JPS6148580B2 - - Google Patents

Info

Publication number
JPS6148580B2
JPS6148580B2 JP21980982A JP21980982A JPS6148580B2 JP S6148580 B2 JPS6148580 B2 JP S6148580B2 JP 21980982 A JP21980982 A JP 21980982A JP 21980982 A JP21980982 A JP 21980982A JP S6148580 B2 JPS6148580 B2 JP S6148580B2
Authority
JP
Japan
Prior art keywords
boron
argon
substrate
vapor deposition
structural material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21980982A
Other languages
Japanese (ja)
Other versions
JPS59110773A (en
Inventor
Shigeru Yoshida
Masaki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21980982A priority Critical patent/JPS59110773A/en
Publication of JPS59110773A publication Critical patent/JPS59110773A/en
Publication of JPS6148580B2 publication Critical patent/JPS6148580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/28Deposition of only one other non-metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は硼素構造材の製造方法に関するもので
ある。 従来例の構成とその問題点 硼素は、ダイヤモンドに次ぐ硬度を有し、かつ
耐摩耗性も非常に優れたものであるため、切削工
具や摺動機械部品、軸受けなどに有用な材料とな
つている。また比弾性率(弾性率/密度)が現在
知られている物質中では最大である。この性質は
音波の伝播速度が既存の物質中で最大であること
を意味し、特に音響材料としての応用には高い価
値を発揮する。このような硼素応用製品を鋳造や
圧延といつた方法によつて、緻密な塊状で得るこ
とは困難であるため、種々の硼素応用製品の製作
にあたつては、ほとんどの場合、硼素以外の材料
からなる基体上に、蒸着法やスパツタリング法、
化学蒸着法(CVD法)などによつて、硼素被膜
を形成した複合体として製作される。 このような従来の製造方法は、硼素の硬さや、
耐摩耗性を利用する製品に応用する場合には、普
通大きな支障を生じることがない。然し比弾性率
の大きさを利用しようとするスピーカの振動板
や、カートリツジのカンチレバー、あるいはビデ
オデイスクのカンチレバー等の音響材料では極め
て重大な支障が生じる。すなわち複合体の密度や
弾性率は基体の性質や、蒸着法のプロセス過程に
よつて大きく左右され、硼素本来の性質が著しく
減殺されることがあるからである。また従来タン
タル(Ta)、ニオビウム(Nb)、モリブデン
(Mo)、タングステン(Ta)の基体に硼素(B)
を化学蒸着法により付着させた後、これらの基体
を溶解除去して、硼素単独の中空体を得る方法も
開発されているが、特に振動板やビデオデイスク
のカンチレバー等比較的大きなものにおいては、
析出した硼素構造材に異なる結晶が生じ、混晶の
形をなし、膜質の劣化、機械的強度の低下、ある
いは音波の伝播を阻害するという欠点がある。 発明の目的 本発明者は、このような従来例の欠点を解消す
るために基体をクロム層で被膜することを考えた
が、更に化学蒸着法のプロセス過程において微量
のアルゴンを添加することにより、従来のような
異結晶の発生もなく、優れた機械的性質を示し、
かつ外観もよい製品の得られる硼素構造材の製造
方法を提供しようとするものである。 発明の構成 本発明に係る硼素構造材の製造方法は、クロム
層で被覆したタンタル、モリブデン、ニオビウ
ム、あるいはタングステンの基体に、微量のアル
ゴンを添加して化学蒸着法により硼素層を形成す
ることを特徴とするものである。例えば前記基体
を反応器に収容し、赤外線加熱、高周波加熱また
は通電加熱した状態で原料ガスBX3(ただしXは
塩素Cl、臭素Br、沃素I等のハロゲン元素)と
水素H2とを流入させ、この過程において微量の
アルゴンArを添加し、還元分解反応により硼素
を基体上に析出せしめる。この硼素の析出時に
は、硼素構造材の作成を容易にするために基材の
タンタル、モリブデン、ニオビウムあるいはタン
グステンとクロム層との間に独特の剥離現象を生
じさせるのであるが、アルゴンを添加しない場合
は、この剥離現象が不完全で、剥離した部分とし
ない部分とで熱むらを生じ、析出した硼素の表面
に混晶が発生し、膜質の劣化および機械的強度の
低下を招くことがあつた。アルゴンの添加により
前記剥離現象が完全かつ円滑となる。アルゴンの
添加量は反応器への原料ガスの流入量や基体の加
熱温度によつて異なるが、ほぼ0.1%乃至3%の
範囲が適当である。0.1%以下でも3%以上でも
前記剥離現象が円滑に行かず、充分な効果を上げ
にくいからである。尚基体にクロムを被覆する方
法としては、スパツタリング、真空蒸着やメツキ
などがある。 次に析出した硼素から、クロムで被覆した基体
を溶解除去して単独の硼素構造材を得るには、主
としてCl3、HClHF、Br−メタノール等の酸を用
いる。 実施例の説明 以下本発明の具体的な実施例について説明す
る。先ず直径2.0mm長さ100cmのタンタル線を脱
脂、洗浄の後、スパツタリング法で0.5μmのク
ロムを被覆して基体を作成した。次いでこの基体
を通電によつて1200℃に加熱し、三塩化硼素
BCl31容量部と水素H23容量部とを毎分2の割
合で3分間流し、同時に前記2に対してアルゴ
ンを0.1%添加した。この時約50μmの硼素が析
出した。このようにして作つた試料を4cmの長さ
に切断し、市販のメタノール200mlに臭素50grを
溶解させた溶液に浸漬し、基体のタンタルおよび
被覆したクロムを溶解させた。溶解に要した時間
は20時間であつた。このとき硼素は溶解しなかつ
た。 次の表は、前記のようにして得られた硼素パイ
プを試料No.1とし、以下微量のアルゴンを添加
して得られた各種の中空の硼素構造体の試料とア
ルゴンを添加せずに得られた同様の試料との抗析
強度の測定結果を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a boron structural material. Structure of conventional examples and their problems Boron has a hardness second only to diamond and has very good wear resistance, so it has become a useful material for cutting tools, sliding machine parts, bearings, etc. There is. In addition, the specific elastic modulus (elastic modulus/density) is the highest among currently known materials. This property means that the propagation speed of sound waves is the highest among existing materials, making it particularly valuable for applications as acoustic materials. Since it is difficult to obtain such boron-applied products in the form of dense blocks by methods such as casting or rolling, in most cases, materials other than boron are used to manufacture various boron-applied products. Vapor deposition method, sputtering method,
It is manufactured as a composite with a boron coating formed by chemical vapor deposition (CVD). This conventional manufacturing method depends on the hardness of boron and
When applied to products that utilize wear resistance, usually no major problems occur. However, an extremely serious problem occurs in acoustic materials such as speaker diaphragms, cartridge cantilevers, and video disk cantilevers that utilize the large specific modulus of elasticity. That is, the density and elastic modulus of the composite are greatly influenced by the properties of the substrate and the process of vapor deposition, and the inherent properties of boron may be significantly diminished. In addition, conventionally, boron (B) was added to the base of tantalum (Ta), niobium (Nb), molybdenum (Mo), and tungsten (Ta).
