JPS6148438A - Production of glass fiber material utilizing waste glass fiber - Google Patents

Production of glass fiber material utilizing waste glass fiber

Info

Publication number
JPS6148438A
JPS6148438A JP17082084A JP17082084A JPS6148438A JP S6148438 A JPS6148438 A JP S6148438A JP 17082084 A JP17082084 A JP 17082084A JP 17082084 A JP17082084 A JP 17082084A JP S6148438 A JPS6148438 A JP S6148438A
Authority
JP
Japan
Prior art keywords
glass fiber
glass
binder
raw material
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17082084A
Other languages
Japanese (ja)
Other versions
JPH048389B2 (en
Inventor
Hiromasa Take
武 宏昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP17082084A priority Critical patent/JPS6148438A/en
Publication of JPS6148438A publication Critical patent/JPS6148438A/en
Publication of JPH048389B2 publication Critical patent/JPH048389B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce inexpensive glass fiber material by melting a mixture consisting of fine crushed waste glass fiber sticking to binder for sizing glass fiber with fine powdery raw material mixture for glass fiber in a glass melting furnace. CONSTITUTION:To 1pt.wt. waste glass fiber sticking to the binder for sizing glass fiber which has been crushed to <=5 mesh particle size, is admixed >=2 pts.wt. fine powdery raw material mixture for glass fiber consisting of >=80% component having <=200 mesh particle size. The mixture is melted in a glass melting furnace by heating with heavy oil or gas. During melting, 0.2-4m<3> air per 1 ton glass to be melted is introduced through a bubbler.

Description

【発明の詳細な説明】 本発明は、硝子繊維屑を硝子繊維材料として利用する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of utilizing glass fiber waste as a glass fiber material.

板硝子、瓶、ブラウン管部各種硝子製品を製造する場合
、発生した屑硝子をカレントとして硝子調合原料(バッ
チ)に混合し、硝子原料として利用することは広く行な
われている。カレットをバッチに混合することによって
7(ツチの熔融性も向上し燃料使用量も減少するので、
この方法は工業的に極めて好ましい方法である。
BACKGROUND ART When manufacturing various glass products such as plate glass, bottles, and cathode ray tubes, it is widely practiced to mix generated glass scraps as current into a glass preparation raw material (batch) and use it as a glass raw material. By mixing cullet into the batch, the meltability of 7
This method is industrially extremely preferred.

しかしながら、硝子m雑業界においては硝子繊維屑は硝
子原料として殆ど利用されず、主として投棄されていた
。投棄には余分な費用がかかり且つ貴重な資源が無駄に
なるにもかかわらず硝子繊維屑の利用が殆ど行なわれな
かったのは、硝子繊維屑の利用に次のような難点があっ
た為である。
However, in the glass miscellaneous industry, glass fiber waste is hardly used as a raw material for glass, and is mainly discarded. The reason why glass fiber waste was rarely used, despite the extra cost and waste of valuable resources, is that the use of glass fiber waste had the following drawbacks: be.

(1)硝子繊維屑は長く、互に絡み合っているので、そ
のままでは硝子溶融窯への投入が困難であること及び、
原料として定量的に投入する為には、硝子繊維屑を微粉
砕する必要があるが、硝子til HHの微粉砕は、板
鋼子等の屑に比較して極めて困難であること。
(1) Glass fiber waste is long and intertwined with each other, so it is difficult to feed it into a glass melting kiln as it is;
In order to quantitatively input the glass fiber waste as a raw material, it is necessary to finely crush glass fiber waste, but it is extremely difficult to finely grind glass til HH compared to waste such as sheet steel.

(2)硝子繊維屑には硝子繊維を製造する際に用いられ
た1通常、固形分として0.3〜2vt%程度の硝子繊
維集束用バインダーが付着している。バインダーは1通
常、フィルムフォーマ−(酢酸ビニル、ポリエステル 
ウレタン、スターチ等)、架橋剤(アクリルシラン、ビ
ニルシラン、アミノシラン等)、潤滑剤、その他必要に
応じて帯電防止剤を加えたような有機物からなる。この
ようなバインダーの付着した硝子tam屑を硝子溶融窯
に投入すると、バインダーが炭化して炭素が生成して熔
融硝子中に混入し、硝子の着色の原因となったり、泡の
発生の原因となる等の難点が生ずる。
(2) A binder for binding glass fibers, which is used when manufacturing glass fibers, usually has a solid content of about 0.3 to 2 vt% attached to the glass fiber waste. The binder is usually a film former (vinyl acetate, polyester
(urethane, starch, etc.), crosslinking agents (acrylic silane, vinyl silane, aminosilane, etc.), lubricants, and other organic substances with antistatic agents added as necessary. When glass tam scraps with such binder attached are put into a glass melting furnace, the binder carbonizes and carbon is generated, which mixes into the molten glass and causes coloring of the glass and generation of bubbles. This may cause problems such as:

本発明者は、上述した第1の難点である硝子繊維屑の微
粉砕法について工業的に好適な方法を見出し、さきに特
願昭58−19035号及び特願昭58−29810号
として出願した0本発明は上述した′   第2の難点
を解決する為の研究に基づく新たなる提案である。前述
したように、バインダーの付着した硝子繊維屑を加熱す
るとバインダーが次化し易い、硝子Fa維屑の加熱を制
御された条件下に行なうことにより炭化を防止すること
も提案されているが(特公昭5B−4985i3参照)
、この方法は工程が煩雑であり、工業的に好適の方法と
は云0難い。
The present inventor has found an industrially suitable method for pulverizing glass fiber waste, which is the first difficulty mentioned above, and has previously filed the application as Japanese Patent Application No. 58-19035 and Japanese Patent Application No. 58-29810. The present invention is a new proposal based on research to solve the second difficulty mentioned above. As mentioned above, heating glass fiber waste with a binder attached tends to cause the binder to form.It has also been proposed to prevent carbonization by heating glass Fa fiber waste under controlled conditions. (See Kosho 5B-4985i3)
However, this method involves complicated steps and cannot be said to be an industrially suitable method.

