JPS6251890B2 - - Google Patents

Info

Publication number
JPS6251890B2
JPS6251890B2 JP16980380A JP16980380A JPS6251890B2 JP S6251890 B2 JPS6251890 B2 JP S6251890B2 JP 16980380 A JP16980380 A JP 16980380A JP 16980380 A JP16980380 A JP 16980380A JP S6251890 B2 JPS6251890 B2 JP S6251890B2
Authority
JP
Japan
Prior art keywords
boron
titanium
substrate
chromium
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16980380A
Other languages
Japanese (ja)
Other versions
JPS5795823A (en
Inventor
Masaki Aoki
Shigeru Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16980380A priority Critical patent/JPS5795823A/en
Publication of JPS5795823A publication Critical patent/JPS5795823A/en
Publication of JPS6251890B2 publication Critical patent/JPS6251890B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硼素薄板の製造方法に関するもので、
軽量で、かつ高い比弾性率を有する薄板を製造す
るための方法を提供するものである。 従来よりスピーカやマイクロフオン等の振動板
に用いられている薄板材料としては、主として、
紙と樹脂、カーボン繊維が混抄された紙状振動
板、あるいは高分子発泡体、高分子フイルム、ア
ルミニウム、チタン等の金属薄板が使用されてき
た。上記の各種振動板材料は、音速が比較的小さ
く(6000m/秒以下)、スピーカの周波数特性を
高域までのばすことが困難なものである。 スピーカやマイクロフオン用振動板としての必
要条件は、軽くて比弾性率(弾性率/比重)の大
きなことである。すなわち、音速の速いことであ
る。一方硼素は、元素中最も音速の速い物質とし
て知られている。しかし硼素は非常に固く加工性
が悪い材料であるため、圧延等で振動板にするこ
とは困難なものである。そのため、従来ではテタ
ン箔や、アルミニウム箔上に物理的蒸着法や化学
的蒸着法により硼素層を形成させて振動板として
いた。しかしながら、これらの方法では、硼素単
独の振動板を得ることができないために、十分に
硼素の特徴が生かされていない。 本発明の方法は、この従来の方法にあつた問題
点を解決し、機械的強度のある音速の速い硼素単
独の振動板用の薄板を提供するものである。 以下、本発明の方法について具体的に説明す
る。硼素を化学的蒸着法(CVD法)により基体
上に形成する方法は、たとえば反応器内に置かれ
た基体を加熱し、次式に示すような還元分解反応
により硼素を析出させる方法である。 2BX3+3H2→2B+6HX (ただし、Xは、Cl、Br、Iなどのハロゲン元素
である。) また、この硼素析出反応においては、加熱温度
や、反応器への原料ガスの流入量、反応器の圧力
などにより、種々の結晶形が得られる。各種の結
晶系のうちで、緻密で、機械的性質に優れた硼素
皮膜は、β−ロンボヘドラル、テトラゴナル、あ
るいは非晶質(アモルフアス)が望ましい。次
に、上述のようにしてグラフアイト基体上に硼素
を析出させてから、機械的にグラフアイト基体を
除去して硼素板を得る。 次にCVDを行なう時の温度であるが、温度は
800℃以上必要である。また温度むらがあると基
体に付着する硼素層が不均一となり、内部応力の
違いなどによりクラツクが入る。そのため、高周
波加熱法、赤外線加熱法あるいは、抵抗加熱法
(反応器の外部にニクロム線等のヒータを取り付
けて加熱する方法)で加熱する必要がある。特に
グラフアイト基板が薄い場合は、高周波加熱法
は、困難で、赤外線加熱と抵抗加熱が良い。反応
容器内の圧力については、減圧にしておいた方
が、常圧(760Torr)よりも反応ガスの平均自由
行程が長くなり、基体の温度がガスにより不均一
になるようなことはなく、また硼素の析出温度を
下げることができるので、有効である。減圧状態
が100Torr未満となると、硼素の析出速度がおそ
くなり、200Torrを越えると基板の温度が不均一
になりやすく好ましくない。最適な圧力は、10〜
200Torrの範囲である。グラフアイト基板上にク
ロムあるいは、クロムの硼化物層を形成して、次
いでこの上にチタニウムあるいは、チタニウムの
硼化物層を形成することにより、従来の金属基体
上あるいは、グラフアイト基体上に直接ホウ素を
沈着するのにくらべ大巾に振動薄板の歩留りが同
上した。この理由は、上記層がホウ素沈着時に発
生する応力を緩和するものと推定される。また、
クロムあるいはクロムの硼化物層の厚さを0.5〜
10μmにしたのは、0.5μm以下では、薄すぎて
歩留り向上に効果がなく10μm以上では、厚すぎ
てホウ素膜が変形してしまう。チタニウムあるい
は、チタニウムの硼化物層を0.2〜15μmにした
のは、0.2μm以下では、薄すぎて歩留り向上に
効果がなく15μm以上では、厚すぎてホウ素膜が
変形してしまう。またCrあるいはCrの硼化物質
やTi、Tiの硼化物層は、真空蒸着法や、スパツ
タリング法にて形成することができる。 以下本発明の詳細な実施例を説明する。 巾20mm、長さ200mm、厚さ100μのグラフアイト
基体上に真空蒸着でクロムを0.5ミクロン蒸着
し、その後チタンを0.2ミクロン蒸着した。次い
でこの基板を反応容器内において、赤外線ランプ
で1000℃に加熱した。この状態で三塩化硼素
(BCl3)1容量部と水素(H2)3容量部との混合
ガスを反応容器内に毎分1の割合で3分間流し
た。このときの反応器内の圧力が100Torrになる
ように、ロータリーポンプとバルブ操作により制
御した。これにより約55μmの厚さのアモルフア
ス硼素層がグラフアイト基板上に形成された。 このようにして得られた試料をレーザ光で直径
19mmの円板板に10個切断加工し、その後グラフア
イト基体を取り除いて、硼素薄板を得た。ここで
得られた硼素薄板の歩留りと各種特性を表1に試
料1としてまとめて示す。以下、基体と反応器の
圧力は一定で、加熱温度、クロム、チタン等の膜
厚等を変えて、上述と同様にして、表1に示す試
料2〜16を作成した。(ただし試料No.12〜16は比
較例である。)
The present invention relates to a method for manufacturing a boron thin plate,
