JPS60115327A - Camber measuring method of steel plate - Google Patents

Camber measuring method of steel plate

Info

Publication number
JPS60115327A
JPS60115327A JP58225169A JP22516983A JPS60115327A JP S60115327 A JPS60115327 A JP S60115327A JP 58225169 A JP58225169 A JP 58225169A JP 22516983 A JP22516983 A JP 22516983A JP S60115327 A JPS60115327 A JP S60115327A
Authority
JP
Japan
Prior art keywords
steel plate
camber
longitudinal direction
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225169A
Other languages
Japanese (ja)
Inventor
Hiroaki Miura
三浦 寛昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58225169A priority Critical patent/JPS60115327A/en
Publication of JPS60115327A publication Critical patent/JPS60115327A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To evade an up-and-down motion and an inclination from a standard pass line of a steel plate, and a measuring error in case an angle in the advancing direction is varied, by forming plural groups by position detectors at each edge, and correcting a position, in a titled method for detecting both edges of the steel plate at three or more points in the longitudinal direction of the steel plate. CONSTITUTION:At three measuring points (a)-(c) which have left a prescribed interval L in the longitudinal direction of a steel plate 1 both edge positions of the plate 1 are detected by a command from an arithmetic part whenever the steel plate 1 moves by the length L. This detection is executed by position detectors 201-212 which have left a prescribed distance in the upper part of the plate 1, totaling to 12 sets consisting of two sets each to each edge. Their signals are sent to position detecting parts 301-312, and each position detecting result is stored successively in position storage parts 401- 412 at every measurement. From said measuring result, an arithmetic for correcting a position detecting error in case when an up-and-down motion and an inclination from a standard pass line of the plate 1 have been generated is executed by arthmetic parts 51-56, and a width center position at the points (a)-(c) is derived by arithmetic parts 61-63. Subsequently, the superposed arithmetic is executed by an arithmetic part 7, and the continuation is executed in the longitudinal direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼板のキャンバ−測定方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for measuring camber of a steel plate.

一般に鉄鋼における厚板ミルや熱延ミルで鋼板を圧延す
れば、種々の原因によりキャンバ−と称する第1図に示
す様な圧延材1の横曲りδが生じることがある。この様
なキャンバーが生じると、厚鋼板の精整工程においては
所定寸法の製品を採取する際の歩留りが低下し、また熱
延ミルにおいでは仕上圧延機での通板に支障をきたした
り、コイル巻取り後の巻姿不良や次行程での幅トリム時
の歩留り低下の原因となる。従って圧延中にこのキャン
バ−量を正確に測定し、その結果を用いて迅速なキャン
パー修正制御を行なうことは極めて重要なことである。
Generally, when a steel plate is rolled in a steel plate mill or a hot rolling mill, lateral bending δ of the rolled material 1 as shown in FIG. 1, called camber, may occur due to various causes. When such camber occurs, the yield when taking products of a specified size in the refining process of thick steel plates decreases, and in hot rolling mills, it may interfere with the threading in the finishing mill, and it may cause problems in coils. This causes poor winding appearance after winding and a decrease in yield during width trimming in the next process. Therefore, it is extremely important to accurately measure the amount of camber during rolling and use the results to quickly control the camber correction.

従来技術の問題点 鋼板のキャンバ−を測定する方法として、例えば特開昭
49−89172号公報、特開昭49−97647号公
報、あるいは特開昭50−104050号公報に開示さ
れており、これらの方法は第2図に示す如く鋼板l進行
方向に略ね平行な基準線Aに沿って3台のエッチ距離計
21.22.23を設けて、基準線Aから鋼板1の片側
ニップまでの距離da%db、 dcを測定することに
よりキャンバ−量を算出するものである。しかし、この
方法では同図に示す如く鋼板1の板幅が長手方向におい
て変化している場合は正確なキャンバ−を測定すること
はできない。
Problems with the Prior Art Methods for measuring the camber of steel plates are disclosed, for example, in JP-A-49-89172, JP-A-49-97647, and JP-A-50-104050. As shown in Fig. 2, this method involves installing three etch distance meters 21, 22, and 23 along a reference line A that is approximately parallel to the direction in which the steel plate 1 travels, and measuring the distance from the reference line A to the nip on one side of the steel plate 1. The amount of camber is calculated by measuring the distances da%db and dc. However, this method cannot accurately measure the camber when the width of the steel plate 1 changes in the longitudinal direction as shown in the figure.

