JPS6141844B2 - - Google Patents

Info

Publication number
JPS6141844B2
JPS6141844B2 JP3816579A JP3816579A JPS6141844B2 JP S6141844 B2 JPS6141844 B2 JP S6141844B2 JP 3816579 A JP3816579 A JP 3816579A JP 3816579 A JP3816579 A JP 3816579A JP S6141844 B2 JPS6141844 B2 JP S6141844B2
Authority
JP
Japan
Prior art keywords
boron
substrate
mol
silicon
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3816579A
Other languages
Japanese (ja)
Other versions
JPS55130815A (en
Inventor
Masaki Aoki
Shigeru Yoshida
Hiroshi Yamazoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3816579A priority Critical patent/JPS55130815A/en
Publication of JPS55130815A publication Critical patent/JPS55130815A/en
Publication of JPS6141844B2 publication Critical patent/JPS6141844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硼素構造材の製造方法にかかり、特
に硼素構造材を構成する硼素の膜質や機械的性質
の向上と、硼素構造材の製造歩留りおよび生産性
の向上を図ることを目的とするものである。 硼素は、ダイヤモンドに次く硬度をもち、その
耐摩耗性も非常に大きいものであるため、切削工
具や摺動機械部品、軸受けなどに適した材料であ
る。また、比弾性率(弾性率/密度)が、現在知
られている物質中では、最大という優れた特徴を
もつている。この性質は音波の伝幡速度が既存の
物質中で最大であることを意味し、音響材料とし
て特に有用である。 硼素応用製品を、鋳造や圧延といつた方法によ
つて、緻密な塊や薄板、薄肉パイプ等の状態で得
ることは困難なことである。このため、種々の硼
素応用製品の製作にあたつては、ほとんどの場
合、硼素以外の材料からなる基体上に、蒸着法
や、スパツタリング法、化学蒸着法(以下CVD
法という)などによつて硼素以外の材料からなる
基体上に硼素皮膜を形成した複合体として用いら
れている。 このような従来の方法で作られた複合構造材料
は、硼素の硬さやその優れた耐摩耗性を利用する
製品の場合には、大きな支障を生じるようなこと
がない。ところが、比弾性率の大きさを利用しよ
うとする。スピーカの振動板やカートリツジのカ
ンチレバーなどの音響材料などでは、きわめて重
大な支障となる。すなわち、複合体の密度や弾性
率は基体の性質に大きく左右され、硼素本来の性
質がそれによつて大きく減殺されるからである。
一方、硼素を化学的あるいは物理的な処理により
基体から分離させる試みは数多くあるが、蒸着さ
れた硼素皮膜と基体との間に熱膨脹率の違いなど
によつて歪が生じ、そのため、硼素皮膜にクラツ
クなどが生じて、十分に機械的強度のある硼素皮
膜を歩留りよく得ることがむずかしかつた。 発明者らは、かかる従来の方法にあつた欠点を
除去するためには、タンタルやニオブ、モリブデ
ン、タングステン、チタンなどの金属を基体と
し、その表面に珪素を5.0モル%〜70モル%を含
むクロムを所望の厚さに付着させ、この上に化学
蒸着することが有効であることを見出した。 以下、本発明の方法について具体的に説明す
る。硼素をCVD法により、基体上に形成するに
は、たとえば反応器内に置かれた基体を赤外線加
熱や高周波加熱、通電といつた方法で加熱し、次
式に示すような還元分解反応により硼素を析出さ
せる。 2BX3+3H2→2B+6HX (ただし、Xは、Cl、Br、Iなどのハロゲン元素
である。) CVD法に使用する原料ガスとしては、BX3のほ
かに、硼素の水素化合物などもある。 また、この硼素析出反応においては、加熱温度
や、反応器への原料がこの流入量などにより、
種々の結晶形が得られる。各種の結晶形のうち
で、緻密で、機械的性質に優れた硼素皮膜を得る
ためには、βロンボヘドラル、テトラゴナル、あ
るいは非晶質の硼素が望ましい。 次に、化学的あるいは機械的な方法により、基
体を溶解除去あるいは剥離さしたりし、主に硼素
単体からなるパイプや板を得る。化学的方法とし
ては、主に弗酸を主とする液を使用することが考
えられる。また、特に効果的な液としては、無水
アルコールに、臭素、塩素、沃素、または、これ
ら2種以上の化合物や混合物を溶解させたものが
ある。 基体を構成するための金属としては、硼素の
CVDが高温度下(900℃以上)で行なわれるた
め、また、通電や高周波加熱が容易であることを
考えあわせると、タンタル、ニオブ、モリブデ
ン、チタン、タングステンなどが望ましい。これ
ら材料のうちでも、CVDが水素気流中で行われ
るため、水素脆化の程度の小さいタンタルとモリ
ブデン、タングステンがより望ましい。また、沈
積した硼素皮膜と基体との熱歪を小さくするため
には、熱膨脹係数が硼素に近いタンタルや、チタ
ンがより望ましい。 本発明の方法の主要な点は、上記金属上に珪素
を5.0モル%〜70.0モル%含むクロムを電気メツ
キやCVD法、スパツタ法、真空蒸着法等により
付着させ、それを所望の厚さの層で被覆して、基
体とすることにある。しかる後、硼素を基体上に
析出させ、さらに、基体を選択溶解したり機械的
に除去したりして、硼素からなる構造物を得るわ
けである。従来、金属基体のみや金属基体上にク
ロムのみを被覆した基体を用いたとき、選択溶解
や機械的な剥離を行なう過程で、硼素皮膜が破壊
したり、また得られた硼素構造物の機械的性質の
劣る場合があつた。本発明の方法により、これら
の点において、大巾な改善がなされた。特に硼素
が非晶質の場合に大巾に改善された。これによ
り、たとえば基体を線状としたときにはパイプ状
の硼素構造材が、またそれを板状としたときには
薄板状の硼素構造材がそれぞれ得られる。 本発明において、クロムに含まれる珪素の量を
5.0モル%〜70.0モル%に限定したのは、それが
5.0モル%よりも少ないときには、基体を溶解除
去して得られるパイプの収率があまりよくない。
また、それが70.0モル%以上になると硼素CVD時
に基体変形してしまい、硼素の強度が低下するた
めである。珪素を含むクロムの板などを、そのま
ま基体として用いた場合、CVD時において高い
温度になると、基体そのものが変形を起すため
に、硼素のCVD終了時に硼素皮膜に割れが生じ
た。したがつて、本発明の効果を発揮させるため
には、珪素を5.0モル%〜70.0モル%を含むクロ
ム層の厚みには、おのずから望ましい厚さがあ
る。この望ましい厚さは、基体金属の厚みにも左
右される。基体金属として、たとえば太さ200〜
300μmの線状のタンタルを使用した場合には、
珪素を含むクロム層の厚さは、15μm以下であつ
た。それがあまり厚すぎると、硼素皮膜に割れが
生じやすくなる。ただ、それが0.05μm程度であ
ると、本発明による改善効果が明瞭には認められ
ない。この場合のもつとも望ましい被覆層の厚さ
は0.3〜2.0μmであつた。 本発明による効果は、基体の金属としてタンタ
ルを使用したときにもつとも大きい。これは、熱
膨脹係数が硼素のそれに近いこと、および、水素
脆化の程度が比較的小さいことといつた理由によ
るものではないかと考えられる。 珪素を含むクロム層は、電気メツキ法、スパツ
タ法、あるいはCVD法により基体上に被覆形成
することができる。どのような被覆方法をとろう
