 mm. If the wood fiber bundle is branched, the average diameter of the wood fiber bundle before branching is approximately 0.1 to 2.0.
mm range, and the wood fiber bundles are curved and/or
Or, if the wood fiber bundle is bent, the length refers to the actual length of the wood fiber bundle, not the distance between the ends. The wood fiber bundle is bulky due to the above size and shape, and its bulk specific gravity is approximately 0.03 to 0.05.
g/cm 3 range. Here, the bulk specific gravity is 8 cm in inner diameter,
Fill a measuring cylinder with a volume of 2000ml with 2000ml of the wood fiber bundle in an absolutely dry state, measure the total weight, subtract the weight of the graduated cylinder from the total weight to determine the weight of the wood fiber bundle, A disk that fits exactly within the inner diameter of the wood fiber bundle is placed on the filled wood fiber bundle, a weight is placed on the disk, and a weight of 1 kg is applied to the wood fiber bundle, and the volume of the wood fiber bundle is measured. , is determined by dividing the weight (g) of the wood fiber bundle by the volume (cm 3 ). In order to make the wood fiber bundle bulky by branching and/or curving and/or bending, the degree of swelling and fibrillation of the binder are adjusted. Defibration is performed, for example, by a grinding disk, and the degree of defibration is adjusted by adjusting the disc gap of the grinding disk. The curable inorganic powder used in the present invention is an inorganic powder that hardens through a hydration reaction of cement, gypsum, etc.
Mixed inorganic powders that harden through calcium silicate reactions, such as mixtures of calcium-containing inorganic powders such as cement and gypsum, and silicic acid-containing inorganic powders such as silica sand, silica powder, silica fume, and shirasu balloons, and crystal dislocation in magnesium carbonate, etc. It is an inorganic powder etc. that is hardened by The wood fiber bundles and the curable inorganic powder are mixed, and in the case of a dry manufacturing method, the mixture is sprinkled on a template. % is added. Furthermore, perlite, bentonite, blast furnace slag,
Inorganic fillers such as rice ash, fly ash, and diatomaceous earth, which are incinerated ash of rice husks, and organic fillers such as synthetic resins, synthetic resin foams, wood chips, and wood flour may be added. Further, when the curable inorganic powder is cement, a curing accelerator such as magnesium chloride, calcium chloride, aluminum sulfate, water glass, etc. may be added. The above examples are not intended to limit the invention. The above-mentioned mixture is spread onto a mold plate to form a mat, and in a continuous production method, a large number of the above-mentioned mold plates are placed on a belt conveyor. The mixture spread on the template is pressed slightly, if desired, with rolls or the like, and the mat is then compacted and hardened in the presence of moisture to form the desired shape. The amount of water added is usually 30 to 45% by weight in the above mixture. The pressing conditions are usually a pressing pressure of 10 to 20 kg/cm 2 ,
Heating is carried out at a temperature of 60 to 80°C for about 20 to 30 hours, and heating is usually done with steam. The pressing is performed by pressing the mat between two templates, but the template surface may be provided with a predetermined shape, uneven pattern, etc. The inorganic molded article of the present invention is usually molded into a plate shape, but may be molded into a block shape or the like if desired. After the inorganic molding of the present invention is pressed and hardened, it is cured in an autoclave if desired. The curing conditions are usually pressure 10~20Kg/cm 2 , temperature 160~180℃, time 5~10
It's time. The autoclave curing described above is not necessarily essential, and natural curing may be performed. In this way, the inorganic molded article of the present invention is obtained. [Function] The wood fiber bundles used in the inorganic molded article of the present invention have an average diameter of 0.1 to 2.0 mm, an average length of 10 to 30 mm, and have branched and/or curved and/or
