JPH04232803A - Running body width measuring device - Google Patents

Running body width measuring device

Info

Publication number
JPH04232803A
JPH04232803A JP41539590A JP41539590A JPH04232803A JP H04232803 A JPH04232803 A JP H04232803A JP 41539590 A JP41539590 A JP 41539590A JP 41539590 A JP41539590 A JP 41539590A JP H04232803 A JPH04232803 A JP H04232803A
Authority
JP
Japan
Prior art keywords
measured
linear array
width
light source
array type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP41539590A
Other languages
Japanese (ja)
Inventor
Kuniaki Sato
邦章 佐藤
Mitsuru Sakakibara
満 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP41539590A priority Critical patent/JPH04232803A/en
Publication of JPH04232803A publication Critical patent/JPH04232803A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To correctly measure the surface width size of a thick object with an irregular edge shape in no contact during conveyance. CONSTITUTION:A light source 4 radiating the surface of a measured material perpendicularly to the conveyance direction is arranged on a conveyance line. Linear array type cameras 2, 3 are arranged on the upstream and downstream sides centering on the light source 4 at the upper position than the light source 4. The interval between the linear array type cameras 2, 3 is set to the minimum length or below of the measured object. The linear array type cameras 2, 3 receive the reflected light from the surface of the measured material. Height sensors 5a, 5b measuring the height of the measured material are arranged at the same axial position horizontally as the linear array type camera 2 on both sides of a conveyance line. The skew angle of the measured material against the conveyance line center, the warp of the measured material, and the width quantity increased in measurement due to vibration are calculated and corrected by an arithmetic unit based on signals of the linear array type cameras 2, 3 and signals of the height sensors 5a, 5b to obtain the true width.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、搬送ライン上を走行中
に被測定材の幅を光学的に測定する走間幅測定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a running width measuring device for optically measuring the width of a material to be measured while traveling on a conveyance line.

【0002】0002

【従来の技術】一般に、製鉄所の鋼板(帯)製造設備で
ある連続熱延工場では、鋼板(帯)の素材となる鋼片を
圧延の前処理として加熱炉に挿入し、予め決められた温
度に昇温する。
[Prior Art] Generally, in a continuous hot rolling mill, which is a steel plate (strip) manufacturing equipment in a steel mill, a steel billet, which is the raw material for a steel plate (strip), is inserted into a heating furnace as a pretreatment for rolling. Raise the temperature to

【0003】しかし、鋼片を加熱炉に圧延順番に従って
挿入する際、誤って対象外の鋼片を挿入し、工程混乱の
原因となる場合がある。このため、その防止策として挿
入前に搬送テーブル上で鋼片の幅、長さを人手または実
開昭62−3251号公報、実開昭62−34308号
公報記載の接触式測定装置により測定している。
However, when inserting steel billets into a heating furnace in accordance with the rolling order, there are cases where an incorrect steel billet is inserted by mistake, causing process confusion. Therefore, as a preventive measure, the width and length of the steel piece should be measured manually or with a contact measuring device described in Japanese Utility Model Application No. 62-3251 and No. 62-34308 on the conveying table before insertion. ing.

【0004】0004

【発明が解決しようとする課題】人手による幅測定は危
険を伴うだけでなく、スケールの読み違い等の人的ミス
があり、更に要員の有効利用を妨げる問題がある。一方
、接触式幅測定装置は鋼片との衝突、振動による保守上
の問題がある等で、未だ有効なものとはいえない。
[Problems to be Solved by the Invention] Manual width measurement is not only dangerous, but also prone to human errors such as misreading the scale, and furthermore, there are problems that hinder the effective use of personnel. On the other hand, contact type width measuring devices are not yet effective due to maintenance problems due to collisions with steel pieces and vibration.

