JPH02254303A - Detector for strip-shaped material - Google Patents

Detector for strip-shaped material

Info

Publication number
JPH02254303A
JPH02254303A JP1074920A JP7492089A JPH02254303A JP H02254303 A JPH02254303 A JP H02254303A JP 1074920 A JP1074920 A JP 1074920A JP 7492089 A JP7492089 A JP 7492089A JP H02254303 A JPH02254303 A JP H02254303A
Authority
JP
Japan
Prior art keywords
strip
width
shaped material
mounts
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1074920A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshikawa
博文 吉川
Junichi Nishizaki
純一 西崎
Makoto Watanabe
誠 渡辺
Noriyuki Kawada
則幸 川田
Takashi Okai
隆 岡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1074920A priority Critical patent/JPH02254303A/en
Publication of JPH02254303A publication Critical patent/JPH02254303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect the snaking amount and the width of a strip-shaped material accurately and stably by providing a pair of mounts, a pair of three-dimensional image sensing devices, purging devices, an image processing device, and an operating device. CONSTITUTION:Mounts 13 and 13 have moving means for movement in the width direction of a strip-shaped material. Three-dimensional image sensing devices 18 and 18 using optical cameras 18a and 18b and 18c and 18d accommodate both edge parts of the strip-shaped material 11 in the direction of the width in the fields of view. Purging devices 22 and 22 always purify the fields of view of the three-dimensional image sensing devices 18 and 18 effectively. An image processing device 20 computes the edge positions in the fields of view of the cameras based on the image signals from the cameras. An operating device 17 computes the two-dimensional position coordinates of the edge positions in the direction of the height and the direction of the width based on the edge positions by a triangulation method. The snaking amount or the width of the strip-shaped material is computed based on the position coordinates of both edges and the position coordinates of the mounts. In this way, the snaking amount and the width of the strip-shaped material can be detected accurately without the effects of up and down movement and the inclination of the strip-shaped material.

Description

【発明の詳細な説明】 〈産業上の利用分舒〉 本発明は、鋼板や紙、フィルム等の帯状物の生産設備等
に使用される帯状物の蛇行量、幅検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to an apparatus for detecting the meandering amount and width of a strip used in production facilities for strips such as steel plates, paper, and films.

〈従来の技術〉 第4図は従来例にかかる帯状物の蛇行検出装置の構成図
である。第4図に示すように、従来の装置は、帯状物1
1の両端エツジ上方に光学式カメラ12 a、 12 
bがそれぞれ帯状物11の表面に対して略垂直に設置さ
れろと共に、各光学式カメラ12 a、 12 bは帯
状物11の幅に応じて移動するための移動装置(図示せ
ず)に連結されている。そして、光学式カメラ12 a
、 12 bの位置と、これらのカメラ12a、12b
からの画像信号を基に得られた視舒内での帯状物11の
エツジ位置から帯状物11の蛇行量や幅を算出するよう
にしている。
<Prior Art> FIG. 4 is a configuration diagram of a meandering detection device for a belt-like object according to a conventional example. As shown in FIG.
Optical cameras 12a, 12 are installed above the edges of both ends of 1.
b are each installed substantially perpendicular to the surface of the strip 11, and each optical camera 12a, 12b is connected to a moving device (not shown) for moving according to the width of the strip 11. has been done. And optical camera 12a
, 12b and the positions of these cameras 12a, 12b
The meandering amount and width of the belt-like object 11 are calculated from the edge position of the belt-like object 11 within the visual field obtained based on the image signal from.

すなわち、第4図において、光学式カメラ移動装置から
2台の光学式カメラ12 a、12bの間隔りが計測さ
れる。次に、同カメラ12 &。
That is, in FIG. 4, the distance between the two optical cameras 12a and 12b is measured from the optical camera moving device. Next, the same camera 12 &.