すなわち、鋼板1の長手方向位置a、b、cにおける幅
方向中央位置Ca5Cb1CCを直線で結んでまる真の
キャンバ−はゼロであるが、実際にはあたかもキャンバ
−がδ、であるかの如く測定されてしまう問題点がある
In other words, the true camber obtained by connecting the widthwise center positions Ca5Cb1CC of the longitudinal positions a, b, and c of the steel plate 1 with a straight line is zero, but in reality, the camber is measured as if it were δ. There is a problem with this.

一方、この様な問題を解決したキャンバ−測定方法とし
ては、例えば特開昭52−44656号公報に開示され
た方法がある。この方法とは鋼板の長手方向における3
個所以上の位置で鋼板の両エッチ位置を固体撮像装置に
より検出し、その検出結果より長手方向各点の幅方向中
央位置をめることによりキャンバ−を測定するものであ
る。この方法によると前述した様な、鋼板に幅変化が存
在している場合でもキャンバ−を測定することは可能で
ある。しかし第3図(a)に示す様に鋼板が基準パスラ
インから上下動している場合や、同図(b)に示す様に
傾斜している場合は、位置検出器2からみた鋼板エッチ
の視野角度がそれぞれθ8、θ2だけ変化し、これによ
り検出されるエッチ位置は真のエッヂ位置に対してそれ
ぞれl3.12の誤差が生じ、その結果キャンバ−量に
も誤差を生じることになり測定精度が悪化する。さらに
まるキャンバ−量は第1図a−C間の長さ2Lの区間に
おけるキャンバ−量であり、任意の区間にわたるキャン
バ−量をめることはできない。
On the other hand, as a camber measurement method that solves this problem, there is a method disclosed in, for example, Japanese Patent Laid-Open No. 52-44656. This method is 3 in the longitudinal direction of the steel plate.
The camber is measured by detecting both etched positions of the steel plate at more than one location using a solid-state imaging device, and determining the center position in the width direction of each point in the longitudinal direction based on the detection results. According to this method, it is possible to measure the camber even when there is a width change in the steel plate as described above. However, if the steel plate moves up and down from the reference pass line as shown in Figure 3(a), or if it is tilted as shown in Figure 3(b), the steel plate etch as seen from the position detector 2 The viewing angle changes by θ8 and θ2, respectively, and as a result, the detected etch position has an error of 13.12 from the true edge position, resulting in an error in the camber amount, which reduces measurement accuracy. becomes worse. Furthermore, the total camber amount is the camber amount in a section of length 2L between a and c in FIG. 1, and it is not possible to measure the camber amount over an arbitrary section.

また、特開昭58−68605号公報に開示されている
方法は、鋼板の表面を2次元撮像装置により所定長さ毎
に画像を捉えて長手方向に合成してキャンバ−量をめる
ものである。この方法では鋼板の幅方向位置変動(以下
、トラッキングと称する)による誤差を補正して任意の
長さ区間にわたってキャンバ−量をめることができるが
、前述の様に鋼板に上下動や傾斜が生じたり、あるいは
−3= 進行方向の角度変動が生じると測定誤差が生じてしまう
問題点を有している。
In addition, the method disclosed in Japanese Patent Application Laid-open No. 58-68605 captures images of the surface of a steel plate every predetermined length using a two-dimensional imaging device and synthesizes them in the longitudinal direction to determine the amount of camber. be. With this method, the amount of camber can be adjusted over an arbitrary length section by correcting errors caused by positional fluctuations in the width direction of the steel plate (hereinafter referred to as tracking), but as mentioned above, vertical movement or inclination of the steel plate may occur. There is a problem that a measurement error occurs when an angular variation in the traveling direction occurs.

発明の目的 本発明は前述の様なそれぞれの問題点を解消することを
目的としたものであり、鋼板の基準パスラインからの上
下動や傾斜、あるいは進行方向の角度変化が生じても測
定誤差を生じることなく鋼板長手方向の任意の区間にわ
たってキャンバ−量を精度よくめることができる方法を
提供するものである。
Purpose of the Invention The present invention is aimed at solving each of the above-mentioned problems.It is an object of the present invention to eliminate measurement errors even when vertical movement or inclination of the steel plate from the standard pass line or angular change in the direction of movement occurs. The object of the present invention is to provide a method that can accurately adjust the amount of camber over an arbitrary section in the longitudinal direction of a steel plate without causing any problems.