A method has also been developed in which boron is deposited by chemical vapor deposition and then the substrate is dissolved and removed to obtain a hollow body made of boron alone.
Different crystals are formed in the precipitated boron structural material, forming a mixed crystal, which has the disadvantage of deteriorating film quality, decreasing mechanical strength, or inhibiting the propagation of sound waves. Purpose of the Invention The present inventor considered coating the substrate with a chromium layer in order to eliminate the drawbacks of the conventional example, but by adding a small amount of argon during the chemical vapor deposition process, It exhibits excellent mechanical properties without the generation of foreign crystals unlike conventional products.
It is an object of the present invention to provide a method for producing a boron structural material that also provides a product with a good appearance. Structure of the Invention The method for producing a boron structural material according to the present invention involves adding a small amount of argon to a base of tantalum, molybdenum, niobium, or tungsten coated with a chromium layer and forming a boron layer by chemical vapor deposition. This is a characteristic feature. For example, the substrate is placed in a reactor, heated by infrared rays, high frequency, or electrically heated, and then raw material gas BX 3 (where X is a halogen element such as chlorine Cl, bromine Br, or iodine I) and hydrogen H 2 are introduced. During this process, a trace amount of argon (Ar) is added, and boron is deposited on the substrate through a reductive decomposition reaction. When this boron is deposited, a unique peeling phenomenon occurs between the base material tantalum, molybdenum, niobium, or tungsten and the chromium layer in order to facilitate the creation of boron structural materials, but when argon is not added However, this peeling phenomenon was incomplete, causing uneven heat between the peeled and non-peeled areas, and mixed crystals were generated on the surface of the deposited boron, leading to deterioration of film quality and a decrease in mechanical strength. . The addition of argon makes the peeling phenomenon complete and smooth. The amount of argon added varies depending on the amount of raw material gas flowing into the reactor and the heating temperature of the substrate, but is suitably in the range of about 0.1% to 3%. This is because if the content is less than 0.1% or more than 3%, the above-mentioned peeling phenomenon will not occur smoothly and it will be difficult to achieve a sufficient effect. Methods for coating the substrate with chromium include sputtering, vacuum deposition, and plating. Next, an acid such as Cl 3 , HClHF, or Br-methanol is mainly used to dissolve and remove the chromium-coated substrate from the precipitated boron to obtain a single boron structural material. Description of Examples Specific examples of the present invention will be described below. First, a tantalum wire with a diameter of 2.0 mm and a length of 100 cm was degreased and cleaned, and then coated with 0.5 μm of chromium using a sputtering method to prepare a base. Next, this substrate was heated to 1200°C by electricity, and boron trichloride was heated to 1200°C.
1 part by volume of BCl 3 and 3 parts by volume of hydrogen H 2 were flowed at a rate of 2 per minute for 3 minutes, and at the same time 0.1% of argon was added to the 2 parts per minute. At this time, approximately 50 μm of boron was deposited. The sample thus prepared was cut into a length of 4 cm and immersed in a solution of 50 gr of bromine dissolved in 200 ml of commercially available methanol to dissolve the tantalum of the base and the chromium coated. The time required for dissolution was 20 hours. At this time, boron was not dissolved. The following table shows samples of various hollow boron structures obtained by adding a small amount of argon, and samples of various hollow boron structures obtained by adding a small amount of argon, using the boron pipe obtained as described above as sample No. 1. The results of the anti-refractory strength measurements are shown below.