12bの画像信号よりカメラ視舒中における帯状物11
のエツジ位置が検出されろ。つまり、カメラ視舒角は既
知であるから、光学式カメラ12の光軸からの角度θ、
、θゎが決定される。また、図中、Yはカメラ設置高さ
を示す。
From the image signal 12b, the band-shaped object 11 is observed by the camera.
The edge position of is detected. In other words, since the viewing angle of the camera is known, the angle θ from the optical axis of the optical camera 12,
, θゎ are determined. Further, in the figure, Y indicates the camera installation height.

これらの量を基に、帯状物11の蛇行量ΔX及び幅Wは
、次の(11,(21により算出される。
Based on these amounts, the meandering amount ΔX and the width W of the belt-shaped object 11 are calculated by the following (11, (21).

ΔX=Y (―θ −―θ )・・・(1)W=D−Y
(ムθ、+―θl、)・・(2)〈発明が解決しようと
する課題〉 ところが、上述した従来の手法には以下のような問題点
があった。
ΔX=Y (-θ −-θ)...(1) W=D-Y
(mu θ, +−θl,) (2) <Problem to be solved by the invention> However, the above-mentioned conventional method has the following problems.

先ず、第5図に示すように、帯状物11が上下方向に移
動した場合を考えると、帯状物11がΔYf!け上方へ
移動すると本来エツジはθ、の位置と検出されるべきも
のがθ ′の位置として検出されることとなる。ここで
、検出装置が仮に帯状物11の高さを計測する手段を備
えていなければ、帯状物11の@Wに(3)式に示すΔ
Wの誤差が生じることとなる。
First, as shown in FIG. 5, if we consider the case where the strip 11 moves in the vertical direction, the strip 11 moves ΔYf! When the edge is moved upward, the edge that should originally be detected as the position θ is instead detected as the position θ'. Here, if the detection device does not have a means for measuring the height of the strip 11, @W of the strip 11 is Δ shown in equation (3).
This results in an error of W.

ΔW=Y ((―θ、′+―θ、’)−(―θ、+―θ
6))・・・(3)また、第6図に示すように、帯状物
11が傾いた場合には、上述の@Wの誤差ΔWに加えて
蛇行量ΔXにも(4)式で示す誤差が生じる。
ΔW=Y ((-θ,'+-θ,')-(-θ,+-θ
6))...(3) Furthermore, as shown in FIG. 6, when the strip 11 is tilted, in addition to the error ΔW of @W mentioned above, the meandering amount ΔX is also expressed by equation (4). An error will occur.

Δx−ΔX’ =Y((―θ、−―θ6)−(−〇、′
−―66′))・(4)一方、従来の検出装置は、カメ
ラの視野範囲を浄化(バージ)して明瞭な画像を得るた
めの装置を備えておらず、悪環境下で使用した場合に検
出の信頼性が著しく低下するという問題点もあった。
Δx-ΔX' = Y((-θ,--θ6)-(-〇,'
--66')) (4) On the other hand, conventional detection devices do not have a device to purify (verge) the field of view of the camera to obtain a clear image, and if used in a bad environment. Another problem was that the reliability of detection was significantly reduced.

本発明は、このような点に鑑みて成されたものであり、
悪環境下において、帯状物の上下動や傾斜に影響される
ことなく正確且つ安定に帯状物の蛇行量や幅を検出でき
る検出装置を提供することを目的としている。
The present invention has been made in view of these points,
It is an object of the present invention to provide a detection device that can accurately and stably detect the meandering amount and width of a belt-shaped object under adverse environments without being affected by vertical movement or inclination of the belt-shaped object.