Alternatively, since the fiber bundles are made bulky by bending, when mixed with the curable inorganic powder, the fiber bundles intertwine with each other at a certain distance,
Since the fiber bundles have a larger warp than pulp fibers, they have a certain degree of rigidity and do not become entangled in the form of threads, and in this way, the curable inorganic powder is spread between the entangled fiber bundles. being embraced. The above-mentioned rigidity of the fiber bundles helps maintain the distance between the fiber bundles and maintain the bulk. Therefore, when a dry manufacturing method is applied to the production of the inorganic molded body of the present invention, the mixture of the curable inorganic powder and the wood fiber bundle can be loosened by mechanical stirring, etc., and the mixture can be molded into a mold. It is easy to spread uniformly on the board, and on the other hand, as mentioned above, the curable inorganic powder is entangled due to the entanglement of the wood fiber bundles over a certain distance, so that it does not lose its shape. It is possible to form pine trees that do not grow. In the product, the wood fiber bundles in the matrix have a unique reinforcing effect in which the fiber bundles are tightly intertwined with each other at a certain distance as described above, and as a result, the wood fiber bundles are made of inorganic materials that have a low specific gravity and are therefore lightweight and have high strength. It gives a molded body. Further, in the production of the inorganic molded body of the present invention, autoclave curing is performed after pressing, and the curing reaction of the curable inorganic powder is almost completely completed during the autoclave curing. Therefore, the curing reaction of the curable inorganic powder hardly progresses in the product, and dimensional changes in the product due to the curing reaction are avoided. [Effects of the Invention] Therefore, in the present invention, an inorganic molded body that is lightweight, has high strength, and has extremely good dimensional stability can be obtained, and the inorganic molded body can be manufactured by a dry manufacturing method. It is easy to obtain a homogeneous product by this dry manufacturing method. Further, since the wood fiber bundle of the present invention has a large reinforcing effect, even if the amount added is 25% by weight or less, a molded product with sufficiently high strength can be obtained, and therefore a molded product with excellent nonflammability can be obtained. [Example] Examples 1 to 10 The following compositions were mixed using a mixer. Cement: 47% by weight Silica sand: 30 Perlite: 10 Wood fiber bundle: 10 Aluminum sulfate: 3 The above-mentioned wood fiber bundles are branched and/or curved and/or bent with the following dimensions and bulk specific gravity. Examples Average diameter (mm) Average length (mm) Bulk specific gravity (g/cm 3 ) 1 0.10 20 0.048 2 0.50 20 0.046 3 1.00 20 0.042 4 1.50 20 0.039 5 2.00 20 0.036 6 0.80 10 0.0 45 7 0.80 15 0.043 8 0.80 20 0.042 9 0.80 25 0.040 10 0.80 30 0.038 Water was added to the above mixture to make the moisture content 40% by weight, and then sprinkled on the lower template to form a 55 mm thick mat, and the upper template was placed on the mat. Pressure 10Kg/
cm 2 and press hardening at a temperature of 70°C for 25 hours. The obtained molded body is a plate-shaped body with a thickness of 15 mm, and the molded body is then cured in an autoclave at a pressure of 15 kg/cm 2 and a temperature of 165° C. for 7 hours. In this way, molded bodies 1 to 10 are obtained. Comparative Examples 1 to 8 Molded articles 11 to 8 were prepared in the same manner as in Examples 1 to 10 using branched and/or curved and/or bent wood fiber bundles having the following dimensions and bulk specific gravity. Get 18. Comparative example Average diameter (mm) Average length (mm) Bulk specific gravity (g/cm 3 ) 1 0.06 20 0.050 2 0.08 20 0.049 3 2.20 20 0.033 4 2.40 20 0.030 5 0.80 6 0.046 6 0.80 8 0.045 7 0.80 32 0.038 8 0.80 34 0.036 The spraying workability, deformability of the pine, and the specific gravity and bending strength of the molded bodies 1 to 18 of the above Examples and Comparative Examples were measured. The results are shown in Tables 1 and 2.