【0005】非接触の幅測定技術として、特開昭63−
252206号公報には、S/Nを良くするため光源を
被測定材の下面に配置し、被測定材の遮光長さにより幅
測定するものが記載されている。これは、鋼片のように
板厚が厚く(50〜300mm)、またエッジの形状に
凹凸があり、不揃いの物に対しては表面の幅寸法を測定
するのに不適であり、薄物(0.1 〜30mm)でエ
ッジ形状が一定の物に限られる。
[0005] As a non-contact width measurement technique, Japanese Patent Application Laid-open No. 1983-
Japanese Patent No. 252206 describes a method in which a light source is placed on the lower surface of a material to be measured in order to improve the S/N ratio, and the width is measured based on the length of the light-shielding material. This method is unsuitable for measuring the width of the surface of objects that are thick (50 to 300 mm) like steel pieces, have uneven edges, and are irregular. .1 to 30 mm) with a constant edge shape.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、搬送ラ
イン上を走行中に被測定材の幅を光学的に測定する走間
幅測定装置において、搬送ライン上部に搬送方向と直交
して配置され被測定材表面を照射する光源と、該光源よ
り上部位置であってかつ光源を中心として上流、下流に
両者の間隔が被測定材の最小長さ以下の間隔に設定し配
置され、被測定材表面からの反射光を受光するリニアア
レイ式カメラと、搬送ラインの両側に前記リニアアレイ
式カメラの一方と平面的に同一軸位置に設けられた被測
定材の高さを測定する高さセンサーと、前記リニアアレ
イ式カメラの信号、高さセンサーの信号をもとに、被測
定材の搬送ラインセンターに対する斜行角および被測定
材の反り、振動により測定上増加した幅量を演算し、補
正して真の幅を求める演算機とから構成したことを特徴
とする走間幅測定装置である。
[Means for Solving the Problems] The gist of the present invention is to provide a running width measuring device that optically measures the width of a material to be measured while traveling on a conveying line. A light source that is arranged and illuminates the surface of the material to be measured, and a light source that is located above the light source and located upstream and downstream from the light source so that the distance between the two is set to be less than or equal to the minimum length of the material to be measured; A linear array camera that receives reflected light from the surface of the material to be measured, and a height that measures the height of the material to be measured, which are installed on both sides of the conveyance line at the same axial position in plan as one of the linear array cameras. Based on the sensor, the signal from the linear array camera, and the signal from the height sensor, calculate the oblique angle of the material to be measured with respect to the center of the conveyance line, and the amount of increase in width due to warpage and vibration of the material to be measured. This is a running width measuring device characterized in that it is comprised of a computing device that corrects and calculates the true width.

【0007】[0007]

【作用】図面は本発明の実施例を示す。[Operation] The drawings show embodiments of the invention.

【0008】図1に示すように、被測定材である鋼片1
は矢印の方向へ搬送テーブル7により搬送される。図2
、3に示すように、搬送テーブル7上部に搬送方向と直
交して鋼片表面を照射する光源4を配置する。光源4は
レーザーやハロゲンランプでも良いが、安価で安定した
光量の得られる市販の蛍光灯が好ましい。図示の例は蛍
光灯光源で、幅方向に2灯配置を示す。これにより、鋼
片1の表面は幅方向に対し常に一定の光量が受光できる
ことになる。
As shown in FIG. 1, a steel piece 1 which is a material to be measured is
is transported by the transport table 7 in the direction of the arrow. Figure 2
, 3, a light source 4 that illuminates the surface of the steel billet is disposed above the conveyance table 7 in a direction perpendicular to the conveyance direction. The light source 4 may be a laser or a halogen lamp, but a commercially available fluorescent lamp is preferred because it is inexpensive and provides a stable amount of light. The illustrated example is a fluorescent light source, and two lamps are arranged in the width direction. As a result, the surface of the steel piece 1 can always receive a constant amount of light in the width direction.