く課題を解決するための手段〉 上述の目的を達成する本発明にかかる帯状物の検出装置
は、移動する帯状物の幅方向エツジ部を光学式カメラを
用いて検出する装置において、帯状物の幅方向に移動可
能な一対のマウントと、前記各マウントにをれぞれ取付
けられ帯状物の幅方向両エツジ部を各々撮像する各2台
の光学式カメラを有する一対の立体撮像装置と、前記各
マウントにそれぞれ取付けられ前記エツジ部を明瞭に撮
像するためのバージ装置と、前記2台のカメラからの画
像信号を基にカメラ視舒中のエツジ位置を算出する画像
処理装置と、前記エツジ位置から三角測量法によってエ
ツジ位置の高さ方向及び幅方向の二次元位置座標を算出
してこの両エツジの位置座標及び前記マウントの位置座
標を基に帯状物の蛇行量及び/又は幅を算出する演算装
置とを具えたことを特徴とする。
Means for Solving the Problems> A belt-shaped object detection device according to the present invention that achieves the above-mentioned object is a device that detects the widthwise edge portion of a moving belt-shaped object using an optical camera. a pair of three-dimensional imaging devices each having a pair of mounts movable in the width direction, and two optical cameras each attached to each of the mounts and respectively capturing images of both edge portions in the width direction of the strip; a barge device that is attached to each mount to clearly image the edge portion; an image processing device that calculates the edge position as viewed by the camera based on image signals from the two cameras; The two-dimensional position coordinates of the edge position in the height direction and the width direction are calculated by the triangulation method, and the meandering amount and/or width of the strip is calculated based on the position coordinates of both edges and the position coordinates of the mount. It is characterized by comprising a calculation device.

く作用〉 2台の光学式カメラを有する立体撮像装置で帯状物のエ
ツジの高さ方向及び幅方向の二次元位置座標を求めるの
で、帯状物の上下動や傾斜に無関係に正確なエツジ検出
ができる。
Function> Since the two-dimensional position coordinates of the edge of the strip in the height and width directions are obtained using a stereoscopic imaging device with two optical cameras, accurate edge detection is possible regardless of the vertical movement or inclination of the strip. can.

一方、バージ装置は立体撮像装置と共に移動し、悪環境
下においても、常に明瞭な撮像を可能とする。
On the other hand, the barge device moves together with the three-dimensional imaging device, making it possible to always take clear images even under adverse environments.

〈実施例〉 以下、本発明の一実施例を第1図及び第2図を参照して
説明する。
<Example> An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の一実施例にかかる検出装置の構成図、
第2図はその作用説明図である。
FIG. 1 is a configuration diagram of a detection device according to an embodiment of the present invention;
FIG. 2 is an explanatory diagram of its operation.

第1図において、帯状物11は紙面に垂直な方向に移動
する。この帯状物11の幅方向(図中左右方向)両側に
はこれを挾んで互いに対向するように一対のマウント1
3.13が配設されており、各マウント13,13は帯
状物11の幅方向に移動するための移動手段(図示せず
)を有している。この各マウント13.13の移動は移
動信号14としてマウント位置検出装置15に入力され
、そこで各マウント13.13の位置を示すマウント位
置座標信号16に変換されて演算装置17に入力される
In FIG. 1, the strip 11 moves in a direction perpendicular to the plane of the paper. A pair of mounts 1 are provided on both sides of the strip 11 in the width direction (left and right directions in the figure) so as to sandwich it and face each other.
3.13 are arranged, and each mount 13, 13 has a moving means (not shown) for moving in the width direction of the strip 11. This movement of each mount 13.13 is input as a movement signal 14 to the mount position detection device 15, where it is converted into a mount position coordinate signal 16 indicating the position of each mount 13.13 and input to the calculation device 17.

各マウント13.13の上部には、それぞれ2台の光学
式カメラ18 a、18 b及び18c。
At the top of each mount 13.13 are two optical cameras 18a, 18b and 18c, respectively.

18dを用いた立体撮像装置18.18が搭載されてい
る。各立体撮像装置18.18はそれぞれ帯状物11の
幅方向の両エツジ部をその視野に収めるものであり、各
立体撮像装置18.18の画像信号19は画像処理装置
20に入力され、そこでカメラ視舒内でのエツジの位置
が算出され、このエツジ位置信号21が演算装置17に
入力される。
A stereoscopic imaging device 18.18 using 18d is installed. Each stereoscopic imaging device 18.18 has a field of view of both edges of the strip 11 in the width direction, and the image signal 19 of each stereoscopic imaging device 18.18 is inputted to an image processing device 20, where it is processed by a camera. The position of the edge within the visual field is calculated, and this edge position signal 21 is input to the arithmetic unit 17.

