JPS614913A - Device for detecting flatness of running plate material - Google Patents

Device for detecting flatness of running plate material

Info

Publication number
JPS614913A
JPS614913A JP59126777A JP12677784A JPS614913A JP S614913 A JPS614913 A JP S614913A JP 59126777 A JP59126777 A JP 59126777A JP 12677784 A JP12677784 A JP 12677784A JP S614913 A JPS614913 A JP S614913A
Authority
JP
Japan
Prior art keywords
plate material
distance
plate
width direction
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59126777A
Other languages
Japanese (ja)
Inventor
Kazuo Itabashi
板橋 和男
Yoshiyuki Takahashi
高橋 祥之
Kyoichi Yoshikiyo
吉清 恭一
Tsuneo Nagamine
長嶺 恒夫
Tsutomu Ozaka
尾坂 力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59126777A priority Critical patent/JPS614913A/en
Publication of JPS614913A publication Critical patent/JPS614913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • G01B7/345Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To know simultaneously the distortions in lateral and longitudinal directions by finding the difference in the detecting values among No. 1 distance detecting means measured from the surface of the plural plate material arranged in the width direction of the plate material between table rollers, and the difference of No. 2 distance detecting means arranged at the prescribed distance in longitudinal direction. CONSTITUTION:Distance sensors 30, 32, 34 are arranged in the width direction of a plate material 10 positioned between table rollers 12, 14 and the distortion shape in width direction of the plate material 10 is detected by detecting the absolute distances a, b, c which are from the fixed height to the surface of the plate material 10. Distance detecting sensors 36, 38, 40 are also arranged at the prescribed distance in the longitudinal direction of the plate material on the same position with the sensors 30, 32, 34 being in the width direction of the plate material between the rollers 12, 14, and the similar distances x, y, z are detected with the same timing as the distances a, b, c and the distortion shape in longitudinal direction is detected from the comparison of the both.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、走行板材の平坦度検出装置に係り、特に、高
温度で且つ高速でテーブルロー、うにより搬送される金
属の板材、特に厚板の平坦度を検出する際に用いるのに
好適な、搬送゛テーブルローラ上を走行する板材の歪形
状を検出するための走行板材の平坦度検出装置の改良に
関する。
The present invention relates to a flatness detection device for traveling plate materials, and is particularly suitable for use in detecting the flatness of metal plates, especially thick plates, that are conveyed at high temperatures and high speeds by table rows or veneers. The present invention relates to an improvement in a flatness detection device for a traveling plate for detecting the distorted shape of a plate traveling on conveyance table rollers.

【従来の技術】[Conventional technology]