【表】【table】

【表】 測定は梁の長さを3.5cmとして両端支持梁の形
で荷重を加え、試料が破壊したときの荷重の測定
値によつた。表中試料No.1では試料20本につい
て測定した結果、良品は19本で、その平均強度は
1.80Kgr、エツチングによる歩留は95%であつ
た。No.2、No.3は夫々アルゴン添加量の異なる
場合である。No.4乃至No.12は同様に異なる基材
によつた場合の結果である。No.13乃至No.17の
※印を付したものは、アルゴンを添加しなかつた
場合を比較例としている。特にNo.17は基材をク
ロム層で被覆しなかつた場合である。なおすべて
の試料は内径と外径とが夫々20mm、21mmと一定
(肉厚は50μmで一定)になるように硼素の化学
蒸着(CVD)の時間を調節した。この測定結果
によれば、基材をクロム層で被覆しただけで、既
にエツチング歩留および抗折強度の著しく向上す
ることが明らかであるが、硼素の化学蒸着に当つ
て微量のアルゴンを添加すれば添加しない場合に
比して、更にエツチング歩留が6%(試料No.13
に対するNo.1およびNo.15に対するNo.7)乃至21
%(試料No.14に対するNo.5)、抗折強度が16%
(試料No.13に対するNo.1およびNo.14に対する
No.6)乃至54%(試料No.15に対するNo.8)増加
することが分る。 発明の効果 以上説明したように、本発明に係る硼素構造材
の製造方法によれば、クロム層で被覆した基体
に、化学蒸着法により硼素層を形成するに際し
て、微量のアルゴンを添加することにより、膜質
の優れた高強度の硼素構造材が歩留まりよく得ら
れ、産業上の価値が大である。
[Table] Measurements were made using a beam with a length of 3.5 cm and a load applied to the beam with both ends supported, and based on the measured value of the load when the sample broke. As a result of measuring 20 samples for sample No. 1 in the table, 19 were good, and the average strength was
It was 1.80Kgr and the etching yield was 95%. No. 2 and No. 3 are cases in which the amounts of argon added are different. No. 4 to No. 12 are the results obtained using different base materials. No. 13 to No. 17 marked with * are comparative examples in which argon was not added. In particular, No. 17 is the case where the base material was not coated with a chromium layer. The boron chemical vapor deposition (CVD) time was adjusted so that the inner and outer diameters of all samples were constant at 20 mm and 21 mm, respectively (thickness was constant at 50 μm). According to these measurement results, it is clear that simply coating the substrate with a chromium layer already significantly improves the etching yield and bending strength; however, adding a small amount of argon during the chemical vapor deposition of boron Compared to the case without addition, the etching yield was further increased by 6% (Sample No. 13).
No.1 against No.15 and No.7) to No.21 against No.15
% (No.5 against sample No.14), bending strength is 16%
(No.1 for sample No.13 and No.14 for sample No.13
No.6) to 54% (No.8 compared to sample No.15). Effects of the Invention As explained above, according to the method for manufacturing a boron structural material according to the present invention, when forming a boron layer on a substrate coated with a chromium layer by chemical vapor deposition, by adding a small amount of argon. , a high-strength boron structural material with excellent film quality can be obtained at a good yield, and is of great industrial value.