ここで、帯状物11の両エツジの検出用に各2台の光学
式カメラ18 a、18 b及び18c。
Here, two optical cameras 18 a, 18 b and 18 c each for detection of both edges of the strip 11.

18dを利用した一対の立体撮像装置18.1.8を用
いたことで、2台のカメラ18a。
By using a pair of stereoscopic imaging devices 18.1.8 using 18d, two cameras 18a.

18b及び18c、18dの視野中における帯状物11
のエツジ位置の違いから、三角測量法によりカメラ取付
基準点からエツジまでの絶対位置を検出することが可能
である。
Band-shaped object 11 in the field of view of 18b, 18c, and 18d
Based on the difference in edge position, it is possible to detect the absolute position from the camera mounting reference point to the edge by triangulation.

尚、使用するカメラの台数が増加したことによる画像デ
ータの増加に対しては、画像処理を分散化することで容
易に対応可能であり、各カメラの検出位置のずれは、同
一の同期信号によりカメラを動作させることで防止する
ことができる。
In addition, the increase in image data due to an increase in the number of cameras used can be easily handled by decentralizing image processing, and the deviation in the detection position of each camera can be corrected by using the same synchronization signal. This can be prevented by operating the camera.

而して、演算装置17においては、エツジ位置信号21
に基いて三角測量法によって帯状物11のエツジ位置の
高さ及び幅方向の二次元位置座標を算出し、この位置座
標とマウン)13の位Mf11mとから帯状物11の蛇
行量や幅を算出する。
Therefore, in the arithmetic unit 17, the edge position signal 21
The two-dimensional position coordinates in the height and width direction of the edge position of the strip 11 are calculated by triangulation based on the above, and the meandering amount and width of the strip 11 are calculated from these position coordinates and the 13th place Mf11m. do.

また、各マウント13.13にはそれぞれバージ装置2
2.22が搭載されている。このバージ装置22.22
は、例えばノズルがら圧縮空気を噴射するものであり、
各マウント13.13に取付けられた立体撮像装置18
.18のカメラレンズ面に付着した水滴等の異物を吹き
飛ばすと共に、両立体操像装置18.18の視野範囲に
ある水蒸気や浮遊物を吹き払らい、明瞭な撮像を可能と
するものである。
In addition, each mount 13.13 has a barge device 2
2.22 is installed. This barge device 22.22
For example, it injects compressed air from a nozzle,
Stereoscopic imaging device 18 attached to each mount 13.13
.. It blows off foreign matter such as water droplets attached to the camera lens surface of the camera lens 18, and also blows away water vapor and floating matter within the field of view of the balance gymnastics imaging device 18.18, thereby making it possible to take clear images.

ここで、このバージ装置22.22は立([像装置18
.18が取付けられているマウント13.13にそれぞ
れ一体的に取付けられており、両者は一緒に移動するこ
とから、バージ装置22.22は常に立体撮像装置18
.18の視野範囲を効果的に浄化することができろ。
Here, this barge device 22.22 is vertical ([image device 18
.. The barge device 22.22 is always attached to the mount 13.13 to which the stereoscopic imaging device 18 is attached, and the two move together.
.. Be able to effectively purify 18 visual fields.

次に、第2図によって上記絶対位置、及び蛇行量、幅の
算出方法について説明する。
Next, a method of calculating the absolute position, meandering amount, and width will be explained with reference to FIG.

