JPS6148722A - Mass flow meter - Google Patents

Mass flow meter

Info

Publication number
JPS6148722A
JPS6148722A JP17081184A JP17081184A JPS6148722A JP S6148722 A JPS6148722 A JP S6148722A JP 17081184 A JP17081184 A JP 17081184A JP 17081184 A JP17081184 A JP 17081184A JP S6148722 A JPS6148722 A JP S6148722A
Authority
JP
Japan
Prior art keywords
resonator
fluid
generated
driving
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17081184A
Other languages
Japanese (ja)
Other versions
JPH0422210B2 (en
Inventor
Kyoichi Ikeda
恭一 池田
Fumitaka Ohashi
大橋 章隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP17081184A priority Critical patent/JPS6148722A/en
Publication of JPS6148722A publication Critical patent/JPS6148722A/en
Publication of JPH0422210B2 publication Critical patent/JPH0422210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain high sensitivity and a large S/N and measure a large flow rate by flowing a current in the tangential direction of a disk or cylindrical resonator which oscillates symmetrically about an axis, and driving the resonator by a driving means so that the sum of squares of signals from detecting means is constant. CONSTITUTION:A conduit 6 is formed of flange parts 4 and 5 on both flanks of an external cylinder 2 and driving means D1 and D2 such as an electromagnet are provided inside the resonator 3 at an angle of 45 deg. to the center axis at a distance lambda/4 of the wavelength of oscillation. Detecting means P1 and P2 are provided at the opposite sides of the means D1 and D2 and a partition wall 7 form a fluid intake E and a fluid outlet F with leg parts 8 and 9. Grains of fluid from the intake E move while oscillating in the tangential direction of the resonator 3 and a progressive wave is generated at the resonator 3 to control the means D1 and D2 so that the sum of squares of signals of the means P1 and P2 is constant. Opposite-phase outputs are obtained by the means P1 and P2 and a comparison output is inverted every time the progressive wave travels by a half wavelength. Consequently, pulses proportional to mass are generated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はコリオリの力を利用した質量流量計の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a mass flow meter that utilizes the Coriolis force.

〈従来例〉 第8図はコリオリ流量計の動作原理を説明するための構
成説明図でちる。1は測定流体の流れるU字管で、その
先端中央部には永久磁石2が固定され、U字管10両端
はベース3に固定されている。4はU字管1に対向して
設置された電磁1不動・検出用コイル、5はこの電磁駆
動・検出用コイルをその先端において支持する支持ビー
ムで、油漏はベース3に固定されている。U字管1と支
持ビーム5とは互に音叉溝造を形成している。即ち、U
字管1とビーム5は丁度音叉の歯が振動するように互い
に相対向して振動し、かつ音叉のようにベース3の部分
が振動の節点となり振動エネルギーを失うことが少ない
構成となっている。61 、62はU字管1の両脚の変
位を検出するための変位検出器である。
<Conventional Example> FIG. 8 is a configuration explanatory diagram for explaining the operating principle of a Coriolis flowmeter. Reference numeral 1 denotes a U-shaped tube through which a measuring fluid flows, a permanent magnet 2 is fixed at the center of the tip thereof, and both ends of the U-shaped tube 10 are fixed to a base 3. 4 is the electromagnetic 1 stationary/detection coil installed opposite the U-shaped tube 1, 5 is a support beam that supports this electromagnetic drive/detection coil at its tip, and the oil leak is fixed to the base 3. . The U-shaped tube 1 and the support beam 5 mutually form a tuning fork groove structure. That is, U
The tube 1 and the beam 5 vibrate opposite each other, just like the teeth of a tuning fork vibrate, and like a tuning fork, the base 3 serves as a nodal point of vibration, so that less vibrational energy is lost. . 61 and 62 are displacement detectors for detecting the displacement of both legs of the U-shaped tube 1.