Shown in the table. The shape of the pine is determined by checking whether or not the pine loses its shape when the lower template on which the pine is placed is moved up and down three times with a stroke of 2 cm and a cycle of 1 second. Spraying workability Shapeability Example 1 Good None 2 Good None 3 Good None 4 Good None 5 Good None 6 Good None 7 Good None 8 Good None 9 Good Good No 10 Good No Comparative Example 1 Hard to unravel No 2 Slightly hard to unravel No 3 Good Slightly 4 Good Slight 5 Good Yes 6 Good Slightly 7 Slightly hard to unravel No 8 Hard to unravel None Table 1 Specific gravity (g/cm 3 ) Bending strength (Kgf/cm 2 ) Molded object 1 1.00 80 2 0.98 75 3 0.96 70 4 0.93 65 5 0.90 60 6 0.97 65 7 0.97 65 8 0.97 70 9 0.96 75 10 0.96 80 11 1.10 80 12 1.05 80 13 0.85 45 14 0.80 40 15 0.97 50 16 0.97 55 17 0.96 55 18 0.96 50 Table 2 Referring to Table 1 above, average diameter is 0.1 to 2.0 mm, average length is 10 to 3 0mm In Examples 1 to 10, which used wood fiber bundles that were within this range and were branched and/or curved and/or bent, the mixture was easy to loosen, the spraying work was easy, and the formed pine did not lose its shape. It is understood that the wood fiber bundles described above are extremely useful for dry manufacturing methods. On the other hand, in Comparative Examples 1 and 2 using wood fiber bundles with an average diameter of 0.1 mm or less, or Comparative Examples 7 and 8 using wood fiber bundles with an average length of 30 mm or more, the entanglement of the wood fiber bundles became thread-like. This causes problems in spraying workability. In addition, in Comparative Examples 3 and 4 using wood fiber bundles with an average diameter of 2.0 mm or more, or Comparative Examples 5 and 6 using wood fiber bundles with an average length of 10 mm or less, the intertwining of the wood fiber bundles was not sufficient. Poor strength. Therefore, when using the wood fiber bundles of Comparative Examples 1 to 8, it is difficult to apply the dry manufacturing method. Also, referring to Table 2 above, molded products 11 and 12 using wood fiber bundles with an average diameter of 0.1 mm or less have a high specific gravity of 1 or more, and molded product 13 using wood fiber bundles with an average diameter of 2.0 mm or more has a large specific gravity of 1 or more. and 14, or molded body 15 using wood fiber bundles with an average length of 10 mm or less
and 16, the bending strength decreases due to insufficient entanglement of the wood fiber bundles. Furthermore, the average length of the wood fiber bundle is 30 mm.
It can be seen that even with the above conditions, uneven distribution occurs as in the case of molded bodies 17 and 18, so that a molded body with a uniform structure cannot be obtained, and the bending strength is reduced. Example 11 Average diameter 1.0mm, average length 18mm, bulk specific gravity 0.040g/
The following composition is mixed in a mixer using a cm 3 branched and curved wood fiber bundle. Cement 50% by weight Rice ash 20 〃 Diatomaceous earth 10 〃 Wood fiber bundle 15 〃 Calcium chloride 5 〃 Water was added to the above mixture to make the water content 35% by weight, and then sprinkled on the lower template to form a 75mm thick mat. , put the upper mold plate on the mat and apply a pressure of 15 kg/
cm 2 and press hardening at a temperature of 75°C for 30 hours. The obtained molded body is a plate-shaped body with a thickness of 20 mm, and the molded body is then cured in an autoclave at a pressure of 17 Kg/cm 2 and a temperature of 170° C. for 8 hours. In this way, a molded body 19 is obtained. Example 12 Average diameter 1.5mm, average length 15mm, bulk specific gravity 0.040g/
The following composition is mixed in a mixer using a cm 2 curved or bent wood fiber bundle. Cement 45% by weight Silica 30 〃 Fly ash 10 〃 Wood fiber bundle 10 〃 Polystyrene primary foam beads 10 〃 Calcium chloride 2 〃 Water was added to the above mixture to make the moisture content 40% by weight, and then sprinkled on the lower template. A mat with a thickness of 90 mm is used, and the upper mold plate is placed on the mat and a pressure of 20 kg/
cm 2 and press hardening at a temperature of 70°C for 25 hours. The obtained molded body is a plate-shaped body with a thickness of 25 mm. The molded body was then cured in an autoclave at a pressure of 15 kg/cm 2 and a temperature of 175° C. for 7 hours. Due to the above curing, the polystyrene foam beads undergo secondary foaming to become polystyrene foam spherules, and the polystyrene foam spherules further melt, leaving behind bubbles and the melted polystyrene foam spherules cover the walls of the bubbles. do. In this way, a molded body 20 is obtained. Comparative Example 9 The average diameter of wood fiber bundles in the composition of Example 11
0.08 mm, average length 18 mm, bulk specific gravity 0.059 g/cm 3 pulp fiber 7, thickness 2 denier, length 15 mm polyester fiber was replaced with 3 parts by weight of mixed fibers, and the other conditions were the same to form molded body 21. However, compared to Example 11, it was difficult to uniformly spread the mixture on the lower template because the pulp fibers and polyester fibers were entangled in the mixture. Comparative Example 10 A molded body 22 is produced in the same manner as in Example 11, except that the wood fiber bundle is replaced with a piece of wood that passes through a 10 mm mesh, has a thickness of 0.4 to 1.0 mm, and has a bulk specific gravity of 0.095 g/cm 3 . Since the wood chips were hardly entangled in the mixture, it was easy to mix them uniformly by mechanical stirring, and it was easy to uniformly spread the mixture on the lower template. Test The deformability of the pine of Examples 11 and 12 and Comparative Examples 9 and 10, and the specific gravity and bending strength of molded bodies 19 to 22 were measured. The results are shown in Table 3.