第2図において、各々のマウント13.13のカメラ取
付基準点はそれぞれ外側のカメラ18a、18cの位置
とし、その基準点から内側のカメラ18 b、  18
 dまでの距離は予め正確に計測され、ここでは高さ方
向にh1幅方向にdfけ離れているとする。さらに、第
2図において、α、、α、、 ac、α6はそれぞれ各
カメラ18 a、18 b、18 c、18 dの傾き
角、Dは両側の基準点となるカメラ18aと18cの間
隔、θ、、θ5.θ。、θ−よそれぞれカメラ18a、
18b、18c、18dで検出した視野中でのエツジ位
置を光軸からの角度に変換した値である。而して、両エ
ツジの基準点からの位置は以下の(5)〜(8)式で求
められろ。
In FIG. 2, the camera mounting reference point of each mount 13.13 is the position of the outer camera 18a, 18c, respectively, and from that reference point the inner camera 18b, 18 is located.
The distance to d is accurately measured in advance, and here it is assumed that the distance is h1 in the height direction and df in the width direction. Furthermore, in FIG. 2, α, α, ac, and α6 are the inclination angles of the cameras 18a, 18b, 18c, and 18d, respectively, and D is the distance between the cameras 18a and 18c that serve as reference points on both sides. θ,, θ5. θ. , θ- respectively, the camera 18a,
This is a value obtained by converting the edge position in the field of view detected by 18b, 18c, and 18d into an angle from the optical axis. Therefore, the positions of both edges from the reference point can be found using the following equations (5) to (8).

X =Y tag(a、−θ)=−d +(Y、 +h
 ) −ram Ca、−θ、 )−(5)Y =(−
d+htam (α、−θ−) / (taa (a、
−〇、)−jan (a 、−θ−1・・+61X=Y
cm(a。−θ)=−d +(Y 、+h )m (a
 、−〇、)・f7)Yc=(−d+hlam(cr 
、−θ−)/k(a、−θ、J−m(a、−〇、))・
=(8+さらに、コt:o (x、、 y、) ト(X
、 Y、) it用いて、(9) 、 (11式のよう
に蛇行量ΔX及び幅Wが求められる。
X = Y tag (a, -θ) = -d + (Y, +h
) −ram Ca, −θ, )−(5) Y =(−
d+htam (α, -θ-) / (taa (a,
-〇,)-jan (a, -θ-1...+61X=Y
cm(a.-θ)=-d+(Y,+h)m(a
, -〇, )・f7) Yc=(-d+hlam(cr
, -θ-)/k(a, -θ, J-m(a, -〇,))・
= (8 + further, kot:o (x,, y,) t(X
, Y, ) it, the meandering amount ΔX and the width W are determined as in equations (9) and (11).

ΔX= (X  −X  ) /2・・・(9)(91
,01式から明らかなように、エツジの位置を算出して
から蛇行量及び幅を算出しているので、帯状物の上下動
や傾きには影響されて正確に蛇行量や幅を求めることが
できる。
ΔX= (X −X ) /2...(9)(91
As is clear from Equation 01, the meandering amount and width are calculated after calculating the edge position, so it is not possible to accurately calculate the meandering amount and width because it is affected by the vertical movement and inclination of the strip. can.

次に、第3図は圧延機に本検出装置を適用した例の蛇行
制御のブロック図を示したものである。第3Sにおいて
、23は圧下シリンダの位置制御装置、24は位置制御
信号、25は本検出装置、26は蛇行量信号、27は制
細演算器、28は蛇行制御信号、29は蛇行制御装置、
30は圧下制御装置、31は圧下操作信号、32は圧延
機、33はカメラからの画像信号である。
Next, FIG. 3 shows a block diagram of meandering control in an example in which the present detection device is applied to a rolling mill. In the third S, 23 is a position control device for the reduction cylinder, 24 is a position control signal, 25 is a main detection device, 26 is a meandering amount signal, 27 is a fine-tuning calculator, 28 is a meandering control signal, 29 is a meandering control device,
30 is a rolling control device, 31 is a rolling operation signal, 32 is a rolling mill, and 33 is an image signal from a camera.

第3図に示すように、本検出装置25では帯状物である
圧延材の蛇行量を直接検出するので、蛇行制御装置29
は比例フィードバックのみで容易に実現できる。従って
、圧下シリンダの荷重差を利用するような微分要素がな
いので、安定領域も広い。
As shown in FIG. 3, since the present detection device 25 directly detects the meandering amount of the rolled material, which is a strip, the meandering control device 29
can be easily realized using only proportional feedback. Therefore, since there is no differential element that utilizes the load difference between the reduction cylinders, the stable region is wide.