【0009】リニアアレイ式カメラ2、3を光源4より
上部位置で、光源4を中心として上流、下流に等間隔で
各1ケ配置し、かつ両者の間隔は鋼片の最小長さ以下に
設定する。リニアアレイ式カメラ2、3で鋼片1の表面
からの反射光を受光し、幅測定する。搬送テーブル7の
両側にかつリニアアレイ式カメラ2と平面的に同一軸位
置に高さセンサー5a、5bを設け、リニアアレイ式カ
メラ2で幅測定時に同じ位置における鋼片1の高さを測
定する。搬送テーブル7の両側に鋼片検出センサー6a
、6bを配置し、鋼片1の存在を検出する。演算機8で
リニアアレイ式カメラ2、3、高さセンサー5a、5b
からの信号をもとに幅補正して真の幅を演算する。
[0009] Linear array type cameras 2 and 3 are arranged above the light source 4, one each at equal intervals on the upstream and downstream sides of the light source 4, and the distance between them is set to be less than the minimum length of the steel piece. do. Linear array cameras 2 and 3 receive reflected light from the surface of the steel piece 1 and measure the width. Height sensors 5a and 5b are provided on both sides of the conveyance table 7 and at the same axial position in plan as the linear array camera 2, and the linear array camera 2 measures the height of the steel billet 1 at the same position when measuring the width. . Steel piece detection sensors 6a are installed on both sides of the conveyance table 7.
, 6b are placed to detect the presence of the steel piece 1. Computing unit 8 connects linear array cameras 2 and 3, and height sensors 5a and 5b.
The true width is calculated by correcting the width based on the signal from.

【0010】なお、図4は鋼片検出センサー6a、6b
の情報も演算機8に入力する態様を示すが、鋼片1が存
在する間、リニアアレイ式カメラ2、3、高さセンサー
5a、5bおよび演算機8による幅測定を行うための情
報として利用することが好ましい。
Note that FIG. 4 shows the steel piece detection sensors 6a and 6b.
This information also shows how to input it to the computer 8, and while the steel piece 1 is present, it is used as information for width measurement by the linear array cameras 2, 3, height sensors 5a, 5b, and the computer 8. It is preferable to do so.

【0011】本発明の実施例装置は以上のような構成で
あるが、以下に測定手順について述べる。
The apparatus according to the embodiment of the present invention has the above-mentioned configuration, and the measurement procedure will be described below.

【0012】鋼片1の表面に光源4から蛍光灯光を照射
し、その反射光をリニアアレイ式カメラ2、3で受光し
た場合のアナログ波形は図5(a)のようになる。この
波形において鋼片1の表面エッジを安定して検出するた
め、全体波形のレベルより低めでノイズレベルよりも高
い点をエッジ検出ポイントとして設定する。図5(a)
の波形をデジタル処理したのが図5(b)の波形である
When the surface of the steel piece 1 is irradiated with fluorescent light from the light source 4 and the reflected light is received by the linear array cameras 2 and 3, the analog waveform is as shown in FIG. 5(a). In order to stably detect the surface edge of the steel piece 1 in this waveform, a point that is lower than the overall waveform level and higher than the noise level is set as an edge detection point. Figure 5(a)
The waveform in FIG. 5(b) is obtained by digitally processing the waveform in FIG.

【0013】鋼片表面に砂や異物等がのっていると、図
5のように波形が2つあるいはそれ以上に割れる。最小
鋼片幅よりもこの割れが小さいときはエッジとはみなさ
ないよう演算機8に内蔵したカウンターにより判断し、
真のエッジを求めるよう処理する。
[0013] If sand or foreign matter is on the surface of the steel piece, the waveform will break into two or more pieces as shown in FIG. If this crack is smaller than the minimum strip width, it is determined by the counter built into the computer 8 so that it is not considered as an edge.
Process to find the true edge.