と結果はほぼ同じであつた。 さらに詳しくは、実施例で説明する。 直径250μm、長さ800mmのタンタル線を準備し
た。タンタル線を脱脂、洗浄したのち、それに珪
素を5.0モル%含むクロムをスパツタ法で付着さ
せ、約1.0μmの層を形成した。次に、珪素5.0モ
ル%含むクロム層で被覆されたタンタル線を通電
して発熱させ、1000℃の温度に保持し、これに三
塩化硼素(BCl3)1容量部と水素(H2)3容量
部との混合ガスを毎分1の割合で2.5分間流し
た。これにより約50μmの厚さの硼素層が形成さ
れた。 このようにして作つた試料を5mmの長さにレー
ザー光を照射するなどして切断し、切断された試
料を市販の無水メタノール200mlに臭素50gを溶
解させた液に浸漬して、タンタルおよびクロム、
シリコン等の硼化物を溶解させた。このとき硼素
は溶解しない。得られたパイプの寸法は、内径
250μm、外径350μm、長さ5mmであつた。X線
回析で調べた結果、その結晶形は、主に非晶質
(アモルフアス)であつた。 次に、このパイプの抗折強度を測定した。測定
は、梁の長さ4mmとし、両端を支持梁の形で、荷
重Wを加えて、パイプが破壊したときの荷重より
求めるという方法で行なつた。 次に、長さ800mmのサンプルから5mmに切断し
たサンプルが基体を溶解除去する過程により20%
破壊した。すなわち収率は80%であつた。得られ
たパイプの平均の抗折強度は519gであつた。こ
の結果を下表の試料1としてまとめて示す。 上記実施例と同様にして、下表に示す試料2〜
9を作り、それらについても調べた。珪素を含む
クロムによるタンタル線の被覆方法としては、珪
素−クロムの圧粉パウダーをターゲツトとし、直
流スパツタ法により被覆するという方法を使用し
た。試料2〜13もすべて硼素が50μmの膜厚にな
るようCVDの時間を調整した。 比較のため、クロムのみをタンタル線に被覆し
たとき(試料12)、あるいは、タンタル線のみの
とき(試料13)も50μmそれぞれ硼素を付着させ
た。そのときの硼素沈積温度、収率、平均抗折強
度、結晶系についても下表にまとめて示す。
The present invention relates to a method for manufacturing a boron structural material, and particularly aims to improve the film quality and mechanical properties of boron constituting the boron structural material, and to improve the manufacturing yield and productivity of the boron structural material. It is. Boron has a hardness second only to diamond and has extremely high wear resistance, making it a suitable material for cutting tools, sliding machine parts, bearings, etc. Additionally, it has the excellent characteristic of having the highest specific elastic modulus (elastic modulus/density) among currently known materials. This property means that the propagation speed of sound waves is the highest among existing materials, making it particularly useful as an acoustic material. It is difficult to obtain boron-applied products in the form of dense blocks, thin plates, thin-walled pipes, etc. by methods such as casting or rolling. For this reason, when manufacturing various boron-applied products, in most cases vapor deposition, sputtering, or chemical vapor deposition (CVD) is used on substrates made of materials other than boron.
It is used as a composite material in which a boron film is formed on a substrate made of a material other than boron by a method such as a method (referred to as a boron method). Composite structural materials made by such conventional methods do not cause any major problems in products that utilize the hardness of boron and its excellent wear resistance. However, an attempt is made to utilize the magnitude of the specific elastic modulus. This is a very serious problem for acoustic materials such as speaker diaphragms and cartridge cantilevers. In other words, the density and elastic modulus of the composite are greatly influenced by the properties of the substrate, and the inherent properties of boron are thereby greatly reduced.
On the other hand, there have been many attempts to separate boron from the substrate through chemical or physical treatments, but distortion occurs due to differences in coefficient of thermal expansion between the deposited boron film and the substrate, and as a result, the boron film is Cracks and the like occur, making it difficult to obtain a boron film with sufficient mechanical strength at a high yield. In order to eliminate the drawbacks of such conventional methods, the inventors proposed a method using a metal such as tantalum, niobium, molybdenum, tungsten, or titanium as a base material, and containing 5.0 mol% to 70 mol% of silicon on the surface. It has been found that it is effective to deposit chromium to the desired thickness and then chemical vapor deposit it thereon. The method of the present invention will be specifically explained below. To form boron on a substrate using the CVD method, for example, the substrate placed in a reactor is heated using methods such as infrared heating, high-frequency heating, or energization, and boron is formed by a reductive decomposition reaction as shown in the following equation. is precipitated. 