The present invention provides a method for manufacturing a thin plate that is lightweight and has a high specific modulus. The thin plate materials conventionally used for diaphragms of speakers, microphones, etc. are mainly:
Paper-like diaphragms made of a mixture of paper, resin, and carbon fiber, polymer foams, polymer films, and metal thin plates made of aluminum, titanium, and the like have been used. The above-mentioned various diaphragm materials have a relatively low sound velocity (6000 m/sec or less), and it is difficult to extend the frequency characteristics of the speaker to high frequencies. The requirements for a diaphragm for speakers and microphones are that it be light and have a high specific modulus (modulus of elasticity/specific gravity). In other words, the speed of sound is high. On the other hand, boron is known to have the highest speed of sound among the elements. However, since boron is a very hard material with poor workability, it is difficult to make it into a diaphragm by rolling or the like. Therefore, in the past, a diaphragm was made by forming a boron layer on Tetan foil or aluminum foil by physical vapor deposition or chemical vapor deposition. However, with these methods, it is not possible to obtain a diaphragm made solely of boron, and the characteristics of boron are not fully utilized. The method of the present invention solves the problems of the conventional method and provides a thin plate for a diaphragm made solely of boron, which has mechanical strength and has a high sound velocity. The method of the present invention will be specifically explained below. A method for forming boron on a substrate by chemical vapor deposition (CVD) is, for example, heating a substrate placed in a reactor and depositing boron through a reductive decomposition reaction as shown in the following formula. 2BX 3 +3H 2 →2B+6HX (However, X is a halogen element such as Cl, Br, I, etc.) In addition, in this boron precipitation reaction, heating temperature, amount of raw material gas flowing into the reactor, reactor Various crystal forms can be obtained depending on the pressure and other factors. Among various crystal systems, the boron film is preferably β-rombohedral, tetragonal, or amorphous because it is dense and has excellent mechanical properties. Next, boron is deposited on the graphite substrate as described above, and then the graphite substrate is mechanically removed to obtain a boron plate. The temperature at which CVD is performed next is
A temperature of 800℃ or higher is required. Furthermore, if there is temperature unevenness, the boron layer attached to the substrate becomes uneven, and cracks occur due to differences in internal stress. Therefore, it is necessary to heat the reactor using a high frequency heating method, an infrared heating method, or a resistance heating method (a method of heating by attaching a heater such as a nichrome wire to the outside of the reactor). Especially when the graphite substrate is thin, high frequency heating is difficult, and infrared heating and resistance heating are better. Regarding the pressure inside