発明の構成 本発明は前記目的を達成するために被測定鋼板の長手方
向に少なくとも3個所以上の測定点で鋼板の両エッチを
検出してキャンバ−を測定する方法において、各測定点
の各々のエッヂに2個以上の組をなす位置検出器を鋼板
の上方または下方に所定距離をおいて設け、鋼板の進行
速度を勘案した時間間隔で各測定点における鋼板の両エ
ッチ位置を位置検出器で検出し、ついで各々のエッチに
ついて得られた2個以上の検出結果より位置補正4− を行ない、前記位置補正結果より各測定点における鋼板
の幅中央位置をめ、鋼板の移動に対応して前回求めた幅
中央位置に前記各測定点における幅中央位置の−1部を
重複して順次長手方向に幅中央位置を連続化し、該連続
化された幅中央位置を直線で結んで任意の測定区間にお
けるキャンバ−量をめることを特徴とする鋼板のキャン
バ−測定方法である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for measuring camber by detecting both edges of a steel plate at at least three measurement points in the longitudinal direction of a steel plate. Two or more pairs of position detectors are installed on the edge at a predetermined distance above or below the steel plate, and the position detectors detect both etch positions of the steel plate at each measurement point at time intervals that take the advancing speed of the steel plate into consideration. Then, position correction 4- is performed based on the two or more detection results obtained for each etch, and the width center position of the steel plate at each measurement point is determined from the position correction results, and the previous position is calculated based on the movement of the steel plate. The -1 part of the width center position at each measurement point is overlapped with the obtained width center position to make the width center position continuous in the longitudinal direction, and the continuous width center positions are connected with a straight line to obtain an arbitrary measurement section. This is a method for measuring camber of a steel plate, which is characterized by measuring the amount of camber at .

発明の作用 以下、本発明方法を添付図面に基づいて詳細に説明する
。第4図は本発明方法を実施するための一例を示す概略
図であり、1は鋼板、201〜212は鋼板エッヂ位置
を検出するための位置検出器、a、 1)、 cの各点
は鋼板1の長手方向における測定点である。第5図は前
記位置検出器201〜212による位置検出結果よりキ
ャンバ−量を演算する演算部の構成の一例を示す図であ
る。図中、301〜312は位置検出部、401〜41
2は位置記憶部、51〜56は位置補正演算部、61.
62.63は中央位置演算部、7はキャンバ−量演算部
、8は測定りィミング演算部である。
Effect of the Invention The method of the present invention will be explained in detail below with reference to the accompanying drawings. FIG. 4 is a schematic diagram showing an example of implementing the method of the present invention, in which 1 is a steel plate, 201 to 212 are position detectors for detecting the edge position of the steel plate, and points a, 1), and c are These are measurement points in the longitudinal direction of the steel plate 1. FIG. 5 is a diagram showing an example of the configuration of a calculation section that calculates the amount of camber from the position detection results by the position detectors 201 to 212. In the figure, 301 to 312 are position detection units, 401 to 41
2 is a position storage unit, 51 to 56 are position correction calculation units, 61.
Reference numerals 62 and 63 designate a central position calculation section, 7 a camber amount calculation section, and 8 a measurement and timing calculation section.

第4図に示す様に鋼板1の長手方向に所定間隔りをおい
た3個所の測定点aSb1cにて鋼板lが長手方向所定
長さしだけの移動する毎に、測定タイミング演算部8か
らの指令により鋼板1の両エッチ位置を各エッチについ
てそれぞれ2台ずつの、計12台の位置検出器201〜
212で検出し、該検出信号を第5図に示す位置検出部
301〜312に送る。なお本説明では説明の筒路上、
長手方向の測定点を3点としたが、4点以上でもよい。
As shown in FIG. 4, each time the steel plate 1 moves by a predetermined length in the longitudinal direction at three measurement points aSb1c spaced at predetermined intervals in the longitudinal direction of the steel plate 1, the measurement timing calculation unit 8 A total of 12 position detectors 201 - 2 position detectors for each etch position detect both etch positions of the steel plate 1 according to a command.
212, and sends the detection signal to position detection units 301 to 312 shown in FIG. In addition, in this explanation, the cylinder road of explanation,
Although the number of measurement points in the longitudinal direction was three, four or more may be used.