〈発明の効果〉 以上、実施例を挙げて詳細に説明したように本発明によ
れば、2台の光学式カメラを有する立体撮像装置で帯状
物のエツジの高さ方向及び幅方向の二次元位置座標を求
め、それから帯状物の蛇行量や幅を検出するので、帯状
物の上下動や傾斜に影響されることなく正確に帯状物の
蛇行量や幅を検出することができる。また、立体撮像装
置と一緒に移動するバージ装置を有するので悪環境下に
おいても高い信頼性を得ることができる。
<Effects of the Invention> As described above in detail with reference to embodiments, according to the present invention, a three-dimensional imaging device having two optical cameras can capture two-dimensional images of the edge of a strip in the height direction and width direction. Since the position coordinates are determined and the meandering amount and width of the strip are detected from there, the meandering amount and width of the strip can be accurately detected without being affected by vertical movement or inclination of the strip. Furthermore, since it has a barge device that moves together with the stereoscopic imaging device, high reliability can be obtained even under adverse environments.

一方、蛇行量を直接検出することにより、その出力信号
を利用する蛇行制御装置も比例フィードバックで容易且
つ安定に実現することが可能である。
On the other hand, by directly detecting the amount of meandering, it is possible to easily and stably realize a meandering control device using the output signal using proportional feedback.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかる帯状物の検出装置の
構成図、第2図はその作用説明図、第3図は圧延機に本
検出装置を適用した例の蛇行副軸のブロック図、第4図
は従来例にかかる帯状物の蛇行検出装置の構成図、第5
図は帯状物が上下動した場合における従来装置の不具合
の説明図、第6図は帯状物が傾斜した場合におけろ従来
装置の不具合の説FIJ1図である。 図面中、 11は帯状物、 13はマウント、 15はマウント位置検出装置、 17は演算装置、 18は立体撮像装置、 18 a、 18 b、 18 c、  18 dは光
学式%式% 22はバージ装置である。 第3図
Fig. 1 is a configuration diagram of a belt-like object detection device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of its operation, and Fig. 3 is a block of a meandering subshaft in an example in which the present detection device is applied to a rolling mill. FIG.
The figure is an explanatory diagram of a malfunction of the conventional device when the strip-shaped object moves up and down, and FIG. 6 is a diagram FIJ1 explaining the malfunction of the conventional device when the strip-shaped article is tilted. In the drawings, 11 is a strip, 13 is a mount, 15 is a mount position detection device, 17 is an arithmetic device, 18 is a stereoscopic imaging device, 18 a, 18 b, 18 c, and 18 d are optical percentage types, and 22 is a barge. It is a device. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 移動する帯状物の幅方向エッジ部を光学式カメラを用い
て検出する装置において、帯状物の幅方向に移動可能な
一対のマウントと、前記各マウントにそれぞれ取付けら
れ帯状物の幅方向両エッジ部を各々撮像する各2台の光
学カメラを有する一対の立体撮像装置と、前記各マウン
トにそれぞれ取付けられ前記エッジ部を明瞭に撮像する
ためのバージ装置と、前記2台のカメラからの画像信号
を基にカメラ視野中のエッジ位置を算出する画像処理装
置と、前記エッジ位置から三角測量法によってエッジ位
置の高さ方向及び幅方向の二次元位置座標を算出してこ
の両エッジの位置座標及び前記マウントの位置座標を基
に帯状物の蛇行量及び/又は幅を算出する演算装置とを
具えたことを特徴とする帯状物の検出装置。
A device for detecting the widthwise edges of a moving strip using an optical camera, which includes: a pair of mounts that are movable in the widthwise direction of the strip; and a pair of mounts that are respectively attached to the mounts and detecting both widthwise edges of the strip. a pair of three-dimensional imaging devices each having two optical cameras that respectively take images of the edges; a barge device that is attached to each of the mounts to clearly image the edge; and a barge device that captures image signals from the two cameras. and an image processing device that calculates the edge position in the camera field of view based on the edge position, and calculates the two-dimensional position coordinates of the edge position in the height direction and width direction from the edge position by triangulation method, and calculates the position coordinates of both edges and the above. 1. A belt-shaped object detection device comprising: a calculation device that calculates the meandering amount and/or width of the belt-shaped object based on the position coordinates of the mount.
JP1074920A 1989-03-29 1989-03-29 Detector for strip-shaped material Pending JPH02254303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1074920A JPH02254303A (en) 1989-03-29 1989-03-29 Detector for strip-shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074920A JPH02254303A (en) 1989-03-29 1989-03-29 Detector for strip-shaped material