the reaction vessel, it is better to keep it at a reduced pressure than at normal pressure (760 Torr) because the mean free path of the reaction gas will be longer, and the temperature of the substrate will not become uneven due to the gas. This is effective because it can lower the boron precipitation temperature. If the reduced pressure is less than 100 Torr, the boron precipitation rate will be slow, and if it exceeds 200 Torr, the temperature of the substrate will likely become non-uniform, which is undesirable. The optimal pressure is 10~
It is in the range of 200Torr. By forming a chromium or chromium boride layer on a graphite substrate and then forming a titanium or titanium boride layer thereon, boron can be directly deposited on a conventional metal substrate or on a graphite substrate. The yield of the vibrating thin plate was greatly increased compared to the case where the vibrating thin plate was deposited. The reason for this is presumed to be that the above layer relieves the stress generated during boron deposition. Also,
The thickness of chromium or chromium boride layer is 0.5~
The reason why the thickness is 10 μm is that if it is less than 0.5 μm, it will be too thin and will not be effective in improving the yield, and if it is more than 10 μm, it will be too thick and the boron film will be deformed. The titanium or titanium boride layer is made to have a thickness of 0.2 to 15 .mu.m. If it is less than 0.2 .mu.m, it is too thin and has no effect on improving the yield, and if it is 15 .mu.m or more, it is too thick and the boron film is deformed. Further, the Cr or Cr boride material, Ti, or Ti boride layer can be formed by a vacuum evaporation method or a sputtering method. Detailed embodiments of the present invention will be described below. On a graphite substrate with a width of 20 mm, a length of 200 mm, and a thickness of 100 μm, chromium was deposited to a thickness of 0.5 μm by vacuum deposition, and then titanium was deposited to a thickness of 0.2 μm. This substrate was then heated to 1000° C. in a reaction vessel using an infrared lamp. In this state, a mixed gas of 1 part by volume of boron trichloride (BCl 3 ) and 3 parts by volume of hydrogen (H 2 ) was flowed into the reaction vessel at a rate of 1 per minute for 3 minutes. At this time, the pressure inside the reactor was controlled to 100 Torr by operating a rotary pump and valves. As a result, an amorphous boron layer with a thickness of about 55 μm was formed on the graphite substrate. The diameter of the sample obtained in this way is measured using a laser beam.
Ten 19 mm discs were cut, and the graphite substrate was then removed to obtain boron thin plates. The yield and various properties of the boron thin plate obtained here are summarized in Table 1 as Sample 1. Thereafter, Samples 2 to 16 shown in Table 1 were prepared in the same manner as described above, with the pressures of the substrate and reactor being constant, and the heating temperature, the film thickness of chromium, titanium, etc. being varied. (However, samples No. 12 to 16 are comparative examples.)