Claims (1)

【特許請求の範囲】 1 クロム層で被覆したタンタル、モリブデン、
ニオビウムあるいはタングステンの基体に、微量
のアルゴンを添加して化学蒸着法により硼素層を
形成することを特徴とする硼素構造材の製造方
法。 2 アルゴンの添加量が0.1%乃至3%である特
許請求の範囲第1項記載の硼素構造材の製造方
法。
[Claims] 1. Tantalum, molybdenum coated with a chromium layer,
A method for producing a boron structural material, which comprises adding a small amount of argon to a niobium or tungsten substrate and forming a boron layer by chemical vapor deposition. 2. The method for producing a boron structural material according to claim 1, wherein the amount of argon added is 0.1% to 3%.
JP21980982A 1982-12-14 1982-12-14 Preparation of boron structural material Granted JPS59110773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21980982A JPS59110773A (en) 1982-12-14 1982-12-14 Preparation of boron structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21980982A JPS59110773A (en) 1982-12-14 1982-12-14 Preparation of boron structural material

Publications (2)

Publication Number Publication Date
JPS59110773A JPS59110773A (en) 1984-06-26
JPS6148580B2 true JPS6148580B2 (en) 1986-10-24

Family

ID=16741369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21980982A Granted JPS59110773A (en) 1982-12-14 1982-12-14 Preparation of boron structural material

Country Status (1)

Country Link
JP (1) JPS59110773A (en)

Also Published As

Publication number Publication date
JPS59110773A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
JPH0566358B2 (en)
US4162345A (en) Deposition method and products
US4225355A (en) Amorphous boron-carbon alloy in bulk form and methods of making the same
US4153483A (en) Deposition method and products
WO1996006206A1 (en) Method for the deposition of diamond film on the electroless-plated nickel layer
JPS6148580B2 (en)
JPS5993869A (en) Structure coated with hard layer containing diamond
JPS6141846B2 (en)
JPH04157157A (en) Production of artificial diamond coated material
JPS6149248B2 (en)
JPS6133703B2 (en)
JPS6148581B2 (en)
JPS635327B2 (en)
JPS6141845B2 (en)
JPS6141847B2 (en)
JPS635328B2 (en)
JPS6141844B2 (en)
US4382454A (en) Boron cantilever pipe
JPS58125610A (en) Preparation of boronic structural material
JPS6149247B2 (en)
JPS5832013A (en) Preparation of boron structural material
JPH01165755A (en) Method for coating product sensitive to high temperature with hard layer and coated product
JPS6013965B2 (en) Manufacturing method of boron structural material
JPH0542508B2 (en)
JPS6251890B2 (en)