一般に、熱間の鋼板圧延では、目標板厚、目標断面プロ
フィールの板を平坦に仕上げることが重要である。従っ
て従来より、板厚、断面ブOフィール及び平坦度の3つ
の目標“値を、圧延荷重によるロール軸心撓みや、ベン
ダー、ワークロールシフト等各種アクチュエータで同時
に満足するように制御している。よって、平坦度をオン
ラインで確実に検出して、制御に反映することが大切で
ある。 300’CJ:J、上の高温度で、且つ、0.5m+/
秒以上の高速で搬送される板材の平坦度を検出する方法
としては、例えば第8図に示す如く、テーブルローラ1
2.14.16による板材10の進行方向と直角方向に
、固定位置から板材10の表面までの距離を測定できる
、例えば水柱抵抗式〈実公昭52−25175ン又は水
柱超音波式のセンサ2oを複数個配置して、各センサ2
0の検出値の差に基づいて、板材10の幅方向歪形状を
測定づる方法や、同じく第8図に示す如く、板材10の
進行方向と直角方向への棒状光源22の反射光を受光器
24で捉えて、その光学的影像によって板材10の幅方
向歪形状を測定する方法等が提案・′され、実用化され
ている。
Generally, in hot rolling of a steel plate, it is important to flatten a plate having a target thickness and a target cross-sectional profile. Therefore, conventionally, the three target values of plate thickness, cross-sectional O-feel, and flatness are controlled simultaneously using various actuators such as roll axis deflection due to rolling load, bender, and work roll shift. Therefore, it is important to accurately detect the flatness online and reflect it in the control.At a high temperature of 300'CJ: J, and at a distance of 0.5m
For example, as shown in FIG.
2.14.16, a water column resistance type sensor 2o or a water column ultrasonic type sensor 2o capable of measuring the distance from the fixed position to the surface of the plate material 10 in the direction perpendicular to the traveling direction of the plate material 10 according to 2.14.16 is used. Arrange multiple sensors, each sensor 2
There is a method of measuring the distortion shape of the plate material 10 in the width direction based on the difference in the detected value of 0, and as also shown in FIG. A method of measuring the shape of distortion in the width direction of the plate material 10 using the optical image obtained by capturing the image with a 24-meter lens has been proposed and put into practical use.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、このような従来の平坦度検出装置におい
ては、いずれも、板材10の幅方向の歪形状は検出でき
るものの、板材10の長手方向に関しては、該長手方向
歪形状に従って、第9図に示す如く、テーブルローラ1
2.14.16間で板材10がテーブルローラ天端より
hlだけ沈み込んだり、あるいは、第10図に示す如く
、hまたけ浮き上がるため、板材10の長手方向歪形状
を正確に検出することができないという問題点を有して
いた。 又、特に薄板における、このような問題点を解消するも
のとして、出願人は既に特願昭58−227857にお
いて、板材を搬送する各テーブルローラ間の、幅方向同
一位置に各々水柱抵抗式センサを配設し、各センサで同
時に測定した測定値の、設定値に対する相対関係を比較
して板材長手方向の歪みの有無を判定すると共に、該判
定結果に応じてセンサのいずれか1つの検出値に基づい
て歪み量を求めることを特徴とする板材長手方向の平坦
度測定方法を提案しているが、このままでは、板材、特
に厚板の全平面の平坦度を正しく検出することはできな
かった。
However, in all such conventional flatness detection devices, although the strain shape in the width direction of the plate material 10 can be detected, in the longitudinal direction of the plate material 10, the shape as shown in FIG. 9 is detected according to the longitudinal strain shape. Like, table roller 1
Between 2.14 and 16, the plate 10 sinks by hl from the top of the table roller, or rises by h as shown in FIG. 10, so it is difficult to accurately detect the longitudinal strain shape of the plate 10. The problem was that it could not be done. In order to solve this problem, especially with thin plates, the applicant has already proposed in Japanese Patent Application No. 58-227857 a water column resistance type sensor at the same position in the width direction between each table roller that conveys the plate. The presence or absence of distortion in the longitudinal direction of the board is determined by comparing the relative relationship between the measured values measured simultaneously by each sensor and the set value, and the detected value of any one of the sensors is determined according to the determination result. We have proposed a method for measuring flatness in the longitudinal direction of a plate material, which is characterized by determining the amount of distortion based on this method, but as it is, it has not been possible to accurately detect the flatness of the entire plane of a plate material, especially a thick plate.

【発明の目的】[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたも
ので、板材の幅方向歪形状の検出と合わせて、長手方向
の歪形状を正確に捉えることができ、従って、板材の全
平面の平坦度を正しく検出することができる走行板材の
平坦度検出装置を提供することを目的とする。 [問題点を解決するためC手段] 本発明は、搬送テーブルローラ上を走行する板材の歪形
状を検出するための走行板材の平坦度検出装置において
、テーブルローラ間の板材幅方向に複数個配設された、
配設位置における板材表面からの距離を検出するための
第1の距離検出手段と、同一テーブルローラ間の板材幅
方向の前記第1の距離検出手段の少くとも1個と同じ位
置に、前記第1の距離検出手段から板材長手方向に所定
距離だけ離して少くとも1個配股された、配設位置にお
ける板材表面との距離を検出するための第2の距離検出
手段と、を備え、第1の距離検出手。 段間の検出値の差及び第1の距離検出手段と第2の距離
検出手段の検出値の差に基づいて、板材の幅方向及び長
手方向の歪形状を求めるようにして、前記目的を達成し
たものである。
The present invention has been made to solve the above-mentioned conventional problems, and in addition to detecting the shape of distortion in the width direction of the plate material, it is also possible to accurately capture the shape of distortion in the longitudinal direction. It is an object of the present invention to provide a flatness detection device for a traveling plate material that can accurately detect flatness. [Means C for Solving the Problems] The present invention provides a flatness detection device for a traveling plate for detecting the distorted shape of a plate running on conveying table rollers, in which a plurality of flatness detectors are arranged in the width direction of the plate between the table rollers. established,
A first distance detecting means for detecting the distance from the surface of the plate material at the arrangement position, and the first distance detecting means in the width direction of the plate material between the same table rollers at the same position as at least one of the first distance detecting means. at least one second distance detection means arranged a predetermined distance apart from the first distance detection means in the longitudinal direction of the plate for detecting the distance to the surface of the plate at the installation position; Distance detection hand. The above object is achieved by determining the distorted shape of the plate material in the width direction and longitudinal direction based on the difference in the detected value between the stages and the difference in the detected value between the first distance detecting means and the second distance detecting means. This is what I did.