また位置検出器の数は1つのエッヂについて3台以上用
いてもかまわないが必要とする目的は2台で達成できる
。次に前記位置検出部301〜312による位置検出結
果を、測定毎に位置記憶部401〜412に順次、記憶
させる。上記測定結果より鋼板1の基準パスラインから
の上下動や傾斜が生じた場合の位置検出誤差を補正する
ための演算を以下に説明する方法で行なう。
Although three or more position detectors may be used for one edge, the required purpose can be achieved with two. Next, the position detection results by the position detection units 301 to 312 are sequentially stored in the position storage units 401 to 412 for each measurement. Based on the above measurement results, calculations for correcting position detection errors when vertical movement or inclination of the steel plate 1 from the reference path line occurs are performed by the method described below.

第6図は本発明方法における鋼板1の基準パスラインか
らの上下動および傾斜により生じる位置検出誤差を補正
する原理を示す図である。同図において1は鋼板、20
1〜204は位置検出器であり、1つのエッチについて
それぞれ2台の位置検出器を用いて検出することにより
、例えば左側のエッチ位置は基準パスラインよりY、だ
け上方に動いた場合において位置検出器201では基準
位置1よりX2として検出され、また位置検出器202
では基準位置1よりxl として検出される。この様な
状態において真の左側エッヂ位置Xをめるために、同図
における挽回学的関係を用いて第5図に示す位置補正演
算部51756にて下記fl)〜(8)式に示す位置補
正演算を行なう。なお第6図における記号は以下に示す
値である。
FIG. 6 is a diagram showing the principle of correcting position detection errors caused by vertical movement and inclination of the steel plate 1 from the reference path line in the method of the present invention. In the figure, 1 is a steel plate, 20
1 to 204 are position detectors, and by detecting one etch using two position detectors, the position can be detected, for example, when the left etch position moves upward by Y from the reference path line. The position detector 201 detects X2 from the reference position 1, and the position detector 202
Then, it is detected as xl from the reference position 1. In order to determine the true left edge position X in such a state, the position correction calculation unit 51756 shown in FIG. Perform correction calculations. Note that the symbols in FIG. 6 are the values shown below.

U:位置検出器201と202の距離、および位置検出
器203と204の距離 V二基率位置1と位置検出器201の距離、および基準
位置2と位置検出器204の距離W:位置検出器202
と203の距離 H:基準パスラインより位置検出器201〜204まで
の高さ Y菫:鋼板lの左側エッヂの基準パスラインよりの高さ Y2:鋼板lの右側エッヂの基準パスラインよりの高さ X:基準位置1より真の左側エッチ位置X箇:位置検出
器202で検出される、基準位置lからの左側エッチ位
置 x2=位置検、出器201で検出される、基準位置1か
らの左側エッヂ位置 Z:基準位置2より真の右側エッヂ位置2、:位置検出
器203で検出される、基準位置2からの右側エッチ位
置 Z!:位置検出器204で検出される、基準位置2から
の右側エッチ位置 fil、(2)式より HX+(X、−U−V)Y、=HX、・・曲(31HX
+ (x*−V)Y、= HXi −・曲・・−・・・
+41(3)、(4)式より この様にして真の左側エッチ位置Xがまる。
U: Distance between position detectors 201 and 202 and distance between position detectors 203 and 204 V Distance between position detector 201 and reference position 2 and distance between position detector 204 W: Position detector 202
and 203 distance H: Height from the reference pass line to the position detectors 201 to 204 Y Violet: Height of the left edge of the steel plate l from the reference pass line Y2: Height of the right edge of the steel plate l from the reference pass line X: True left side etch position X from reference position 1: Left side etch position x2 from reference position l, detected by position detector 202 = position detection, detected by output device 201, from reference position 1 Left edge position Z: true right edge position 2 from reference position 2;: right edge position Z from reference position 2 detected by position detector 203! : Right side etch position fil from the reference position 2 detected by the position detector 204, from equation (2), HX+(X, -U-V)Y, =HX,... Song (31HX
+ (x*-V)Y, = HXi −・Song・・・・・・
+41 From equations (3) and (4), the true left etch position X is determined in this way.

同様にして右側エッチ位置ZについてもZノ − Z、
+U こうして上記(6)式、(8)式より真の両エッヂ位置
X。
Similarly, for the right side etch position Z, Z - Z,
+U Thus, from equations (6) and (8) above, the true position of both edges is X.