Publications (1)

Publication Number Publication Date
JPH02254303A true JPH02254303A (en) 1990-10-15

Family

ID=13561300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074920A Pending JPH02254303A (en) 1989-03-29 1989-03-29 Detector for strip-shaped material

Country Status (1)

Country Link
JP (1) JPH02254303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000074247A (en) * 1999-05-19 2000-12-15 이구택 Method of measuring width of slab using inclined ccd camera
KR100406390B1 (en) * 1998-12-02 2004-01-24 주식회사 포스코 Apparatus and method for measuring the slab width by using the mapping algorithm in two dimentinoal coordinates
CN102847767A (en) * 2012-09-17 2013-01-02 广西工学院 Punching processing quality control method of large-scale covering component
JP2013015361A (en) * 2011-07-01 2013-01-24 Toshiba Mitsubishi-Electric Industrial System Corp Width measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406390B1 (en) * 1998-12-02 2004-01-24 주식회사 포스코 Apparatus and method for measuring the slab width by using the mapping algorithm in two dimentinoal coordinates
KR20000074247A (en) * 1999-05-19 2000-12-15 이구택 Method of measuring width of slab using inclined ccd camera
JP2013015361A (en) * 2011-07-01 2013-01-24 Toshiba Mitsubishi-Electric Industrial System Corp Width measuring apparatus
CN102847767A (en) * 2012-09-17 2013-01-02 广西工学院 Punching processing quality control method of large-scale covering component
CN102847767B (en) * 2012-09-17 2014-12-24 广西工学院 Punching processing quality control method of large-scale covering component

Similar Documents

Publication Publication Date Title
Coudert et al. Back-projection algorithm with misalignment corrections for 2D3C stereoscopic PIV
EP1828713B1 (en) Thin film thickness measurement method and apparatus
US20100328455A1 (en) Method for Object Localization Using Visual Images with Reference Coordinates
US20020029127A1 (en) Method and apparatus for measuring 3-D information
EP3332387B1 (en) Method for calibration of a stereo camera
US5214490A (en) Sheet dimension measurement system
CN113188484B (en) Method for detecting outline area of head of hot-rolled coil
CN111707668A (en) Tunnel detection and image processing method based on sequence image
CN108592885A (en) A kind of list binocular fusion positioning distance measuring algorithm
US7924409B2 (en) Rangefinder and range finding method
US7026620B2 (en) Method and device for the geometrical measurement of a material strip
JP2501498B2 (en) Camber measuring device for rolled steel sheets
JPH02254303A (en) Detector for strip-shaped material
JPS5822903A (en) Rolling monitoring device of plate material
US20200393289A1 (en) Measurement system, correction processing apparatus, correction processing method, and computer-readable recording medium
JP2004212104A (en) Apparatus and method imaging surface of object
CN115711893A (en) Online steel plate camber measuring system and measuring method
JP3048107B2 (en) Method and apparatus for measuring object dimensions
US6791617B1 (en) Distance detecting device and a method for distance detection
JPS6256814A (en) Calibration system for three-dimensional position measuring camera
JPH03296605A (en) Measuring apparatus of width of band-shaped object
JPS5926366B2 (en) Plate camber control device for thick plate rolling
JP2774624B2 (en) Distance / posture measuring device for moving objects
JPH03296606A (en) Measuring apparatus of width of band-shaped object
JPH06331345A (en) Strip-shaped body shape measuring instrument