【0014】鋼片1は、搬送テーブル7にセットされる
時および搬送中、搬送テーブル7進行方向に対し斜行角
を持つため、そのまま幅測定を行うと斜行角により実際
より大きく測定する。この角度を補正するためリニアア
レイ式カメラ2、3を図1、図2に示すように進行方向
に最小鋼片長さよりも小さい値Lで2台配置する。ライ
ンセンターよりのリニアアレイ式カメラ2、3の測定値
をそれぞれAi、Biとすると、斜行角θはθ=±ta
n−1(Ai−Bi)/L である。従って、真の幅Wは、測定値Wiを演算機8に
入力することによりW=Wi・cosθで求めることが
できる。
When the steel billet 1 is set on the conveyance table 7 and during conveyance, it has an oblique angle with respect to the direction of movement of the conveyance table 7, so if the width is measured as it is, the measurement will be larger than the actual width due to the oblique angle. In order to correct this angle, two linear array cameras 2 and 3 are arranged in the traveling direction at a value L smaller than the minimum length of the steel billet, as shown in FIGS. 1 and 2. If the measured values of linear array cameras 2 and 3 from the line center are Ai and Bi, respectively, the skew angle θ is θ=±ta
n-1(Ai-Bi)/L. Therefore, the true width W can be determined by inputting the measured value Wi into the calculator 8 as W=Wi·cos θ.

【0015】次に、鋼片が反ったり、またそのため振動
したりすると実際の値よりも大きくなる。この補正のた
め搬送テーフル7両サイドで且つリニアアレイ式カメラ
2と平面的に同一軸位置に高さセンサー5a、5bを配
置する。高さセンサー5a、5bは最大反り量と振動を
考慮した分の高さを検出できればよく、例えばフォトセ
ンサーを5mm以下の一定間隔で多数配置したもの、あ
るいは高さをアナログ的に得ることのできる市販のセン
サーでよい。図6に示すように、反りおよび振動量を△
Hとし、その影響により増加した幅量を2・△Wとする
と、2・△W=△H・Wi/(H−△H)である。この
ように、高さセンサー5a、5bの測定値△Hを演算機
8に入力することにより、反り、振動のため増加した幅
量を求めることが可能である。
Next, if the steel piece warps or vibrates as a result, the value becomes larger than the actual value. For this correction, height sensors 5a and 5b are arranged on both sides of the transport table 7 and at the same axial position as the linear array camera 2 in a plane. The height sensors 5a and 5b only need to be able to detect the height that takes into account the maximum amount of warpage and vibration; for example, a large number of photosensors arranged at regular intervals of 5 mm or less, or the height can be obtained in an analog manner. A commercially available sensor will suffice. As shown in Figure 6, the amount of warpage and vibration is △
Let H be the width amount increased due to the influence, and 2·ΔW is 2·ΔW=ΔH·Wi/(H−ΔH). In this way, by inputting the measured values ΔH of the height sensors 5a and 5b into the computer 8, it is possible to determine the amount of width increased due to warpage and vibration.

【0016】従って、真の幅Wは角度補正分と反り振動
量を考慮して、       W=Wi・cosθ−2・△W=Wi(c
osθ−△H/(H−△H))となる。これを演算機8
で演算することにより、容易に真の幅Wを求めることが
可能である。
[0016] Therefore, the true width W, taking into account the angle correction and the amount of warp vibration, is calculated as follows: W=Wi cos θ-2 ΔW=Wi (c
osθ−ΔH/(H−ΔH)). This is calculated by computer 8
By calculating the true width W, it is possible to easily obtain the true width W.

【0017】[0017]

【実施例】次に本発明装置による測定例を挙げる。[Example] Next, an example of measurement using the apparatus of the present invention will be given.