【作用】[Effect]

本発明においては、板材10の幅方向の歪形状を検出す
るために、第1図に示す如く、テーブルローラ12.1
4間の板材幅方向に複数個、例えば3個の距離検出セン
サ30.32.34を配設する。従って、ある固定高さ
から板材10の表面までの絶対距離a、b、cを各距離
検出センサ30.32.34でそれぞれ検出し、各検出
値の差を求めることによって、板材10の幅方向の歪形
状を検出することができる。この場合、テーブルローラ
12.14間で第2図に示す如く板材10が沈み込んだ
場合にも、検出値a、b、cが同一量変化するので、3
点間の相対的な距離差は変らない。これは板材10が浮
上った場合でも同じである。従って、幅方向に配置した
距離検出センサ30.32.34により、板材10が沈
み込んだり浮上ったりした場合にも、板材幅方向の歪形
状を正確に検出することができる。 一方、板材長手方向の歪みは、例えば板幅方向中央部の
距離検出センサ32だけを用いて、検出値すの時系列的
な変化から検出するようにしだのでは、板材が沈み込む
と正確に検出することができない。そこで、本発明では
、前出第1図に示した如く、同一テーブルローラ12.
14間の板材幅方向の前記距離検出センサ30.32.
34と同じ位置に、前記距離検出センサ30.32.3
4から板材長手方向に所定距離だけ離して、例えば3個
の距離検出センサ36.38.40を配設する。 通常の熱間圧延ラインの搬送テーブルローラの間隔は8
00〜1000u程度であり、ホットストリップや厚板
は厚みが厚いので熱間であっても、自重による撓みはほ
とんど生じない。従って、第3図に示す如く、あるタイ
ミングで検出値b(1)1)及びV(V;+)を検出す
ると、対応した板材10の位置し1、L2の板長平方向
の高さの差V+  blが検出でき、こKは、位置し1
とL2の間の歪みに相当している。次に、L2の点が距
離検出センサ32の位置、L3の点が距離検出センサ3
8の位置にきた時、即ち、板長平方向のセンサ間距離を
β、例えばテーブルローラの回転速度から算出される板
材10の搬送速度をVとすると、V/βの整数倍に設定
された所定のサンプリングピッチが経過した時に、検出
値b2、y2を検出すると、位置L2、L3の板長平方
向の高さの差Vz−112を検出できる。これを順次繰
返すことによって、第4図に示す如く、例えば板幅方向
中央部での板長平方向の歪形状を正確に検出することが
できる。板端部でも同一の方法によって、板長平方向の
歪形状を検出することができる。 ここで、板幅方向の歪形状は、位1fL1、L2、・・
・で全て求まっているので、このようにして検出される
板長子方゛向の歪形状と合わせることによって、板材全
平面の平坦度を正しく検出することができる。 なお、板幅方向の距離検出センサの数は3個に限定され
ず、検出したいレベルにより増減することができる。又
、各距離検出センサは固定配置しても、移動配置しても
よい。更に、長手方向には、幅方向のセンサに対応した
数設置すればよいが、スペース等の関係等で、例えば長
手方向には中央に1個のみで代表させてもそれほど精度
は変わらない。その場合は、例えば幅方向の距離検出セ
ンサ30.32.34の3個に対して、長手方向は中央
の距離検出センサ38のみとし、距離検出センサ32と
38との距離差が、距離検出センサ30.36間及び3
4.40間の距離差と同じと推定する。 以上は、ある程度高温の熱間材について説明しているが
、冷間材であっても、テーブルローラ間での自重による
撓みが無視できるような厚みを有するもので必れば、同
様にテーブルローう間を走行中にその平坦度を測定する
ことができる。
In the present invention, in order to detect the distorted shape of the plate material 10 in the width direction, as shown in FIG.
A plurality of distance detection sensors 30, 32, and 34, for example, three distance detection sensors 30, 32, and 34, are disposed in the width direction of the plate material between the four. Therefore, by detecting the absolute distances a, b, and c from a certain fixed height to the surface of the plate material 10 with each distance detection sensor 30, 32, and 34, and finding the difference between each detected value, The distorted shape of can be detected. In this case, even if the plate material 10 sinks between the table rollers 12 and 14 as shown in FIG. 2, the detected values a, b, and c will change by the same amount.
The relative distance difference between points remains unchanged. This is the same even when the plate material 10 floats. Therefore, the distance detection sensors 30, 32, and 34 arranged in the width direction can accurately detect the distorted shape in the width direction of the plate even when the plate 10 sinks or rises. On the other hand, if the distortion in the longitudinal direction of the plate is detected by using only the distance detection sensor 32 at the center in the width direction of the plate and from the time-series changes in the detected value, it will not be possible to accurately detect the distortion in the longitudinal direction of the plate if the plate sinks. Unable to detect. Therefore, in the present invention, as shown in FIG. 1, the same table roller 12.
14 in the width direction of the plate material 30.32.