2は鋼板lの基準パスラインからの上下動や傾斜が生じ
ても誤差を生じることなく正確にめることができる。こ
の様な位置補正演算を第4図の各測定点a1b1Cにつ
いて行ない、鋼板1の両エッチ位置を正確にめる。
2 can be accurately set without causing any error even if the steel plate l moves vertically or tilts from the reference path line. Such position correction calculations are performed for each measurement point a1b1C in FIG. 4 to accurately set both etch positions on the steel plate 1.

に示す中央位置演算部61.62.63にて下記(9)
式の演算を行なってめる。
The central position calculation section 61, 62, and 63 shown in (9) below
Perform calculations on expressions.

C= 次に、この様にしてめた各測定毎の幅方向中央位置を第
5図に示すキャンバ−量演算部7に送り、以下に述べる
方法で「重ね合せ演算」を行い長手方向に連続化を行な
う。この「重ね合せ演算」を行なう目的は、測定中に鋼
板1がトラッキングを生じたり、または進行方向に対し
て角度変化を生じた場合の各測定毎の鋼板の幅中央位置
のずれを補正するためである。
C= Next, the center position in the width direction for each measurement obtained in this way is sent to the camber amount calculating section 7 shown in Fig. 5, and the "superimposition calculation" is performed in the method described below to continuously measure the width in the longitudinal direction. . The purpose of performing this "superposition calculation" is to correct the shift in the width center position of the steel plate for each measurement when the steel plate 1 causes tracking or changes in angle with respect to the direction of movement during measurement. It is.

例えば、第7図(a)に示す様に第(i)番目測定時に
おけるD点、6点の幅中央位置Cb(i)、Cc(i)
は、それぞれ第(i+1)番目測定時におけるa点、b
点の幅中央位置ca (i+1)、Cb(i+1) と
同一の点であるにもかかわらず、鋼板1のトラッキング
が生じると幅方向にδTだけずれを生じる。この幅方向
のずれδTを取り除いて同図(b)に示す様にCc(i
−H)をCa(i)、Cb(i)、Cc(i) CD後
ニ重ネ合セテ連続化シタ状態にするために下記(lO)
式によりCc(i+1)をCc(i+1)としてめる。
For example, as shown in FIG. 7(a), the width center positions Cb(i) and Cc(i) of point D and six points at the time of the (i)th measurement
are point a and point b at the (i+1)th measurement, respectively.
Although the points are the same as the width center positions ca (i+1) and Cb (i+1), when tracking of the steel plate 1 occurs, a deviation of δT occurs in the width direction. By removing this deviation δT in the width direction, Cc(i
-H) to Ca(i), Cb(i), Cc(i) After CD, the following (lO)
Using the formula, Cc(i+1) is set as Cc(i+1).

(、c (i+1)=L−tan(θ、=02+θm)
 + CC(i) ・−−−flo)L:各測定点a1
b、C間の距離 上記(lO)式による「重ね合せ演算」を順次、繰り返
して行なうことにより鋼板1の全長にわたって連続化さ
れた幅中央位置をめることができる。
(, c (i+1)=L-tan(θ,=02+θm)
+ CC(i) ・---flo)L: Each measurement point a1
Distance between b and C By sequentially and repeatedly performing the "superimposition calculation" using the above formula (lO), it is possible to find a continuous width center position over the entire length of the steel plate 1.

この様にして長手方向に連続化した幅中央位置を第8図
に示す様に直線で結んだ線L1と、Ca[1)とCC(
n)とを結んだ直線L2との最大距離δをキャンバ−量
演算部7にて演算してめ、このめたδが第f1j番目か
ら第(ロ)番目の測定区間内の鋼板のキャンバ−量であ
る。従って測定対象区間を変更することにより任意の区
間の鋼板1のキャンバ−量をめることができる。
As shown in FIG. 8, the width center position made continuous in the longitudinal direction is connected with a straight line L1, Ca[1) and CC(
The maximum distance δ to the straight line L2 connecting It is quantity. Therefore, by changing the measurement target section, the amount of camber of the steel plate 1 in any section can be determined.