【表】
第3表によれば実施例11および12はマツトの形
崩れがないが、比較例9ではポリエステル繊維を
混合してもなお若干の形崩れが認められる。また
実施例11,12の成形体は比較例9,10の成形体
21,22と比較すると明らかにより軽量でより強度
が大きい。
また成形体22の機械的強度は極めて弱く殆ど実
用には供することが出来ない。実施例11,12と同
等の強度、即ち曲げ強度で70Kgf/cm2程度の強度
を持たせるためには木片添加量を30重量%程度と
し、圧締圧力を30Kg/cm2程度に上げる必要があ
る。しかしこのような木片添加量を増加すると成
形体の不燃性が劣化し、また圧締圧力を上げると
成形体の比重が1.3程度に増加し重くなり、軽量
かつ高強度の製品は得られない。
比較例 11
実施例1の木質繊維束に代えて、平均径0.10
mm、平均長さ20mm、嵩比重0.054g/cm3の非分枝
直線状木質繊維束を用い、実施例1と同様にして
得た成形体23は比重1.20g/cm3、曲げ強度60Kg
f/cm2であり、第1表記載の成形体1に比して比
重は大であるが強度は劣つている。
比較例 12
実施例5の木質繊維束に代えて、平均径2.3mm、
平均長さ20mm、嵩比重0.027g/cm3の分枝およ
び/または弯曲および/または折曲させられた木
質繊維束を用い、実施例5と同様にして得た成形
体24は比重0.86g/cm3、曲げ強度45Kgf/cm2であ
り、第1表記載の成形対5に比して強度が劣つて
いる。[Table] According to Table 3, in Examples 11 and 12, the mats do not lose their shape, but in Comparative Example 9, even when polyester fibers are mixed, some deformation is observed. In addition, the molded bodies of Examples 11 and 12 are the molded bodies of Comparative Examples 9 and 10.
Compared to 21 and 22, it is clearly lighter and stronger. In addition, the mechanical strength of the molded body 22 is extremely weak, making it almost impossible to put it to practical use. In order to have the same strength as Examples 11 and 12, that is, a bending strength of about 70 kgf/cm 2 , it is necessary to add about 30% by weight of wood chips and increase the compaction pressure to about 30 kg/cm 2 . be. However, increasing the amount of wood chips added deteriorates the nonflammability of the molded product, and increasing the compacting pressure increases the specific gravity of the molded product to about 1.3, making it heavier, making it impossible to obtain a lightweight and high-strength product. Comparative Example 11 Instead of the wood fiber bundle of Example 1, an average diameter of 0.10
A molded article 23 obtained in the same manner as in Example 1 using unbranched linear wood fiber bundles with an average length of 20 mm and a bulk specific gravity of 0.054 g/cm 3 has a specific gravity of 1.20 g/cm 3 and a bending strength of 60 Kg.
f/cm 2 , and the specific gravity is higher than that of molded product 1 listed in Table 1, but the strength is inferior. Comparative Example 12 Instead of the wood fiber bundle of Example 5, an average diameter of 2.3 mm,
A molded article 24 obtained in the same manner as in Example 5 using branched and/or curved and/or bent wood fiber bundles with an average length of 20 mm and a bulk specific gravity of 0.027 g/cm 3 has a specific gravity of 0.86 g/cm 3 . cm 3 and bending strength of 45 Kgf/cm 2 , which is inferior to Molded Pair 5 listed in Table 1.