At the same position as 34, the distance detection sensor 30.32.3
For example, three distance detection sensors 36, 38, and 40 are disposed at a predetermined distance from 4 in the longitudinal direction of the plate material. The interval between conveyor table rollers in a normal hot rolling line is 8.
00 to 1000 u, and since hot strips and thick plates are thick, they hardly bend due to their own weight even in hot conditions. Therefore, as shown in FIG. 3, when the detection values b (1) 1) and V (V; V+ bl can be detected, and K is located at 1
This corresponds to the distortion between L2 and L2. Next, the point L2 is the position of the distance detection sensor 32, and the point L3 is the position of the distance detection sensor 32.
When the distance between the sensors in the horizontal direction of the plate is β, and the conveyance speed of the plate 10 calculated from the rotational speed of the table roller is V, a predetermined value set to an integral multiple of V/β is reached. When the detection values b2 and y2 are detected after the sampling pitch of , it is possible to detect the difference Vz-112 in the height of the positions L2 and L3 in the plate longitudinal direction. By sequentially repeating this process, as shown in FIG. 4, it is possible to accurately detect, for example, the distorted shape in the longitudinal direction of the plate at the central portion in the width direction of the plate. The same method can be used to detect the distorted shape in the longitudinal direction of the plate at the edge of the plate. Here, the strain shape in the board width direction is 1fL1, L2,...
・Since all of the above are determined, the flatness of the entire plane of the plate can be accurately detected by combining it with the distorted shape in the longitudinal direction of the plate detected in this way. Note that the number of distance detection sensors in the board width direction is not limited to three, and can be increased or decreased depending on the desired level of detection. Further, each distance detection sensor may be fixedly arranged or movably arranged. Furthermore, although it is sufficient to install a number of sensors in the longitudinal direction corresponding to the number of sensors in the width direction, due to space constraints, for example, in the longitudinal direction, the accuracy does not change much even if only one sensor is installed in the center. In that case, for example, for the three distance detection sensors 30, 32, and 34 in the width direction, only the center distance detection sensor 38 is used in the longitudinal direction, and the distance difference between the distance detection sensors 32 and 38 is determined by the distance detection sensor 30.36 and 3
It is estimated to be the same as the distance difference between 4.40 and 40. The above describes hot materials at a certain high temperature, but even cold materials can be used as table rollers if they have a thickness such that deflection due to their own weight between the table rollers can be ignored. The flatness of the vehicle can be measured while the vehicle is traveling along the route.