駆動コイル4とこれに対抗するU字管1に固定された永
久磁石2の間に働く電磁力で、U字管1をその固有振動
数で励振すると(縦撮動(対称たわみ振動):第9図(
、)のMl、 M2. M5は各瞬間のパターンを示す
)、U字管1内を流れる流体にコリオリの力が発生する
。このコリオリカの大きさは、U字管1内を流れる流体
の質量とその速度((比例し、力の方向は流体の運動方
向とU字管1を励振する角速度のベクトル債の方向に一
致する。またU字管1の入力側と出力側では流体の方向
が逆になるので、両脚側のコリオリカによって、U字管
1にねじり(非対称たわみ)のトルクが発生する。
When the U-shaped tube 1 is excited at its natural frequency by the electromagnetic force acting between the drive coil 4 and the permanent magnet 2 fixed to the opposing U-shaped tube 1 (longitudinal imaging (symmetrical flexural vibration): Figure 9 (
, ) Ml, M2. M5 indicates a pattern at each moment), a Coriolis force is generated in the fluid flowing inside the U-shaped tube 1. The size of this Coriolis is proportional to the mass of the fluid flowing inside the U-shaped tube 1 and its velocity (((), and the direction of the force corresponds to the direction of the movement of the fluid and the direction of the angular velocity vector that excites the U-shaped tube 1. Furthermore, since the direction of the fluid is reversed on the input side and output side of the U-shaped tube 1, torsional torque (asymmetrical deflection) is generated in the U-shaped tube 1 due to the Coriolis on both leg sides.

このトルクは、励振周波数と同一な周波数で変化し、そ
の振幅値は流体の質量流ff1K比例する。第9図(b
)はこのねじりトルクによって表われる振動モード(コ
リオリ振動モード)を示し、M4. M5゜M6は各瞬
間の振動パターンを示す。したがって、このねじり振動
(非対称たわみ振動)、トルクの振幅を、変位検出器(
図示せず)によって、例えばパルス幅などの形で検出す
れば、質量流量を知ることができる。
This torque changes with the same frequency as the excitation frequency, and its amplitude value is proportional to the fluid mass flow ff1K. Figure 9 (b
) indicates the vibration mode (Coriolis vibration mode) caused by this torsional torque, and M4. M5° and M6 indicate the vibration pattern at each moment. Therefore, the amplitude of this torsional vibration (asymmetrical flexural vibration) and torque can be measured using a displacement detector (
(not shown), the mass flow rate can be determined by detecting the pulse width, for example.

上記の様な原理を用いた質量流量計は従来から公知であ
る(例えば特開昭54−52570号)が、この場合に
下記の様な問題点がある。即ち、コリオリ流量計は一般
に感度が低く、S/N 、信号処理の容易さなどの点で
問題があシ、大流量の測定は難かしいという欠点がある
A mass flow meter using the above-mentioned principle has been known for some time (for example, Japanese Patent Application Laid-Open No. 54-52570), but this method has the following problems. That is, Coriolis flowmeters generally have low sensitivity, have problems in terms of S/N ratio, ease of signal processing, etc., and have drawbacks such as difficulty in measuring large flow rates.

〈発明の目的〉 本発明は上記従来技術の欠点に鑑みてなされたもので、
高感9度でSA比が大きく、信号処理が容易で大流量の
測定が可能な振動式質量流量計を提供することを目的と
する。
<Object of the invention> The present invention has been made in view of the drawbacks of the above-mentioned prior art.
The purpose of the present invention is to provide a vibrating mass flowmeter that has a high sensitivity of 9 degrees, a large SA ratio, easy signal processing, and can measure large flow rates.