【0018】図1〜4に示す鋼片幅測定装置を用い、幅
1,200mm、長さ5,000〜9,900mm、厚
さ235mm の鋼片を搬送テーブル幅1,800mm
、搬送速度90m/min で搬送し、測定を行った。 装置の設定条件は次の通りである。 カメラ高さH=2,000mm カメラ間距離L=1,000mm カメラ受光素子数=3,528bit 光源40W蛍光灯2灯 光源高さ1.5m 高さセンサー:1mmピッチフォトセンサー60個配置
搬送時の鋼片設定は次の通りである。 鋼片反り・振動量△H=0〜60mm 搬送角度=0〜5度
[0018] Using the steel billet width measuring device shown in Figs. 1 to 4, a steel billet with a width of 1,200 mm, a length of 5,000 to 9,900 mm, and a thickness of 235 mm is transferred to a transfer table with a width of 1,800 mm.
The measurement was carried out by conveying at a conveying speed of 90 m/min. The setting conditions of the device are as follows. Camera height H = 2,000mm Distance between cameras L = 1,000mm Number of camera light receiving elements = 3,528 bits Light source: 2 40W fluorescent lamps Light source height: 1.5m Height sensor: 60 1mm pitch photosensors during transportation The billet settings are as follows. Steel billet warpage/vibration amount △H = 0 to 60 mm Conveyance angle = 0 to 5 degrees

【0019】測定結果を表1に示す。The measurement results are shown in Table 1.

【0020】[0020]

【表1】[Table 1]

【0021】尚、比較例は角度補正、高さ補正なしで測
定した例である。
Note that the comparative example is an example in which measurements were made without angle correction or height correction.

【0022】[0022]

【発明の効果】本発明装置により角度補正および反り・
振動量補正を行うことができ、比較例に比較し角度補正
で5mm、反り振動量補正で67mmの合計72mmを
補正でき、安価な設備でその効果が大きい。
[Effects of the invention] The device of the present invention can correct angles and prevent warping.
The amount of vibration can be corrected, and compared to the comparative example, it is possible to correct a total of 72 mm, including 5 mm for angle correction and 67 mm for warp vibration amount, and the effect is large with inexpensive equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例の側面図である。FIG. 1 is a side view of an embodiment of the present invention.

【図2】本発明実施例の平面図である。FIG. 2 is a plan view of an embodiment of the present invention.

【図3】本発明実施例の正面図である。FIG. 3 is a front view of an embodiment of the present invention.

【図4】リニアアレイ式カメラ、高さセンサーおよび鋼
片検出センサーと演算機との接続系統を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing a connection system between a linear array camera, a height sensor, a steel piece detection sensor, and a computer.

【図5】カメラによる鋼片検出アナログ波形とデジタル
波形を示す説明図である。
FIG. 5 is an explanatory diagram showing analog waveforms and digital waveforms detected by a camera.

【図6】反り、振動による測定幅変化量を示す説明図で
ある。
FIG. 6 is an explanatory diagram showing the amount of measurement width change due to warpage and vibration.

【符号の説明】[Explanation of symbols]

1  鋼片 2、3  リニアアレイ式カメラ 4  光源 5a、5b  高さセンサー 6  鋼片検出センサー 7  搬送テーブル 8  演算機 1 Steel piece 2, 3 Linear array camera 4. Light source 5a, 5b height sensor 6 Steel billet detection sensor 7 Transfer table 8 Arithmetic machine

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  搬送ライン上を走行中に被測定材の幅
を光学的に測定する走間幅測定装置において、搬送ライ
ン上部に搬送方向と直交して配置され被測定材表面を照
射する光源と、該光源より上部位置であってかつ光源を
中心として上流、下流に両者の間隔が被測定材の最小長
さ以下の間隔に設定し配置され、被測定材表面からの反
射光を受光するリニアアレイ式カメラと、搬送ラインの
両側に前記リニアアレイ式カメラの一方と平面的に同一
軸位置に設けられた被測定材の高さを測定する高さセン
サーと、前記リニアアレイ式カメラの信号、高さセンサ
ーの信号をもとに、被測定材の搬送ラインセンターに対
する斜行角および被測定材の反り、振動により測定上増
加した幅量を演算し、補正して真の幅を求める演算機と
から構成したことを特徴とする走間幅測定装置。
1. A running width measuring device that optically measures the width of a material to be measured while traveling on a transport line, comprising: a light source disposed above the transport line perpendicular to the transport direction and illuminating the surface of the material to be measured; and are arranged above the light source and upstream and downstream from the light source so that the distance between them is less than or equal to the minimum length of the material to be measured, and receives the reflected light from the surface of the material to be measured. a linear array camera, a height sensor for measuring the height of the material to be measured, which is provided on both sides of the conveyance line at the same axial position as one of the linear array cameras; and a signal from the linear array camera. , Based on the signal from the height sensor, calculates the skew angle of the material to be measured with respect to the center of the conveyor line, the warpage of the material to be measured, and the amount of width increased during measurement due to vibration, and corrects it to determine the true width. A running distance measuring device characterized in that it is comprised of a machine.
JP41539590A 1990-12-28 1990-12-28 Running body width measuring device Withdrawn JPH04232803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41539590A JPH04232803A (en) 1990-12-28 1990-12-28 Running body width measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41539590A JPH04232803A (en) 1990-12-28 1990-12-28 Running body width measuring device