2 B _ In addition, in this boron precipitation reaction, depending on the heating temperature and the amount of raw material flowing into the reactor,
Various crystal forms are obtained. Among various crystal forms, β rhombohedral, tetragonal, or amorphous boron is preferable in order to obtain a boron film that is dense and has excellent mechanical properties. Next, the substrate is dissolved or removed using a chemical or mechanical method to obtain a pipe or plate made mainly of simple boron. As a chemical method, it is conceivable to use a solution mainly containing hydrofluoric acid. A particularly effective solution is one in which bromine, chlorine, iodine, or a compound or mixture of two or more of these is dissolved in absolute alcohol. Boron is the metal used to form the base.
Tantalum, niobium, molybdenum, titanium, tungsten, etc. are desirable because CVD is carried out at high temperatures (over 900°C), and because they are easy to conduct electricity and high-frequency heating. Among these materials, tantalum, molybdenum, and tungsten, which are less susceptible to hydrogen embrittlement, are more desirable because CVD is performed in a hydrogen stream. Further, in order to reduce the thermal strain between the deposited boron film and the substrate, tantalum or titanium, which has a coefficient of thermal expansion close to that of boron, is more desirable. The main point of the method of the present invention is to deposit chromium containing 5.0 mol% to 70.0 mol% silicon on the metal by electroplating, CVD, sputtering, vacuum evaporation, etc., and then deposit it to a desired thickness. The purpose is to coat it with a layer and use it as a substrate. Thereafter, boron is deposited on the substrate, and the substrate is further selectively dissolved or mechanically removed to obtain a structure made of boron. Conventionally, when using only a metal substrate or a substrate in which only chromium is coated on a metal substrate, the boron film may be destroyed during selective dissolution or mechanical peeling, or mechanical damage to the resulting boron structure may occur. There were cases where the quality was inferior. The method of the present invention provides significant improvements in these respects. Particularly, when boron is amorphous, it is greatly improved. As a result, for example, when the base body is made into a linear shape, a pipe-shaped boron structural material is obtained, and when it is made into a plate-like shape, a thin plate-like boron structural material is obtained. In the present invention, the amount of silicon contained in chromium is
The reason why we limited it to 5.0 mol% to 70.0 mol% is that
When it is less than 5.0 mol%, the yield of the pipe obtained by dissolving and removing the substrate is not very good.