〈発明の構成〉 この目的を達成する本発明の構成は、軸対称に振動する
円板又は円筒状の共振子と、この共振子の接線方向に流
体を流す管路と、前記共振子の振動の波長に対して1/
4λの距離をおいて設けられた少なくとも2組の駆動お
よび検出手段と、この検出手段からの信号の2乗和が一
定になるように前記駆動手段を駆動する励振回路とを具
備したことを構成上の特徴とするものである0 〈実施例〉 第1図(a) 、 (b) 、 (c)は本発明の一実
施例を示すもので、第1図(、)は質量流量計上の全体
斜視図、第1図(b)は第1図(、)のA−入方向断面
図、第1図(C)は第1図(b)のB−B方向断面図で
ある。第1図(轟)、(b)+(c)において、2は外
筒、3は円筒状の共振子で、外筒2の両側面の7ランジ
部4.5にて管路6を形成している。Dl、D2は例え
ば電磁石等の駆動手段(本実施例では2個)で共振子3
の内側に中心軸に対して45°の角度を隔てて設けられ
ている(本例においては振動子s上に2次モードの波を
最も強く発生させるため45°の角度の位置が振動波の
7は仕切り壁で脚部8.9により流体人口Eおよび流体
出口Fを形成している。なお駆動手段D1.D2゜検出
手段p、 、 p2および仕切り壁7は共振子6とはわ
ずかに離れて非接触の状態で設けられ、特に仕切り壁7
は入口Eから流入した流体が仕切り壁と共振子の間をバ
イパスして流れても誤差範囲の隙間とされる。
<Configuration of the Invention> The configuration of the present invention that achieves this object includes a disc or cylindrical resonator that vibrates axially symmetrically, a conduit through which a fluid flows in the tangential direction of the resonator, and a vibration of the resonator. 1/ for the wavelength of
At least two sets of drive and detection means provided at a distance of 4λ, and an excitation circuit that drives the drive means so that the sum of squares of signals from the detection means is constant. 0 <Example> Figure 1 (a), (b), and (c) show an example of the present invention, and Figure 1 (,) shows an example of the present invention. FIG. 1(b) is a sectional view taken along line A in FIG. 1(a), and FIG. 1(C) is a sectional view taken along line BB in FIG. 1(b). In Figures 1 (Todoroki) and (b) + (c), 2 is an outer cylinder, 3 is a cylindrical resonator, and 7 flange parts 4.5 on both sides of the outer cylinder 2 form a conduit 6. are doing. Dl and D2 are drive means (two in this embodiment) such as electromagnets that drive the resonator 3.
(In this example, in order to generate the strongest secondary mode wave on the vibrator s, the position at the 45° angle is the position of the vibration wave. Reference numeral 7 denotes a partition wall, and leg portions 8.9 form a fluid population E and a fluid outlet F. Note that the drive means D1, D2, the detection means p, , p2, and the partition wall 7 are slightly separated from the resonator 6. Particularly, the partition wall 7 is provided in a non-contact state.
is a gap within an error range even if the fluid flowing in from the inlet E bypasses and flows between the partition wall and the resonator.

第2図は検出器p、、p2の信号の2乗和が一定になる
ように駆動する励振回路である。第2図において、1駆
動手段D1.D2が正帰還発振するように10゜+Oa
の増幅器のゲインとフィルター11.Haの位相を設定
する。駆動手段D1. D2の出力は整流器12゜12
aによって整流され、二乗器13. 13aで乗算され
、その出力が基準電圧14の電圧と比較され、その差が
増幅器15で増幅され、乗算器16. 16aにて検出
手段P1.P2の出力と乗算されて負帰還する。
FIG. 2 shows an excitation circuit that drives the detectors p, . . . p2 so that the sum of squares of the signals is constant. In FIG. 2, one driving means D1. 10°+Oa so that D2 oscillates with positive feedback.
Amplifier gain and filter 11. Set the phase of Ha. Drive means D1. The output of D2 is rectifier 12°12
rectified by squarer 13.a. 13a, its output is compared with the voltage of the reference voltage 14, the difference is amplified by the amplifier 15, and the multiplier 16. 16a detecting means P1. It is multiplied by the output of P2 and provides negative feedback.

17は検出器P1.P2からの位相が異なった出力をパ
ルス出力として出力する位相比較器である。この励振回
路により駆動手段り1.D2の振幅の二乗和が一定に制
御され、円筒上に発生する定在波は円筒上の任意の位置
に立つことができる。
17 is the detector P1. This is a phase comparator that outputs outputs with different phases from P2 as pulse outputs. This excitation circuit provides a driving means.1. The sum of squares of the amplitude of D2 is controlled to be constant, and the standing wave generated on the cylinder can stand at any position on the cylinder.

いま、第1図(c)に示す質量流量計1の入口Eから流
体を流すと流体の粒子は共振子3の接線方向に漕って振
動しながら移動する。このとき駆動手段D1.D2によ
り2次モードで振動している共振子5には流体粒子の流
れによりコリオリカが発生し、進行波が発生する。この
コリオリカによる節の部分の運動を第3図(、) 、 
(b)に示す。第3図(&)は共振子3が縦軸方向にθ
およびθ2を節として2次モードで振動している状態を
示し、第3図(b)は共振子3の円周上における振動の
状態を正弦波で示したものである。節θ2.においては
共振子3および周囲の流体粒子は角速度Ωで口伝運動を
している。この角速度Ωは次式で表わされる。
Now, when fluid is caused to flow from the inlet E of the mass flowmeter 1 shown in FIG. 1(c), the particles of the fluid move in the tangential direction of the resonator 3 while vibrating. At this time, driving means D1. Coriolis is generated by the flow of fluid particles in the resonator 5 vibrating in the secondary mode due to D2, and a traveling wave is generated. Figure 3 (,) shows the motion of the joint due to Coriolika.
Shown in (b). Figure 3 (&) shows that the resonator 3 is θ in the vertical axis direction.
FIG. 3(b) shows the state of vibration on the circumference of the resonator 3 using a sine wave. Node θ2. In this case, the resonator 3 and surrounding fluid particles are in oral motion at an angular velocity Ω. This angular velocity Ω is expressed by the following equation.

Ω=上ωeos QIt ここに a=共振子の振幅 t=回転半径 ω=円筒の角周波数 である。Ω=upper ωeos QIt Here, a = amplitude of the resonator t = turning radius ω = cylinder angular frequency It is.

一方、流体粒子はmvなる運動量をもって節θ1を通過
する。このとき次式のコリオリの力が発生する。
On the other hand, the fluid particle passes through the node θ1 with a momentum of mv. At this time, the following Coriolis force is generated.

Fc= 20 mv このコリオリの力により節θ1は共振子5の内側に変位
する。一方節θにおいても節θ、と同様の現象が生じる
がΩの方向が異なるためθ2の節は共振子2の外側へ変
位する。このため節θ1.θ2は節ではなくなり、新し
い節θ′、02′が発生する。この運動が連続すること
により共振子3上に進行波が発生する。従って45°の
角度を隔てて設けられた検出手段には位相が逆転した出
力が検出され、第2図における位相比較器17の出力は
進行波が半波長進行する毎に反転し、質ff1mに比例
したパルス出力を得ることができる。
Fc=20 mv This Coriolis force causes the node θ1 to be displaced inside the resonator 5. On the other hand, at the node θ, the same phenomenon as the node θ occurs, but since the direction of Ω is different, the node θ2 is displaced to the outside of the resonator 2. Therefore, the node θ1. θ2 is no longer a node, and a new node θ', 02' is generated. As this motion continues, a traveling wave is generated on the resonator 3. Therefore, the detection means provided at an angle of 45° detects an output whose phase is reversed, and the output of the phase comparator 17 in FIG. A proportional pulse output can be obtained.

第4図〜第7図はいずれも他の実施例を示すもので第4
図(a) 、 (b)は上記の円筒状の共振子3を管路
201C設けたものである。第4図(a)は管路20の
縦軸に活って切断した一部断面図、第4図(+、)は第
4図(a)のH−H断面図である。第4図(a) 、 
(b)において21は管路20の下部に設けられた外筒
で、7ランジ部22.23によυ共振子3を管路20に
直角で、かつ、管路20の軸心より下方に共振子3の外
周が位置するように保持している。D4. D2. P
、 、 P2は第1図と同様の駆動および検出手段であ
る。
Figures 4 to 7 all show other embodiments.
Figures (a) and (b) show the above-mentioned cylindrical resonator 3 provided in a conduit 201C. FIG. 4(a) is a partial sectional view taken along the vertical axis of the conduit 20, and FIG. 4(+) is a sectional view taken along line HH in FIG. 4(a). Figure 4(a),
In (b), 21 is an outer cylinder provided at the bottom of the conduit 20, and the 7 flange parts 22.23 allow the υ resonator 3 to be placed perpendicular to the conduit 20 and below the axis of the conduit 20. The resonator 3 is held so that its outer periphery is positioned. D4. D2. P
, , P2 are driving and detecting means similar to those in FIG.

上記構成において、流体が管路20中を矢印の方向にm
vの運動量をもって共振子3の外周を通過すると、第3
図(a) l (b)で説明したと同様にmvの運動量
に応じたコリオリの力が発生し、振動子s上に進行波が
発生する。上記構成によれば第1図の構成のものに比較
して大流量のljt量流量計を実現できる。
In the above configuration, the fluid flows in the pipe line 20 in the direction of the arrow.
When passing the outer circumference of the resonator 3 with a momentum of v, the third
Coriolis force corresponding to the momentum of mv is generated in the same way as explained in FIGS. (a) and (b), and a traveling wave is generated on the oscillator s. According to the above configuration, an ljt flow meter with a large flow rate can be realized compared to the configuration shown in FIG.

第5図(a) 、 (b)は共振子を円板として形成し
だも!のである。第5図(、)は管路20の縦軸に宿っ
て切断した一部断面図、第5図(b)は第5図(、)の
I−I断面図である。第5図(a) 、 (b)におい
て32は管路20の下部に設けられた外筒であり、外筒
32は円板状の共振子30を管路20の中心に位置させ
、かつ円板の外周部が管路20の軸心より下方に位置す
るように保持しその内側は共振子に接触しない程度の幅
に形成されている。本例における駆動手段D1.D2お
よび検出手段P1.P2は外筒52側に埋め込んだ状態
で例えば共振子30の軸心に対して45°の角度を隔て
て設けられる。第6図(a)、(b)、(C)はこの共
振子50の振動の状態を説明するための図である。第5
図に示す管路20中を流体がmvの運動量で流れると、
第6図(a)に示す円板状の共振子30にはコリオリカ
によυ例えば0部と0部が前面側に0部と0部が背面側
に歪んだ状態となる。この歪みの状態は第6区(b)に
点線で示す如く外周側が大きくなる。第6図(c)は共
振子の外周近辺の表面の状態を正弦波にて示したもので
、この波がmvの運動量に応じて移動し、進行波を発生
する。上記構成の質量流量計は第4図のものに比較し、
圧損の少ないものが実現できる。
In Figures 5(a) and (b), the resonator is formed as a disk! It is. 5(,) is a partial sectional view taken along the vertical axis of the conduit 20, and FIG. 5(b) is a sectional view taken along line II in FIG. 5(,). In FIGS. 5(a) and 5(b), 32 is an outer cylinder provided at the bottom of the conduit 20, and the outer cylinder 32 has a circular resonator 30 located at the center of the conduit 20. The outer circumferential portion of the plate is held so as to be located below the axis of the conduit 20, and the inner side thereof is formed to have a width that does not come into contact with the resonator. Drive means D1 in this example. D2 and detection means P1. P2 is embedded in the outer cylinder 52 side and is provided at an angle of 45° with respect to the axis of the resonator 30, for example. FIGS. 6(a), (b), and (C) are diagrams for explaining the state of vibration of this resonator 50. FIG. Fifth
When a fluid flows through the pipe 20 shown in the figure with a momentum of mv,
The disk-shaped resonator 30 shown in FIG. 6(a) is distorted due to Coriolis, for example, with 0 parts and 0 parts distorted toward the front side and 0 parts and 0 parts distorted toward the back side. This state of distortion becomes larger on the outer circumferential side as shown by the dotted line in section 6 (b). FIG. 6(c) shows the state of the surface near the outer periphery of the resonator as a sine wave, and this wave moves in accordance with the momentum mv and generates a traveling wave. The mass flowmeter with the above configuration is compared to the one in Figure 4,
It is possible to achieve something with less pressure loss.

第7図(a) 、 (b)は共振子自身にうず巻状の管
路55を形成したもので、第7図(、)は全体構成を示
す一部断面側面図、第7図(b)は共振子の管路55を
輪切りにした状態を示す断面図である。第7図(、)に
おいて孤は共振子でおり、この共振予設は第6図(b)
に示す如き一方の面にうず巻状の管路55設けられた2
枚の板41.41aで仕切シ板42をサントイ、チ状に
挾んで形成されている。45.44は支持板であり、複
数個のスペーサ47を挾んで設けられ、それぞれの中央
部に入口ノズル45.出口ノズル46が設けられ、支持
板45.44の中間部に共振予設を支持している。D1
1D2.Pl、P2は共振子並の駆動および検出手段で
あり、共振子ジの軸心に対して45″を隔てた位置に共
振子の側面かられずかに離して支持板44に固定されて
いる。
7(a) and 7(b) show a resonator in which a spiral conduit 55 is formed, and FIG. 7(,) is a partial cross-sectional side view showing the overall configuration, and ) is a cross-sectional view showing a state in which the pipe line 55 of the resonator is cut into rings. In Fig. 7(,), the arc is a resonator, and this resonance preset is shown in Fig. 6(b).
A spiral pipe 55 is provided on one side as shown in FIG.
It is formed by sandwiching the partition plate 42 between two plates 41 and 41a in a square shape. Support plates 45 and 44 are provided with a plurality of spacers 47 in between, and inlet nozzles 45 and 44 are provided in the center of each of them. An outlet nozzle 46 is provided and supports a resonant pre-arrangement in the middle part of the support plate 45.44. D1
1D2. Pl and P2 are driving and detecting means comparable to a resonator, and are fixed to the support plate 44 at a position 45'' apart from the axis of the resonator and slightly away from the side surface of the resonator.

上記構成において、流体が入口ノズル45から流入する
と流体は共振子胆を形成する一方のうす巻板41の中央
部481C達し、(第7図す参照)矢印イの方向へ流れ
、管路を一周した後、仕切り壁49により一つ外側の管
路へ矢印口の如く流れ、最外周の管路に達する。50は
仕切シ板42に設けられた貫通孔の位置を示し、流体は
この貫通孔50を硅てうず巻41aに流入し、前記41
の流れ方向と同方向に内側方向へ流れ出口ノズル46か
ら流出する。上記才1“4成の質量流量計は他の実施例
に比較して感度の高いものを得ることができる。なお本
実施例においては駆動、検出手段として電磁石、ピック
オフコイルを用いたが他の手段を用いてもよい。また駆
動、検出手段は二次の振動モードなく、他の振動モード
でちってもよい。その場合、駆動、検出手段は共振子の
軸心に対して45°の位置ではなく波長の1/4ノの位
置に配すればよい、また本実施例においては駆動、検出
手段を2組として説明したが、2組に限るものではない
In the above configuration, when the fluid flows in from the inlet nozzle 45, the fluid reaches the central part 481C of one of the thinly wound plates 41 forming the resonator, flows in the direction of arrow A (see Fig. 7), and goes around the pipe. After that, the liquid flows to the outermost pipe by the partition wall 49 as shown by the arrow, and reaches the outermost pipe. Reference numeral 50 indicates the position of a through hole provided in the partition plate 42, and fluid flows through this through hole 50 into the spiral 41a, and the fluid flows through the through hole 50 into the spiral 41a.
The flow exits the outlet nozzle 46 inwardly in the same direction as the flow direction. The above-mentioned mass flowmeter of 1"4 can have higher sensitivity than other embodiments. In this embodiment, an electromagnet and a pick-off coil were used as the drive and detection means, but other In addition, the driving and detecting means may be used in other vibration modes instead of the secondary vibration mode.In that case, the driving and detecting means may be placed at a position of 45° with respect to the axis of the resonator. In this embodiment, the driving and detecting means are described as two sets, but the number is not limited to two sets.

〈発明の効果〉 以上、実施例と共に具体的に説明したように、本発明に
よれば、共振子の接線方向に流体を流し、この共振子を
検出手段からの信号の二乗和が一定になるように駆動手
段を駆動し、出力を周波数信号として得るようKしたの
で、高感度でS/N比が大きく、信号処理が容易で、か
つ、大流量から小流量までの測定が可能な質量流量計を
実現することができる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, fluid is caused to flow in the tangential direction of the resonator, and the sum of squares of the signals from the resonator is constant. Since the drive means is driven in this way and the output is obtained as a frequency signal, the mass flow rate is highly sensitive, has a large S/N ratio, is easy to process signals, and can measure from large flow rates to small flow rates. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する措成図、第2図は
駆動および検出回路を示す説明図、第3図はコリオリカ
により進行波が発生する状態を示す説明図、第4図乃至
第7図は他の実施例を示す説明図、第8図および第9図
(、) 、 (b)は従来例を示す説明図である。 1・・・質量流量計、2・・・外筒、3 、50 、4
0・・・共振子、4,5・・・フランジ、6 、20 
、55・・・管路、D11D2・・・駆動手段、Pl、
P2・・・検出手段。 −?−1し/ 第1図 (a)l(b) 第2図 第4図 ((1”I 第5図 (α) 第7図 (a) 第8図 第9図 (b)
Fig. 1 is a schematic diagram illustrating an embodiment of the present invention, Fig. 2 is an explanatory diagram showing a drive and detection circuit, Fig. 3 is an explanatory diagram showing a state in which a traveling wave is generated by Coriolika, and Fig. 4 7 to 7 are explanatory diagrams showing other embodiments, and FIGS. 8 and 9 (, ), (b) are explanatory diagrams showing a conventional example. 1...Mass flow meter, 2...Outer cylinder, 3, 50, 4
0... Resonator, 4, 5... Flange, 6, 20
, 55... Pipe line, D11D2... Drive means, Pl,
P2...Detection means. −? -1 / Figure 1 (a) l (b) Figure 2 Figure 4 ((1"I Figure 5 (α) Figure 7 (a) Figure 8 Figure 9 (b)

Claims (1)

【特許請求の範囲】 (1)軸対称に振動する円板または円筒状の共振子と、 (2)前記共振子の接線方向に流体を流す管路と、(3
)前記共振子の内周又は外周近傍に振動の波長に対して
1/4λの距離をおいて設けられた少なくとも2組の駆
動および検出手段と、 (4)前記検出手段からの信号の二乗和が一定になるよ
うに前記駆動手段を駆動する励振回路とを具備したこと
を特徴とする質量流量計。
[Scope of Claims] (1) a disc or cylindrical resonator that vibrates axially symmetrically; (2) a conduit through which fluid flows in the tangential direction of the resonator; (3)
) at least two sets of drive and detection means provided near the inner or outer circumference of the resonator at a distance of 1/4λ with respect to the wavelength of vibration; (4) the sum of squares of signals from the detection means; 1. A mass flowmeter comprising: an excitation circuit that drives the driving means so that the current is constant.
JP17081184A 1984-08-16 1984-08-16 Mass flow meter Granted JPS6148722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17081184A JPS6148722A (en) 1984-08-16 1984-08-16 Mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17081184A JPS6148722A (en) 1984-08-16 1984-08-16 Mass flow meter

Publications (2)

Publication Number Publication Date
JPS6148722A true JPS6148722A (en) 1986-03-10
JPH0422210B2 JPH0422210B2 (en) 1992-04-16

Family

ID=15911770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17081184A Granted JPS6148722A (en) 1984-08-16 1984-08-16 Mass flow meter

Country Status (1)

Country Link
JP (1) JPS6148722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737477B2 (en) * 2012-07-05 2015-06-17 株式会社村田製作所 Flow meter, dialysis machine, chemical solution injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737477B2 (en) * 2012-07-05 2015-06-17 株式会社村田製作所 Flow meter, dialysis machine, chemical solution injection device
US10101187B2 (en) 2012-07-05 2018-10-16 Murata Manufacturing Co., Ltd. Flowmeter, dialysis machine and medicinal solution injection device

Also Published As

Publication number Publication date
JPH0422210B2 (en) 1992-04-16

Similar Documents

Publication Publication Date Title
US4420983A (en) Mass flow measurement device
US4747312A (en) Double-loop Coriolis type mass flowmeter
US6823733B2 (en) Z-axis vibration gyroscope
EP0311610B1 (en) Coriolis mass flowmeters
EP0696726A2 (en) Coriolis-type mass flowmeter
JP2001241987A (en) Coliolis&#39; mass flow/density sensor having an only bent measurement pipe
JPH04291119A (en) Colioris mass flowmeter
JPS6148722A (en) Mass flow meter
US6336370B1 (en) Coriolis mass flow meter with thick wall measuring tube
JP4015852B2 (en) Method and apparatus for Coriolis flowmeter with balance bar to increase accuracy
JPS58206926A (en) Mass flowmeter
JPH0410011B2 (en)
JPH0396818A (en) Method and apparatus for measuring flow rate
JPS58178217A (en) Mass flowmeter
JPS58153121A (en) Mass flowmeter
JP2984134B2 (en) Coriolis flow meter
JP3565585B2 (en) Mass flow meter
JPH10221147A (en) Coriolis mass flowmeter
JPH0436407Y2 (en)
JPS58117416A (en) Flowmeter
JPH1151733A (en) Vibration type measuring device
JPH0454895B2 (en)
JPH0441297Y2 (en)
JPH0348729A (en) Coriolis mass flowmeter
JPS58174814A (en) Mass flowmeter