Publications (1)

Publication Number Publication Date
JPH04232803A true JPH04232803A (en) 1992-08-21

Family

ID=18523760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41539590A Withdrawn JPH04232803A (en) 1990-12-28 1990-12-28 Running body width measuring device

Country Status (1)

Country Link
JP (1) JPH04232803A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734306U (en) * 1993-11-30 1995-06-23 新日本製鐵株式会社 Stride width measuring device
KR100419177B1 (en) * 1998-12-18 2004-06-14 주식회사 포스코 Measurement Error Compensation Method and Apparatus on a Pacometer Using a CD Camera
KR100470062B1 (en) * 2000-12-22 2005-02-04 주식회사 포스코 A method of processing width data operation of slab width measuring apparatus of using ccd camera
JP2009250723A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp System and method for detecting warp of steel plate
CN103471512A (en) * 2013-09-06 2013-12-25 中国建材国际工程集团有限公司 Glass plate width detection system based on machine vision

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734306U (en) * 1993-11-30 1995-06-23 新日本製鐵株式会社 Stride width measuring device
KR100419177B1 (en) * 1998-12-18 2004-06-14 주식회사 포스코 Measurement Error Compensation Method and Apparatus on a Pacometer Using a CD Camera
KR100470062B1 (en) * 2000-12-22 2005-02-04 주식회사 포스코 A method of processing width data operation of slab width measuring apparatus of using ccd camera
JP2009250723A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp System and method for detecting warp of steel plate
CN103471512A (en) * 2013-09-06 2013-12-25 中国建材国际工程集团有限公司 Glass plate width detection system based on machine vision

Similar Documents

Publication Publication Date Title
WO2002018980A2 (en) Optical system for imaging distortions in moving reflective sheets
JPH04232803A (en) Running body width measuring device
JPH02114106A (en) Apparatus for measuring length of sheet material
JPH02194307A (en) Curvature shape measuring instrument for plate-like body
JPH1171012A (en) Conveying device
JPS5858405A (en) Measuring device for plate body
JP7171535B2 (en) Surface shape measuring device
JPH04143608A (en) Device for measuring flatness of steel plate
JPH0734306U (en) Stride width measuring device
JPH07234121A (en) Flatness measuring apparatus for steel plate
JPH0552526A (en) Sheet dimensions measuring equipment
JPH11148902A (en) Apparatus for inspecting surface flaw of flat substrate
JP2004325338A (en) Device and method for inspecting printed circuit board
JPS60120202A (en) Flatness measuring method of length of plate material in longitudinal direction
JPS61105409A (en) Measuring instrument for quantity of end curvature
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPH08159728A (en) Shape measuring instrument
JPH06258027A (en) Position detecting method of plate member using tv camera
JPH04160304A (en) Detecting apparatus of warp in widthwise direction of plate
JPH04270908A (en) Method for measuring planar shape of hot rolled steel plate
JPH0829147A (en) Method for measuring flatness of steel plate
JPS6322521B2 (en)
JP2017133905A (en) Method for measuring squareness of steel plate and squareness measurement device
JPH0548086Y2 (en)
JPH0117768B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312