【実施例】【Example】

以下本発明の実施例を詳細に説明する。 この実施例は、直径400 mm、配設間隔1mのテー
ブルローラによって搬送される厚鋼板の圧延搬出側に本
発明に係る平坦度検出装置を配設したもので、距離検出
センサは、板幅方向には、中央に1個、板端部に2個の
計3個配置し、これら3個のセンサの板材進行方向上流
側250 mmに、それぞれ1個ずつのセンサを配置し
ている。このような実施例において、歪みのある冷鋼板
を、2゜5Ill/秒の速度で搬送して歪みを検出した
。板材へての距離のサンプリングピッチを0.1秒とす
ると、板長平方向の歪形状が25011+1ピツチで検
出できる。 歪形状の検出結果を第5図及び第6図に示す。 第5図から明らかな如く、破線Aで示す従来法において
は、板材の沈み込みの影響で歪みを大きい側に検出して
しまうのに対して、実線Bで示す本 、発明法において
は、歪みを精度よく検出することが可能である。又、第
6図から明らかな如く、第7図に示す歪みの波長りと振
幅Hを用いて、次式で表わされる急峻度に関して、本発
明法では、標準偏差1σ−0,11%の高精度の検出が
可能となっている。 急峻度(%)=H/LX100・・・(1)
Examples of the present invention will be described in detail below. In this embodiment, the flatness detecting device according to the present invention is installed on the rolling unloading side of a thick steel plate that is conveyed by table rollers with a diameter of 400 mm and an arrangement interval of 1 m. A total of three sensors are arranged, one in the center and two at the ends of the plate, and one sensor each is placed 250 mm upstream of these three sensors in the direction of movement of the plate. In such an example, a strained cold steel plate was transported at a speed of 2°5 Ill/sec to detect strain. If the sampling pitch of the distance to the plate material is 0.1 seconds, the distorted shape in the longitudinal direction of the plate can be detected at 25011+1 pitches. The detection results of the distorted shape are shown in FIGS. 5 and 6. As is clear from FIG. 5, in the conventional method shown by the broken line A, the distortion is detected on the large side due to the influence of the sinking of the plate material, whereas in the method of the present invention shown by the solid line B, the distortion is detected on the large side. can be detected with high accuracy. Furthermore, as is clear from FIG. 6, using the distortion wavelength and amplitude H shown in FIG. Accurate detection is possible. Steepness (%) = H/LX100...(1)

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、靭幅方向の歪形状
を検出できるだけでなく、板長平方向の沈み込み又は浮
き上がりに拘わらず、板長手方向歪形状を正確に捉える
ことができる。従って、板材の全平面の平坦度を正しく
検出することができるという優れた効果を有する。
As explained above, according to the present invention, it is possible not only to detect the shape of strain in the longitudinal direction of the plate, but also to accurately capture the shape of strain in the longitudinal direction of the plate, regardless of sinking or uplift in the longitudinal direction of the plate. Therefore, it has an excellent effect of being able to accurately detect the flatness of the entire plane of the plate material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る走行板材の平坦度検出装置の基
本的な構成を示す斜視図、第2図は、本発明における板
幅方向の歪形状の検出の原理を示す側面図、第3図は、
同じく、板長平方向の歪形状の検出の原理を示す側面図
、第4図は、同じく、検出値から板長平方向の歪形状を
求める方法を示す縮図、第5図は、本発明法と従来法に
おける板長手方向歪みの検出値を比較して示す線図、第
6図は、本発明法における実際の急峻度と検出した。 急峻度の相関関係を示す線図、第7図は、急峻度の定義
を示す線図、第8図は、従来の平坦度検出方法の原理を
示す斜視図、第9図は、板材の沈み込みが発生している
状態を示す側面図、第10図は、板材の浮き上がりが発
生している状態を示す側面図である。 10・・・板材、 12.1.4.16・・・テーブルローラ、30.32
.34.36.381.40・・・距離検出センサ。
FIG. 1 is a perspective view showing the basic configuration of a flatness detection device for a running board according to the present invention, and FIG. 2 is a side view showing the principle of detecting a distorted shape in the board width direction in the present invention. Figure 3 is
Similarly, FIG. 4 is a side view showing the principle of detecting the strained shape in the horizontal direction of the plate, FIG. FIG. 6 is a diagram showing a comparison of detected values of plate longitudinal strain in the method, and the actual steepness detected in the method of the present invention. Figure 7 is a diagram showing the correlation of steepness, Figure 7 is a diagram showing the definition of steepness, Figure 8 is a perspective view showing the principle of the conventional flatness detection method, Figure 9 is a diagram showing the sinking of plate material. FIG. 10 is a side view showing a state in which the plate material is lifted up. 10...Plate material, 12.1.4.16...Table roller, 30.32
.. 34.36.381.40... Distance detection sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)搬送テーブルローラ上を走行する板材の歪形状を
検出するための走行板材の平坦度検出装置において、 テーブルローラ間の板材幅方向に複数個配設された、配
設位置における板材表面からの距離を検出するための第
1の距離検出手段と、 同一テーブルローラ間の板材幅方向の前記第1の距離検
出手段の少くとも1個と同じ位置に、前記第1の距離検
出手段から板材長手方向に所定距離だけ離して少くとも
1個配設された、配設位置における板材表面との距離を
検出するための第2の距離検出手段と、 を備え、第1の距離検出手段間の検出値の差及び第1の
距離検出手段と第2の距離検出手段の検出値の差に基づ
いて、板材の幅方向及び長手方向の歪形状を求めるよう
にしたことを特徴とする走行板材の平坦度検出装置。
(1) In a flatness detection device for a traveling plate for detecting the distorted shape of a plate running on a conveying table roller, a plurality of flatness detectors are arranged in the width direction of the plate between the table rollers, and and a first distance detecting means for detecting the distance between the first distance detecting means and the plate material at the same position as at least one of the first distance detecting means in the width direction of the plate material between the same table rollers. at least one second distance detection means for detecting the distance to the plate surface at the installation position, which is arranged at least a predetermined distance apart in the longitudinal direction, and between the first distance detection means. A traveling plate material characterized in that the distorted shape of the plate material in the width direction and longitudinal direction is determined based on the difference between the detected values and the difference between the detected values of the first distance detecting means and the second distance detecting means. Flatness detection device.
JP59126777A 1984-06-20 1984-06-20 Device for detecting flatness of running plate material Pending JPS614913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59126777A JPS614913A (en) 1984-06-20 1984-06-20 Device for detecting flatness of running plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126777A JPS614913A (en) 1984-06-20 1984-06-20 Device for detecting flatness of running plate material