なお、本発明方法に用いる位置検出器201〜212は
、例えばカメラとCCDやMO8型フォトダイオード等
を組み合せた固体撮像装置が用いられるが、他の検出手
段を用いてもかまわない。また用いるカメラには鋼板の
上下動を考慮した焦点深度のものを用いる。さらに、両
エッチ位置を検出する各々一対の位置検出器は鋼板の幅
に応じて所定間隔を保ちながら幅方向に移動可能な構造
にすることにより、位置検出器1台当りの視野を狭くす
ることができるため、位置検出の分解能力を向上させて
その結果としてめるキャンバ−量の測定精度を向上する
ことができる。
Note that the position detectors 201 to 212 used in the method of the present invention are, for example, solid-state imaging devices that are a combination of a camera, a CCD, an MO8 type photodiode, etc., but other detection means may also be used. In addition, the camera used has a depth of focus that takes into account the vertical movement of the steel plate. Furthermore, the field of view of each position detector can be narrowed by making each pair of position detectors that detect both etch positions movable in the width direction while maintaining a predetermined interval according to the width of the steel plate. Therefore, the resolution ability of position detection can be improved, and the accuracy of measuring the amount of camber obtained as a result can be improved.

実 施 例 本発明による鋼板のキャンバ−測定方法の一例として第
4図および第5図に示す構成の装置と演算部を用いて熱
延鋼板のキャンバ−量を測定した例について説明する。
EXAMPLE As an example of the method for measuring camber of a steel plate according to the present invention, an example will be described in which the amount of camber of a hot rolled steel plate was measured using an apparatus and a calculation section having the configuration shown in FIGS. 4 and 5.

本具体例では第4図に示す様に鋼板長手方向の測定点は
3個所とし、各測定点as bs 0間の距離はそれぞ
れ1,5mとし、かつ各測定点における鋼板1の両エッ
チ位置を検出するために各エッヂについて長手方向に対
して直角にそれぞれ2台ずつ用い、合計12台の位置検
出器201〜212を鋼板1の上方に設けた。なお、位
置検出器201〜212はカメラとCODを組み合せた
固体撮像装置を用い、位置検出器1台当りの視野を約1
000酊(実視野800朋)とし、cccは2048ビ
ツト素子を用いて幅方向の位置検出分解能を約0.5t
III/ピントとし1こ。また、位置検出器の設置条件
は第6図に示す状態にiいて、U=200順、V=80
0順、W= 11ooffff、H= 300omとし
て設け、被測定鋼板の幅を800〜1800朋、鋼板の
許容トラッキング化を±150間とした。この様な構成
の装置を熱延仕上スタンドの出側に設置し第5図に示す
構成の演算装置を用いてキャンバ−を測定した。
In this specific example, as shown in Fig. 4, there are three measurement points in the longitudinal direction of the steel plate, the distance between each measurement point is 1.5 m, and both etch positions of the steel plate 1 at each measurement point are A total of 12 position detectors 201 to 212 were provided above the steel plate 1, with two position detectors being used perpendicularly to the longitudinal direction for each edge for detection. Note that the position detectors 201 to 212 use solid-state imaging devices that combine a camera and a COD, and each position detector has a field of view of approximately 1.
000mm (actual field of view 800mm), CCC uses a 2048-bit element, and the position detection resolution in the width direction is approximately 0.5t.
III/Pinto and one. In addition, the installation conditions for the position detector are as shown in Fig. 6, U=200 order, V=80
0 order, W=11ooffff, H=300om, the width of the steel plate to be measured was 800 to 1800 mm, and the allowable tracking of the steel plate was between ±150 mm. A device having such a configuration was installed on the exit side of a hot rolling finishing stand, and camber was measured using a calculation device having the configuration shown in FIG.

本発明方法に対する比較例としての従来方法は、長手方
向測定個所を3点とし、各測定点間の距離を1.5mと
し、各エッヂの位置検出器は1つのエッヂについて各々
1台ずつ、合計6台の本発明方法と同じものを用い、鋼
板の上下動や傾斜に対する位置補正を行なわない方法に
より実施した。
In the conventional method as a comparative example for the method of the present invention, the number of longitudinal measurement points is three, the distance between each measurement point is 1.5 m, and the number of position detectors for each edge is one for each edge. The test was carried out using the same six machines as the method of the present invention, and without performing position correction for vertical movement or inclination of the steel plate.