【表】【table】

【表】 上記の結果からグラフアイト上にクロムあるい
はクロムの硼化物層を形成し次にこの上にチタン
あるいはチタンの硼化物層を形成したものをホウ
素を沈着させる基体として使用することにより、
従来より歩留りの向上と弾性率の高いホウ素薄板
が得られ、特にスピーカやマイクロフオンの振動
板に使用して、その周波数特性の高域を改善する
ことができる。
[Table] From the above results, by forming a chromium or chromium boride layer on graphite and then forming a titanium or titanium boride layer on top of this, using as a substrate on which boron is deposited,
A boron thin plate with improved yield and higher elastic modulus than before can be obtained, and can be used particularly for diaphragms of speakers and microphones to improve the high frequency characteristics of the diaphragms.

Claims (1)

【特許請求の範囲】 1 グラフアイト上に、クロム層あるいは、クロ
ムの硼化物層を形成して、次いで、この上にチタ
ニウムあるいは、チタニウムの硼化物層を形成し
た基体上に、化学蒸着法(CVD法)にて硼素を
沈着させ、しかるのちに、前記基体を除去して、
硼素の薄板を得ることを特徴とする硼素薄板の製
造方法。 2 クロムあるいはクロムの硼化物層の厚さが
0.5ミクロンないし、10ミクロンであることを特
徴とする特許請求の範囲第1項記載の硼素薄板の
製造方法。 3 チタニウムあるいは、チタニウムの硼化物層
の厚さが0.2ミクロンないし、15ミクロンである
ことを特徴とする特許請求の範囲第1項記載の硼
素薄板の製造方法。
[Claims] 1. A chromium layer or a chromium boride layer is formed on graphite, and then a titanium or titanium boride layer is formed on the substrate using a chemical vapor deposition method ( (CVD method) to deposit boron, then remove the substrate,
A method for producing a boron thin plate, characterized by obtaining a boron thin plate. 2 The thickness of the chromium or chromium boride layer is
2. The method for producing a thin boron plate according to claim 1, wherein the thickness is from 0.5 microns to 10 microns. 3. The method for producing a boron thin plate according to claim 1, wherein the thickness of the titanium or titanium boride layer is from 0.2 microns to 15 microns.
JP16980380A 1980-12-02 1980-12-02 Manufacture of boron sheet Granted JPS5795823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16980380A JPS5795823A (en) 1980-12-02 1980-12-02 Manufacture of boron sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16980380A JPS5795823A (en) 1980-12-02 1980-12-02 Manufacture of boron sheet

Publications (2)

Publication Number Publication Date
JPS5795823A JPS5795823A (en) 1982-06-14
JPS6251890B2 true JPS6251890B2 (en) 1987-11-02

Family

ID=15893176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16980380A Granted JPS5795823A (en) 1980-12-02 1980-12-02 Manufacture of boron sheet

Country Status (1)

Country Link
JP (1) JPS5795823A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732510B2 (en) * 1984-03-02 1995-04-10 オンキヨー株式会社 Diaphragm for electroacoustic transducer and manufacturing method thereof
FR2674718A1 (en) * 1991-03-28 1992-10-02 Commissariat Energie Atomique METHOD FOR MANUFACTURING AN ELECTRODYNAMIC SPEAKER MEMBRANE WITH HIGH INTERNAL LOSSES AND HIGH RIGIDITY.
JP2546228Y2 (en) * 1991-09-25 1997-08-27 三菱重工業株式会社 Articulated welding robot

Also Published As

Publication number Publication date
JPS5795823A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4772513A (en) Method for forming a hard carbon thin film on article and applications thereof
JP3176614B2 (en) Transparent diamond thin film and method for producing the same
JPH0566358B2 (en)
US4225355A (en) Amorphous boron-carbon alloy in bulk form and methods of making the same
JPS6251890B2 (en)
JPS588640B2 (en) speaker
JPS5841350B2 (en) Method for manufacturing boron coating
JPS59143498A (en) Diaphragm for speaker and its production
JPS635328B2 (en)
JPS63196200A (en) Diaphragm for acoustic equipment
JPS6154113B2 (en)
JPH07116606B2 (en) Diamond coated carbon material
US4395814A (en) Acoustic vibrating element of graphite and method of manufacturing same
US5072806A (en) Diaphragm for acoustic equipment
US4959185A (en) Process for producing acoustic carbon diaphragm
JPS61128700A (en) Diaphragm for speaker
JPS5821995B2 (en) Multilayer diaphragm for acoustic transducer and its manufacturing method
JPS60186195A (en) Manufacture of diaphragm for electroacoustic transducer
JPS60185490A (en) Diaphragm for electroacoustic transducer and its manufacture
JPS60185489A (en) Diaphragm for electroacoustic transducer
JPS59143499A (en) Speaker diaphragm
JPS63226198A (en) Acoustic diaphragm
GB2236541A (en) Speaker diaphragm
JPS6133703B2 (en)
JPH0480989B2 (en)