Publications (1)

Publication Number Publication Date
JPS614913A true JPS614913A (en) 1986-01-10

Family

ID=14943672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126777A Pending JPS614913A (en) 1984-06-20 1984-06-20 Device for detecting flatness of running plate material

Country Status (1)

Country Link
JP (1) JPS614913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828106A (en) * 1986-06-27 1989-05-09 Fuji Photo Film Co., Ltd. Packaging case for photosensitive sheet films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828106A (en) * 1986-06-27 1989-05-09 Fuji Photo Film Co., Ltd. Packaging case for photosensitive sheet films

Similar Documents

Publication Publication Date Title
KR100939061B1 (en) Method of and apparatus for measuring planarity of strip, especially metal strip
CN102667400A (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
JPS614913A (en) Device for detecting flatness of running plate material
JP2526457B2 (en) Plate flatness meter
JPH1137737A (en) Device for detecting warping of steel plate
JPH06273162A (en) Flatness measuring device
JPH04232803A (en) Running body width measuring device
JPS60222708A (en) Device for measuring width and meandering movement of belt shaped body
JP2770612B2 (en) Eddy current flaw detector
JPS60115327A (en) Camber measuring method of steel plate
JPS5939702B2 (en) Measuring device for moving objects
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JP3334091B2 (en) Roll roll profile measurement method
JPS63108214A (en) Strip shape measuring method
JP3286549B2 (en) Surface flaw detection method for long steel materials
KR100584129B1 (en) Wave measurement system for cold rolled strip with width edge sensor
JPH07122601B2 (en) Rolling mill plate shape detection value correction method
KR100423925B1 (en) Shape coefficient determining method between hot finishing mill stands
JPH04155208A (en) Discrimination on acceptability of platelike work
JPH06331345A (en) Strip-shaped body shape measuring instrument
JPS60256003A (en) Running measurement device of metallic wire for bent
JPH06194241A (en) Device and method for measuring tension
JPS61226107A (en) Method for discriminating shape of rolled steel plate
JPS63277916A (en) Measuring instrument for curvature quantity of beltlike body
JPH01213511A (en) Instrument for measuring bend in wooden board