発明の効果 上記2種類の方法により原3゜4鰭×幅1000朋、原
2゜6屑革×幅1250mg、厚3.0朋X幅1700
朋の熱延鋼板の圧延トップ部より6mの長さ部分につい
てキャンバ−量を測定した結果と、オフラインで実測し
たキャンバ−量との比較を第1表に示す。
Effect of the invention By using the above two methods, raw material 3゜4 fins x width 1000 mm, raw material 2゜6 scrap leather x width 1250 mg, thickness 3.0 mm x width 1700 mm
Table 1 shows a comparison between the results of measuring the amount of camber in a 6 m long portion from the top of the rolling top of my hot-rolled steel sheet and the amount of camber actually measured off-line.

なお第1表中のY、は、測定中の鋼板が基準パスライン
からの上下動を目視により測定した値である。本発明方
法では、1つのエッヂについて2台の位置検出器を用い
て位鹸補正演算を行ない、鋼板のトラッキングや進行方
向角度変化を除くための「重ね合せ」による連続化をし
tこのちに鋼板のキャンバ−をめるため、第1表に示す
如くキャンバ−測定誤差は従来方法に比べて大幅に改善
されている。
Note that Y in Table 1 is a value obtained by visually measuring the vertical movement of the steel plate under measurement from the reference pass line. In the method of the present invention, position correction calculations are performed for one edge using two position detectors, and continuity is achieved by "overlapping" to eliminate tracking of the steel plate and changes in the direction of travel angle. Since the camber of the steel plate is adjusted, as shown in Table 1, the camber measurement error is significantly improved compared to the conventional method.

以上、説明した様に本発明方法は鋼板のキャンバ−団を
精度よく測定することができるすぐれた鋼板のキャンバ
−測定方法である。
As explained above, the method of the present invention is an excellent method for measuring camber of a steel plate, which can accurately measure the camber group of a steel plate.

第 1 表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はキャンバ−の測定原理を示す図、第2図は従来
方法でのキャンバ−測定の一例を示す図、第3図は鋼板
の上下動や傾斜による位置検出誤差を示す図、第4図は
本発明方法を実施するための位置検出器の設置状況の1
例を示す概略図、第5図は位置検出結果よりキャンバ−
量を演算する演算部構成の一例を示す図、第6図は本発
明方法における位置補正の原理を示す図、第7図は本発
明方法による幅中央位置の重ね合せを示す図、第8図は
連続化された幅中央位置よりキャンバ−量をめる状態を
示す図である。 1・・・鋼板、201.202.203.204.20
5.206.207.208゜209、210.211
.212・・・位置検出器、301.302.303゜
304、305.306.307.308.309.3
10.311.312・・・位置検出部、401.40
2.403.404.4’05.406.407.40
8.409゜410、411.412・・・位置記憶部
、51.52.53.54.55.56・・・位置補正
演算部、61.62.63・・・中央位置演算部、7・
・・キャンバ−量演算部、8・・・測定タイミング演算
部。 出願人 住友金属工業株式会社
Figure 1 is a diagram showing the principle of camber measurement, Figure 2 is a diagram showing an example of camber measurement using the conventional method, Figure 3 is a diagram showing position detection errors due to vertical movement and inclination of the steel plate, and Figure 4 is a diagram showing the position detection error due to vertical movement and inclination of the steel plate. The figure shows one example of the installation situation of a position detector for carrying out the method of the present invention.
A schematic diagram showing an example, Fig. 5 shows the camber from the position detection results.
FIG. 6 is a diagram showing the principle of position correction in the method of the present invention; FIG. 7 is a diagram showing the superposition of width center positions according to the method of the present invention; FIG. 2 is a diagram showing a state in which the amount of camber is increased from the continuous width center position. 1... Steel plate, 201.202.203.204.20
5.206.207.208゜209, 210.211
.. 212...Position detector, 301.302.303°304, 305.306.307.308.309.3
10.311.312...Position detection unit, 401.40
2.403.404.4'05.406.407.40
8.409°410, 411.412...Position storage unit, 51.52.53.54.55.56...Position correction calculation unit, 61.62.63...Center position calculation unit, 7.
... Camber amount calculation section, 8... Measurement timing calculation section. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 被測定鋼板の長手方向に少なくとも3個所以上の測定点
で鋼板の両エッチを検出してキャンバ−を測定する方法
において、各測定点の各々のエッチに2個以上の組をな
す位置検出器を鋼板の上方または下方に所定距離をおい
て設け、鋼板の進行速度を勘案した時間間隔で各測定点
における鋼板の両エッチ位置を前記位置検出器で検出し
、ついで各々のエッチについて得られた2個以上の検出
結果より位置補正を行ない、前記位置補正結果より各測
定点における鋼板の幅中央位置をめ、鋼板の移動に対応
して前回求めた幅中央位置に前記各測定点における幅中
央位置の一部を重複して順けるキャンバ−量をめること
を特徴とする鋼板のキャンバ−測定方法。
In a method of measuring camber by detecting both etches of a steel plate at at least three measurement points in the longitudinal direction of the steel plate to be measured, two or more sets of position detectors are installed at each etch of each measurement point. The position detector is installed at a predetermined distance above or below the steel plate, and the position detector detects both etch positions of the steel plate at each measurement point at time intervals that take the advancing speed of the steel plate into consideration. The position is corrected based on the detection results of more than 100 pieces, the width center position of the steel plate at each measurement point is determined from the position correction result, and the width center position at each measurement point is adjusted to the previously determined width center position according to the movement of the steel plate. A method for measuring camber of a steel plate, characterized by measuring the amount of camber by overlapping a part of the camber.
JP58225169A 1983-11-28 1983-11-28 Camber measuring method of steel plate Pending JPS60115327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225169A JPS60115327A (en) 1983-11-28 1983-11-28 Camber measuring method of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225169A JPS60115327A (en) 1983-11-28 1983-11-28 Camber measuring method of steel plate