Claims (1)
範囲でありかつ分枝および/または弯曲および/
または折曲させることによつて嵩高くせしめた木
質繊維束と硬化性無機粉体との混合物を、所定形
状に成形するとともに該硬化性無機粉体を硬化さ
せたことを特徴とする無機質成形体 2 該木質繊維束の嵩比重は0.03〜0.05g/cm3の
範囲である特許請求の範囲1に記載の無機質成形
体 3 分枝および/または弯曲および/または折曲
させることによつて嵩高くせしめた木質繊維束と
硬化性無機粉体との混合物を型板上に散布してマ
ツトとし、該マツトを圧締して水分存在下に硬化
させた後、オートクレーブ養生することを特徴と
する無機質成形体の製造方法。[Claims] 1. Average diameter is in the range of 0.1 to 2.0 mm, average length is in the range of 10 to 30 mm, and branched and/or curved and/
Alternatively, an inorganic molded article characterized in that a mixture of a wood fiber bundle made bulky by bending and a curable inorganic powder is molded into a predetermined shape and the curable inorganic powder is cured. 2. The inorganic molded article according to claim 1, wherein the bulk specific gravity of the wood fiber bundle is in the range of 0.03 to 0.05 g/cm 3 . An inorganic material characterized by scattering a mixture of a compressed wood fiber bundle and a curable inorganic powder onto a template to form a pine, compressing the pine and curing in the presence of moisture, and then curing in an autoclave. Method for manufacturing a molded object.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-171563 | 1989-07-03 | ||
JP17156389 | 1989-07-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03131554A JPH03131554A (en) | 1991-06-05 |
JPH0569785B2 true JPH0569785B2 (en) | 1993-10-01 |
Family
ID=15925458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1211917A Granted JPH03131554A (en) | 1989-07-03 | 1989-08-17 | Inorganic formed article and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03131554A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0769692A (en) * | 1993-08-27 | 1995-03-14 | Nichiha Corp | Inorganic molded articles and production thereof |
JP3279897B2 (en) * | 1995-11-29 | 2002-04-30 | ニチハ株式会社 | Wood cement board manufacturing method |
JP4719633B2 (en) * | 2006-06-26 | 2011-07-06 | 株式会社竹中工務店 | Method for producing wood fiber bundle and wood fiber bundle obtained thereby |
CN102030490B (en) * | 2010-11-02 | 2012-08-29 | 北京厚德交通科技有限公司 | Granular cellulose fibers for road construction and preparation method thereof |
-
1989
- 1989-08-17 JP JP1211917A patent/JPH03131554A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH03131554A (en) | 1991-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03218955A (en) | Inorganic formed board and its production | |
CZ299245B6 (en) | Light-weight material containing expanded perlite and process for producing thereof | |
JP2006062883A (en) | Wooden cement board and its manufacturing method | |
JPH0569785B2 (en) | ||
JP2730835B2 (en) | Manufacturing method of fiber reinforced cement board | |
JP4348001B2 (en) | Wood cement board and manufacturing method thereof | |
JPH09328350A (en) | Backing material for roof and its production | |
JPH0769692A (en) | Inorganic molded articles and production thereof | |
JPH02141454A (en) | Production of high-strength calcium silicate molded body | |
JPS60191047A (en) | Manufacture of cement lightweight cured body | |
JPH0513098B2 (en) | ||
JPH03146480A (en) | Production of porous inorganic molding | |
WO1982002195A1 (en) | Cementitious article | |
JPH0780166B2 (en) | Manufacturing method of calcium silicate compact | |
JP4220003B2 (en) | INORGANIC MOLDED PLATE AND PROCESS FOR PRODUCING THE SAME | |
JP4226805B2 (en) | Wood cement board and manufacturing method thereof | |
JPH07124926A (en) | Production of inorganic molded plate | |
JP3737173B2 (en) | Light wood cement board with fiber | |
JP2003011110A (en) | Wood cement board and its manufacturing method | |
JPH03146452A (en) | Roof material | |
JPH0567581B2 (en) | ||
SU798078A1 (en) | Method of making construction articles | |
JPH09314530A (en) | Manufacture of inorganic board and the inorganic board | |
JP4449237B2 (en) | Manufacturing method of inorganic cement board | |
JP2768492B2 (en) | Method for producing calcium silicate molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |