JPS6148656B2 - - Google Patents

Info

Publication number
JPS6148656B2
JPS6148656B2 JP53138418A JP13841878A JPS6148656B2 JP S6148656 B2 JPS6148656 B2 JP S6148656B2 JP 53138418 A JP53138418 A JP 53138418A JP 13841878 A JP13841878 A JP 13841878A JP S6148656 B2 JPS6148656 B2 JP S6148656B2
Authority
JP
Japan
Prior art keywords
oxide film
insulator
charge
electrons
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53138418A
Other languages
Japanese (ja)
Other versions
JPS5565145A (en
Inventor
Koichiro Ootori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13841878A priority Critical patent/JPS5565145A/en
Publication of JPS5565145A publication Critical patent/JPS5565145A/en
Publication of JPS6148656B2 publication Critical patent/JPS6148656B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 この発明は、金属一酸化膜−シリコン
(MOS)構造におけるシリコン酸化膜に代表され
るごとき導体電極と半導体にはさまれた絶縁体中
の電荷捕獲中心(以下トラツプと称する)の特性
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a charge trapping center (hereinafter referred to as a trap) in an insulator sandwiched between a conductive electrode and a semiconductor, such as a silicon oxide film in a metal monoxide film-silicon (MOS) structure. The present invention relates to a method for measuring the characteristics of

集積回路の高密度化がLSIから超LSIへと進展
するにつれ、それに使用されるMOSトランジス
タのチヤネル長も短縮されつつあるが、それに伴
いソース・ドレイン電界が強くなるためにチヤネ
ル中の電荷担体(以下キヤリヤと称する)が高エ
ネルギーを得て衝突電離の確率が増大する。この
衝突電離により増殖したキヤリヤがチヤネル表面
近傍のシリコン酸化膜中に注入されトラツプに捕
獲されると、固定電荷としてMOSトランジスタ
のしきい値電圧の変動をきたし、MOS・LSIおよ
び超LSIの不安定性の要因となる。このため、シ
リコン酸化膜中における前記トラツプの捕獲断面
積その他の諸特性を知ることが工業上重要な測
定、評価方法となつている。
As the density of integrated circuits progresses from LSI to VLSI, the channel length of the MOS transistors used in these circuits is also becoming shorter. (hereinafter referred to as carrier) obtains high energy and the probability of impact ionization increases. When carriers multiplied by this impact ionization are injected into the silicon oxide film near the channel surface and captured in a trap, they act as fixed charges and cause fluctuations in the threshold voltage of MOS transistors, causing instability in MOS/LSI and VLSI. becomes a factor. Therefore, knowing the capture cross section and other characteristics of the trap in the silicon oxide film has become an industrially important measurement and evaluation method.

トラツプの捕獲断面積測定法として従来用いら
れている方法は、MOSダイオードを用いて何ら
かの方法でシリコン酸化膜中にキヤリヤを注入
し、それらのキヤリヤのうち酸化膜中のトラツプ
に捕獲された量を容量−電圧特性によつて測定す
る方法があり、キヤリヤの注入法としては、
MOSダイオードにパルス電圧を加え、シリコン
基板の少数キヤリヤを酸化膜中になだれ注入する
方法、MOSダイオードに2〜5eVの光子エネル
ギーの光を照射することによつてゲート電極もし
くはシリコンから酸化膜中にキヤリヤを注入する
方法、MOSダイオードに10〜17eVの光子エネ
ルギーの光を照射して酸化膜中に電子−正孔対を
生成させる方法等がある。
The conventional method for measuring the trap capture cross section uses a MOS diode to inject carriers into the silicon oxide film, and then calculates the amount of carriers captured by the traps in the oxide film. There is a method to measure by capacitance-voltage characteristics, and the carrier injection method is as follows:
A pulse voltage is applied to the MOS diode, and minority carriers from the silicon substrate are avalanche-injected into the oxide film.The MOS diode is irradiated with light with a photon energy of 2 to 5 eV to inject the minority carriers from the gate electrode or silicon into the oxide film. There are methods such as injecting a carrier, and irradiating a MOS diode with light having a photon energy of 10 to 17 eV to generate electron-hole pairs in the oxide film.

しかし、においてはシリコン基板がn形のと
きに正孔、p形のときに電子の注入しか行えない
こと、においては光を透過させるような半透明
のゲート電極を設ける必要があり、また、正孔の
注入が難しいこと、においてはよりもさらに
薄い半透明ゲート電極を要し、また、ガラス,石
英,空気中での吸収の著しい波長領域の光を用い
るので取扱いが面倒なこと等の難点がある。この
他にMOS電界効果トランジスタに類似した構造
によつて、キヤリヤの注入を行う方法もあるが、
試料の構造やバイアス電圧の加え方が複雑になる
欠点がある。
However, in this case, only holes can be injected when the silicon substrate is n-type, and electrons can only be injected when it is p-type, and it is necessary to provide a semi-transparent gate electrode that allows light to pass through. It is difficult to inject holes, requires a thinner translucent gate electrode, and is difficult to handle because it uses light in a wavelength range that is significantly absorbed by glass, quartz, and air. be. There is also a method of carrier injection using a structure similar to a MOS field effect transistor.
The drawback is that the structure of the sample and how to apply bias voltage are complicated.

この発明はこのような従来法の欠点を取除くた
めになされたもので、通常のMOSダイオードを
用いて電子および正孔の双方に対するトラツプの
捕獲断面積の測定を可能とするものである。以下
第1図および第2図に従つてこの発明の一実施例
を説明する。
The present invention was made to eliminate these drawbacks of the conventional method, and makes it possible to measure the trapping cross section for both electrons and holes using an ordinary MOS diode. An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図はこの発明の測定方法における試料の構
造および測定回路の例であつて、MOSダイオー
ド1のゲートとなる金属電極1cにこの金属電極
1cを透過して酸化膜1bの表面からわずかに入
つたところまで達する程度のエネルギーをもつた
電子ビーム2を照射して、酸化膜1bの表面近傍
のみに電子−正孔対を発生せしめ、直流電源4に
より抵抗体6、切換スイツチ3を介して金属電極
1cに正または負の電圧を印加することによつて
正孔または電子の所望のキヤリヤを酸化膜内部に
到達させる。この際の電圧は従来法のようになだ
れ注入を起すほど大きい必要はない。MOSダイ
オードを流れる試料電流は従来法における注入電
流にあたるもので、シリコン基板1aに接続した
電流計5によつて測定される。次に、電子ビーム
の照射を止め、C−Vメータ7によつてこの
MOSダイオードの容量−電圧特性を測定し、フ
ラツト・バンド電圧VFBを求める。トラツプによ
るキヤリヤの捕獲とこのVFBとの関係式は、なだ
れ注入等を用いた従来法と同一であつて、例え
ば、ジエー・エム・エイツケン(J.M.Aitken)
とデイー・アール・ヤング(D.R.Young)による
「ジヤーナル・オブ・アプライド・フイジクス」
(Journal of Applied Physics)誌47巻3号
(1976年3月)、1196ページから1198ページに所載
の論文に示されている。
FIG. 1 shows an example of the structure of a sample and a measuring circuit in the measuring method of the present invention. An electron beam 2 having enough energy to reach the oxide film 1b is irradiated to generate electron-hole pairs only in the vicinity of the surface of the oxide film 1b. By applying a positive or negative voltage to the electrode 1c, desired carriers of holes or electrons are allowed to reach the interior of the oxide film. The voltage at this time does not need to be so large as to cause avalanche injection as in the conventional method. The sample current flowing through the MOS diode corresponds to the injection current in the conventional method, and is measured by an ammeter 5 connected to the silicon substrate 1a. Next, the electron beam irradiation is stopped, and the CV meter 7
Measure the capacitance-voltage characteristics of the MOS diode and find the flat band voltage VFB . The relational expression between the capture of a carrier by a trap and this V FB is the same as the conventional method using avalanche injection, etc.
"Journal of Applied Physics" by DR Young
(Journal of Applied Physics) Vol. 47, No. 3 (March 1976), pages 1196 to 1198.

第2図a,bはこの関係を示すグラフである
が、tなる延べ時間のあいだ電子ビームを照射し
た後のVFBの変化分ΔVFBは電子トラツプの場
合、 ΔVFB(t)=ΔVFB(∞) 〔1−exp(−Jσt/q)〕 …(1) と表わされ第2図aに示すような曲線になる。こ
こにσはトラツプの捕獲断面積,Jは注入電流密
度、qは電子電荷であり、ΔVFB(∞)はtが十
分大きいとき(ほとんどすべてのトラツプが電子
を捕獲したとき)のΔVFBの値である。従つて、
1n〔ΔVFB(∞)−ΔVFB(t)〕をtに対して
プロツトすると第2図bに示すごとく直線にな
り、その勾配から捕獲断面積σが求められる。
Figures 2a and b are graphs showing this relationship. In the case of an electron trap, the change in V FB after electron beam irradiation for a total time t is ΔV FB ( t) = ΔV FB It is expressed as (∞) [1-exp(-Jσt/q)]...(1) and becomes a curve as shown in Figure 2a. Here, σ is the capture cross section of the trap, J is the injection current density, q is the electron charge, and ΔV FB (∞) is the value of ΔV FB when t is sufficiently large (when almost all traps capture electrons). It is a value. Therefore,
When 1n [ΔV FB (∞) - ΔV FB (t)] is plotted against t, it becomes a straight line as shown in FIG. 2b, and the trapping cross section σ can be determined from its slope.

この発明の実施に当つて注意すべき点は、電子
ビーム2の照射によつて酸化膜1b中に新たに照
射損傷によるトラツプを生じないようにすること
である。そのためには電子ビーム2のエネルギー
を小さくすればよい。これは、電子ビーム2の酸
化膜1b中への侵入距離をなるべく小さくしたい
という要請とも一致するものである。一例をあげ
れば、金属電極1cとして厚さ2500Åのアルミニ
ウムを用いた場合、電子ビーム2の加速電圧を
5KVとすると、電子ビーム2は酸化膜1bの表面
から44Åまでしか侵入せず、酸化膜1bの表面で
の電子ビーム2の平均エネルギーは50eVであ
る。このエネルギーは酸化膜1b中に衝突電離に
よつて一組の電子・正孔対を定常的に作り出すの
に必要なエネルギー約27eVよりは大きく、か
つ、酸化膜1b中に照射損傷を生じない程度に小
さい値である。なお、電子ビーム2の電流量は、
第1図および第2図の電流計5で測られる試料電
流が、10-9A程度となるように設定するのが適当
である。この試料電流が照射中にトラツプの帯電
に伴つて変動する場合には、電流計5の読みを直
流電源4もしくは抵抗体6にフイードバツクする
ことによつて、試料電流をあらかじめ設定した一
定値に保つことも可能である。
In carrying out the present invention, care must be taken to avoid creating new traps in the oxide film 1b due to irradiation damage due to the irradiation with the electron beam 2. For this purpose, the energy of the electron beam 2 may be reduced. This is consistent with the request to reduce the penetration distance of the electron beam 2 into the oxide film 1b as much as possible. For example, when aluminum with a thickness of 2500 Å is used as the metal electrode 1c, the acceleration voltage of the electron beam 2 is
At 5 KV, the electron beam 2 penetrates only up to 44 Å from the surface of the oxide film 1b, and the average energy of the electron beam 2 at the surface of the oxide film 1b is 50 eV. This energy is larger than the energy of about 27 eV required to constantly create a pair of electrons and holes in the oxide film 1b by impact ionization, and is at a level that does not cause irradiation damage in the oxide film 1b. is a small value. Note that the amount of current of the electron beam 2 is
It is appropriate to set the sample current so that the sample current measured by the ammeter 5 in FIGS. 1 and 2 is about 10 -9 A. If this sample current fluctuates as the trap is charged during irradiation, the sample current is kept at a preset constant value by feeding back the reading of the ammeter 5 to the DC power supply 4 or resistor 6. It is also possible.

また、この発明の測定方法を実施するための装
置は、走査形電子顕微鏡をわずかに改造するだけ
で実現可能であり、照射電子ビームの寸法設定や
試料上の測定個所の選択、操作者による確認など
は走査形電子顕微鏡の通常の機能を利用して行う
ことができる。
Furthermore, an apparatus for carrying out the measurement method of the present invention can be realized by only slightly modifying a scanning electron microscope, and it is possible to set the dimensions of the irradiated electron beam, select the measurement point on the sample, and confirm it by the operator. These can be performed using the normal functions of a scanning electron microscope.

なお、この発明の測定方法は、シリコンとその
酸化膜に限らず、一般に半導体と絶縁性薄膜との
組合わせをもつた構造物に適用可能である。
Note that the measurement method of the present invention is applicable not only to silicon and its oxide film, but also to structures that generally have a combination of a semiconductor and an insulating thin film.

以上説明したようにこの発明の測定方法は、シ
リコン酸化膜等の絶縁体中のトラツプの諸特性に
関する従来の測定方法の欠点を除き、電子トラツ
プ,正孔トラツプの双方の測定に適用できるので
実用上有用な価値を有するものである。
As explained above, the measurement method of the present invention eliminates the drawbacks of conventional measurement methods regarding various characteristics of traps in insulators such as silicon oxide films, and can be applied to the measurement of both electron traps and hole traps. It has useful value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を説明するための
酸化膜中のトラツプの捕獲断面積測定回路図、第
2図は測定されたフラツトバンド電圧の時間変化
から捕獲断面積を算出する方法を示す説明図であ
る。 図中、1はMOSダイオード、1aはシリコン
基板、1bは酸化膜、1cは金属電極、2は電子
ビーム、3は切換スイツチ、4は直流電源、5は
電流計、6は抵抗体、7はC−Vメータである。
Fig. 1 is a circuit diagram for measuring the capture cross section of traps in an oxide film to explain an embodiment of the present invention, and Fig. 2 shows a method for calculating the trap cross section from the time change of the measured flat band voltage. It is an explanatory diagram. In the figure, 1 is a MOS diode, 1a is a silicon substrate, 1b is an oxide film, 1c is a metal electrode, 2 is an electron beam, 3 is a changeover switch, 4 is a DC power supply, 5 is an ammeter, 6 is a resistor, and 7 is a resistor. It is a CV meter.

Claims (1)

【特許請求の範囲】[Claims] 1 導体電極と半導体とにはさまれた絶縁体中の
電荷捕獲中心の捕獲断面積の測定に際し、前記導
体電極を通過しかつ前記絶縁体の表面近傍のみに
侵入しうる程度のエネルギーをもつ電子線もしく
は電離放射線を照射して前記絶縁体中に電子およ
び正孔を発生せしめ、これら電子および正孔のい
ずれか一方の電荷担体を前記導体電極に直流電圧
を印加して前記絶縁体内部に到達せしめ、前記電
荷担体のうち電荷捕獲中心に捕獲された数を前記
絶縁体の帯電量の変化として測定し、この値から
前記電荷捕獲中心の捕獲断面積を得ることを特微
とする絶縁体中の電荷捕獲中心の特性測定方法。
1. When measuring the trapping cross section of a charge trapping center in an insulator sandwiched between a conductor electrode and a semiconductor, electrons with enough energy to pass through the conductor electrode and enter only near the surface of the insulator Electrons and holes are generated in the insulator by irradiation with radiation or ionizing radiation, and charge carriers of either the electrons or holes reach the inside of the insulator by applying a DC voltage to the conductor electrode. In the insulator, the number of charge carriers captured at the charge trapping center is measured as a change in the amount of charge on the insulator, and the trapping cross section of the charge trapping center is obtained from this value. A method for measuring the characteristics of charge trapping centers.
JP13841878A 1978-11-11 1978-11-11 Characteristic measuring method for charge trap center in insulator Granted JPS5565145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13841878A JPS5565145A (en) 1978-11-11 1978-11-11 Characteristic measuring method for charge trap center in insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13841878A JPS5565145A (en) 1978-11-11 1978-11-11 Characteristic measuring method for charge trap center in insulator

Publications (2)

Publication Number Publication Date
JPS5565145A JPS5565145A (en) 1980-05-16
JPS6148656B2 true JPS6148656B2 (en) 1986-10-25

Family

ID=15221493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13841878A Granted JPS5565145A (en) 1978-11-11 1978-11-11 Characteristic measuring method for charge trap center in insulator

Country Status (1)

Country Link
JP (1) JPS5565145A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559359A (en) * 1994-07-29 1996-09-24 Reyes; Adolfo C. Microwave integrated circuit passive element structure and method for reducing signal propagation losses
JPH08102481A (en) * 1994-09-30 1996-04-16 Shin Etsu Handotai Co Ltd Estimation method of mis semiconductor device
CN111261708B (en) * 2020-02-11 2022-09-23 捷捷微电(上海)科技有限公司 Semiconductor power device structure
CN111855705B (en) * 2020-07-28 2023-03-28 哈尔滨工业大学 Method for detecting radiation-induced defects in oxide layer of electronic device

Also Published As

Publication number Publication date
JPS5565145A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
Buchanan et al. Interface and bulk trap generation in metal‐oxide‐semiconductor capacitors
Schwerin et al. Investigation on the oxide field dependence of hole trapping and interface state generation in SiO2 layers using homogeneous nonavalanche injection of holes
Wang et al. Threshold voltage variations with temperature in MOS transistors
Scarpa et al. Ionizing radiation induced leakage current on ultra-thin gate oxides
US4812756A (en) Contactless technique for semicondutor wafer testing
Krantz et al. Applied field and total dose dependence of trapped charge buildup in MOS devices
Aitken 1/spl mu/m MOSFET VLSI technology. VIII. Radiation effects
Larcher et al. A model of the stress induced leakage current in gate oxides
Nakamae et al. Measurements of deep penetration of low‐energy electrons into metal‐oxide‐semiconductor structure
US4168432A (en) Method of testing radiation hardness of a semiconductor device
JPS6148656B2 (en)
Pease et al. Total Dose Indujced Hole Trapping and Interface State Generation in Bipolar Recessed Field Oxides
Perkins et al. Radiation effects in modified oxide insulators in MOS structures
Lipovetzky et al. Electrically erasable metal–oxide–semiconductor dosimeters
JPS6213619B2 (en)
JP2609728B2 (en) MIS interface evaluation method and apparatus
Tove et al. Measurement of drift velocity of electrons in silicon by exciting a diode structure with short superradiant laser pulses
Mu et al. Effects of biased irradiation on charge trapping in HfO2 dielectric thin films
Autran et al. Three-level charge pumping study of radiation-induced defects at Si SiO2 interface in submicrometer MOS transistors
Seager Temperature dependence of minority‐carrier recombination velocities at grain boundaries in silicon
Park et al. DCIV and spectral charge-pumping studies of/spl gamma/-ray and X-ray irradiated power VDMOSFET devices
JPH0342851A (en) Method of determing interface recoupling speed of small carriers
JPS6212855B2 (en)
Jenkins et al. Electron-beam damage of self-aligned silicon bipolar transistors and circuits
Sah et al. Transient response of MOS capacitors under localized photoexcitation