Publications (1)

Publication Number Publication Date
JPS60115327A true JPS60115327A (en) 1985-06-21

Family

ID=16825020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225169A Pending JPS60115327A (en) 1983-11-28 1983-11-28 Camber measuring method of steel plate

Country Status (1)

Country Link
JP (1) JPS60115327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989164A (en) * 1987-05-29 1991-01-29 Tfk Process and device for determining the camber of a sheet
JP2010110789A (en) * 2008-11-06 2010-05-20 Nippon Steel Corp Method of deciding whether steel plate is acceptable or not
CN103008363A (en) * 2012-10-22 2013-04-03 河北省首钢迁安钢铁有限责任公司 Quantitative analysis method for hot-rolled piece cambers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989164A (en) * 1987-05-29 1991-01-29 Tfk Process and device for determining the camber of a sheet
JP2010110789A (en) * 2008-11-06 2010-05-20 Nippon Steel Corp Method of deciding whether steel plate is acceptable or not
CN103008363A (en) * 2012-10-22 2013-04-03 河北省首钢迁安钢铁有限责任公司 Quantitative analysis method for hot-rolled piece cambers

Similar Documents

Publication Publication Date Title
EP0309740B1 (en) Method for measuring roll profile and apparatus therefor
CN105229413B (en) Flatness assay method, the flatness measure device of sheet material and the manufacture method of steel plate of sheet material
JP2501498B2 (en) Camber measuring device for rolled steel sheets
CN103240283A (en) Automatic band steel width detecting method
US5722279A (en) Control method of strip travel and tandem strip rolling mill
JPS60115327A (en) Camber measuring method of steel plate
JP2536970B2 (en) Plate thickness measurement method
JP2975053B2 (en) Detection method of welding point in continuous rolling
JPS61148305A (en) Width measuring apparatus of travelling plate
JPH0289757A (en) Method for adjusting meandering of band material
JPH06258027A (en) Position detecting method of plate member using tv camera
JPH06273162A (en) Flatness measuring device
JPS6284813A (en) Control method for plate width
JPS62137114A (en) Plate width control method for thick plate
JPS5926366B2 (en) Plate camber control device for thick plate rolling
JPS619914A (en) Method for controlling crown in sheet rolling
JPH02254303A (en) Detector for strip-shaped material
KR100423925B1 (en) Shape coefficient determining method between hot finishing mill stands
JPS6380908A (en) Meandering and camber control method for rolled stock
JPS5924887B2 (en) Hot rolling mill strip width control method and device
JP2826792B2 (en) Rolling method for steel plate with protrusions with excellent protrusion height accuracy
JPH06331345A (en) Strip-shaped body shape measuring instrument
JPS59183901A (en) Rolling method in edging
JPS61193714A (en) Wedge controlling method in plate rolling
JPS58195112A (en) Method for measuring width of rolled material