Moreover, if it exceeds 70.0 mol%, the substrate will deform during boron CVD, and the strength of boron will decrease. When a chromium plate containing silicon is used as a substrate, the substrate itself deforms when exposed to high temperatures during CVD, resulting in cracks in the boron film when CVD of boron is completed. Therefore, in order to exhibit the effects of the present invention, the thickness of the chromium layer containing 5.0 mol % to 70.0 mol % of silicon naturally has a desirable thickness. This desired thickness also depends on the thickness of the base metal. As a base metal, for example, thickness 200~
When using 300μm linear tantalum,
The thickness of the chromium layer containing silicon was 15 μm or less. If it is too thick, cracks will easily occur in the boron film. However, if it is about 0.05 μm, the improvement effect of the present invention cannot be clearly recognized. The most desirable thickness of the coating layer in this case was 0.3 to 2.0 μm. The effects of the present invention are even greater when tantalum is used as the base metal. This is thought to be due to the fact that the coefficient of thermal expansion is close to that of boron, and the degree of hydrogen embrittlement is relatively small. The chromium layer containing silicon can be formed on the substrate by electroplating, sputtering, or CVD. The results were almost the same no matter what coating method was used. More details will be explained in Examples. A tantalum wire with a diameter of 250 μm and a length of 800 mm was prepared. After degreasing and cleaning the tantalum wire, chromium containing 5.0 mol % of silicon was deposited on it by sputtering to form a layer of approximately 1.0 μm. Next, electricity is applied to a tantalum wire coated with a chromium layer containing 5.0 mol % silicon to generate heat, and the temperature is maintained at 1000 °C. The mixed gas with volume part was flowed for 2.5 minutes at a rate of 1 part per minute. This resulted in the formation of a boron layer approximately 50 μm thick. The sample thus prepared was cut into a length of 5 mm by irradiating a laser beam, etc., and the cut sample was immersed in a commercially available solution containing 50 g of bromine in 200 ml of anhydrous methanol. ,
Borides such as silicon were dissolved. At this time, boron does not dissolve. The dimensions of the resulting pipe are the inner diameter
The diameter was 250 μm, the outer diameter was 350 μm, and the length was 5 mm. As a result of examination by X-ray diffraction, the crystal form was mainly amorphous. Next, the bending strength of this pipe was measured. The measurement was carried out using a beam having a length of 4 mm, with both ends serving as support beams, applying a load W, and determining the load from the load when the pipe breaks. Next, a sample cut into 5 mm pieces from a sample length of 800 mm was cut to 20% by the process of dissolving and removing the base material.
Destroyed. In other words, the yield was 80%. The average bending strength of the resulting pipe was 519 g. The results are summarized as Sample 1 in the table below. Samples 2 to 2 shown in the table below were prepared in the same manner as in the above example.
I made 9 and researched them as well. The tantalum wire was coated with silicon-containing chromium using a DC sputtering method using a silicon-chromium compacted powder as a target. For all samples 2 to 13, the CVD time was adjusted so that the boron film thickness was 50 μm. For comparison, 50 μm of boron was also deposited when the tantalum wire was coated with only chromium (sample 12) or when the tantalum wire was coated with only tantalum wire (sample 13). The boron deposition temperature, yield, average bending strength, and crystal system at that time are also summarized in the table below.

【表】 上表の結果から明らかなように、本発明の方法
によれば、硼素パイプの収率がよく、その平均抗
折強度も大きい。特に非晶質硼素に対しては、収
率強度がクロム被覆単独より珪素を含有する方が
よくなつている。上記実施例では硼素パイプを示
したが板状の硼素でも同様の結果が得られた。ま
た基体がタンタル以外にもモリブデン、ニオブ、
チタン、タングステンでも同様の結果が得られ
た。そして、クロムに珪素のほかに他の元素を加
えて、その結果をさらに高めることもできる。
[Table] As is clear from the results in the above table, according to the method of the present invention, the yield of boron pipes is high and the average bending strength thereof is also high. Particularly for amorphous boron, the yield strength is better with silicon inclusion than with chromium coating alone. In the above example, a boron pipe was shown, but similar results were obtained with a plate of boron. In addition to tantalum, the base material is molybdenum, niobium,
Similar results were obtained with titanium and tungsten. And other elements besides silicon can be added to chromium to further enhance the results.

Claims (1)

【特許請求の範囲】 1 下地金属に珪素を5.0モル%〜70.0モル%含
むクロムの層を形成してなる基体上に、化学蒸着
法により硼素層を形成してから、前記基体を選択
的に除去して、硼素構造材を得ることを特徴とす
る硼素構造材の製造方法。 2 基体上に、β−ロンボヘドラル、または非晶
質を主な結晶形とする硼素層を化学蒸着法で形成
することを特徴とする特許請求の範囲第1項に記
載の硼素構造材の製造方法。
[Scope of Claims] 1. A boron layer is formed by chemical vapor deposition on a substrate formed by forming a layer of chromium containing 5.0 mol% to 70.0 mol% silicon on a base metal, and then the substrate is selectively A method for producing a boron structural material, the method comprising removing the boron structural material to obtain a boron structural material. 2. A method for producing a boron structural material according to claim 1, characterized in that a boron layer whose main crystalline form is β-rombohedral or amorphous is formed on a substrate by a chemical vapor deposition method. .
JP3816579A 1979-03-29 1979-03-29 Producing boron structural material Granted JPS55130815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3816579A JPS55130815A (en) 1979-03-29 1979-03-29 Producing boron structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3816579A JPS55130815A (en) 1979-03-29 1979-03-29 Producing boron structural material

Publications (2)

Publication Number Publication Date
JPS55130815A JPS55130815A (en) 1980-10-11
JPS6141844B2 true JPS6141844B2 (en) 1986-09-18

Family

ID=12517779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3816579A Granted JPS55130815A (en) 1979-03-29 1979-03-29 Producing boron structural material

Country Status (1)

Country Link
JP (1) JPS55130815A (en)

Also Published As

Publication number Publication date
JPS55130815A (en) 1980-10-11

Similar Documents

Publication Publication Date Title
JPH0566358B2 (en)
JP3448884B2 (en) Artificial diamond coating
JPS6141846B2 (en)
JPS6141844B2 (en)
US4873152A (en) Heat treated chemically vapor deposited products
JPS6141845B2 (en)
JPH04157157A (en) Production of artificial diamond coated material
US4279691A (en) Method of making boron cantilever
JPS6149248B2 (en)
JPS5993869A (en) Structure coated with hard layer containing diamond
JPS6149247B2 (en)
US4382454A (en) Boron cantilever pipe
JPH04507394A (en) Transition metal carbide and nitride whiskers grown by CVD
JPS6141847B2 (en)
JPS61261480A (en) Diamond coated member
JP2595203B2 (en) High adhesion diamond coated sintered alloy and method for producing the same
JPS6133703B2 (en)
JPS635327B2 (en)
JPS59110774A (en) Preparation of boron structural material
JPS635328B2 (en)
JPH01165755A (en) Method for coating product sensitive to high temperature with hard layer and coated product
JPS6148580B2 (en)
JPH0359002B2 (en)
US5164230A (en) Method of applying a boron layer to a steel substrate by a cvd process
JPS6154113B2 (en)