硝子m維屑を充分な醜素の存在化に長時間加熱すること
により、炭化物のない硝子繊mMを得ることができるが
、この方法は多量の燃料を消費する難点がある。
Glass fibers free of carbides can be obtained by heating glass fiber waste for a long time until sufficient ugliness is present, but this method has the drawback of consuming a large amount of fuel.

硝子ta維屑を水洗することによりバインダーを除去す
ることも試みられるが、この方法(水洗法という)は次
のような難点を有する。
Attempts have been made to remove the binder by washing the glass ta fiber waste with water, but this method (referred to as the water washing method) has the following drawbacks.

(1)多量の水を必要とし又この方法で発生した廃水を
そのまま排出すると公害を生ずる恐れがあり、排水処理
設備が必要となる。
(1) A large amount of water is required, and if the wastewater generated by this method is discharged as it is, it may cause pollution, and wastewater treatment equipment is required.

(2)ブッシングから引き出されたままの硝子繊維屑に
付着しているバインダーは水洗法によって比較的容易に
除去できるが、乾燥工程を経た硝子繊維に付着している
バインダーは水洗法で除去することは事実上不可能であ
る。
(2) Binder attached to glass fiber debris that has been pulled out from the bushing can be relatively easily removed by washing with water, but binder attached to glass fibers that have gone through the drying process should be removed by washing with water. is virtually impossible.

本発明者は前述した方法によって微粉砕した硝子繊維屑
を、バインダーの炭化を招来することなく、又煩雑な制
御或は多量の燃料の消費を伴うことなく、硝子繊維材料
を有効に利用する方法を完成すべく幾多の実験を重ねた
。その結果1本発明者は従来の常識に反し、硝子!am
屑の微粉砕物を微粉硝子調合原料中に混合して硝子熔融
窓中に投入するならば1通常の加熱方法によって炭化を
生ずることなく、バインダーを燃焼除去できる予期しな
い効果の得られることを見出し、本発明として提案する
ものである。
The present inventor has devised a method for effectively utilizing glass fiber waste finely pulverized by the method described above as a glass fiber material without causing carbonization of the binder, without complicated control, or without consuming a large amount of fuel. Numerous experiments were conducted to perfect this. As a result, the inventor of the present invention went against the conventional wisdom and developed glass! am
It has been discovered that if finely pulverized scraps are mixed into a raw material for preparing fine glass powder and put into a glass melting window, an unexpected effect can be obtained in which the binder can be burned off without causing carbonization by ordinary heating methods. , is proposed as the present invention.

本発明の方法は極めて簡単なものであるが、従来の常識
を破るものであり、硝子繊維屑を利用した硝子繊維材料
の製造方法として大きな工業的価値を有するものである
Although the method of the present invention is extremely simple, it breaks conventional wisdom and has great industrial value as a method for producing glass fiber materials using glass fiber waste.

次に本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.

本発明の方法によるときは、バインダーの付着した硝子
繊維屑も好適に利用できる0本発明において硝子繊維屑
としては、ブッシングから引き出された硝子繊維にバイ
ンダーを附与集束して巻き取る際発生する硝子繊維屑(
以下採糸屑という)及び一旦巻き取った硝子#amを乾
燥し、引き揃え、撚糸、金糸、切断、マット化等の二次
加工を行なう際発生する硝子m維屑(以下加工屑という
)等が使用できる。
When using the method of the present invention, glass fiber waste to which a binder is attached can also be suitably used. In the present invention, glass fiber waste is generated when a binder is applied to glass fibers pulled out from a bushing, the glass fibers are bundled, and the glass fibers are wound up. Glass fiber waste (
Glass fiber waste (hereinafter referred to as processing waste) generated when the once-rolled glass #am is dried and subjected to secondary processing such as pulling, twisting, gold thread, cutting, matting, etc. can be used.

更に詳述すると、採糸屑としては以下に述べる三つの形
態がある。
To explain in more detail, there are three forms of thread waste as described below.

(1)硝子tafaをコレットに巻き取る際の巻き初め
の部分(この部分は正規の製品に比し繊維の径が大きい
、) (2)糸切れ等によってコレットへの巻き取りが中断し
た際生ずる巻小品。
(1) The part at the beginning of winding when glass tafa is wound onto a collet (the diameter of the fibers in this part is larger than that of regular products) (2) Occurs when winding onto a collet is interrupted due to thread breakage, etc. Small volume.

(3)糸切れ時等においてプルレールで糸を低速で引張
る際生ずる屑(正規の製品に比し繊維の径が極めて大き
い、) これらの三つの形態は互にta維の太さ、集合形態が大
きく相異するが、バインダーは水洗により除去され易い
(3) Debris generated when the yarn is pulled at low speed with a pull rail when the yarn breaks (the fiber diameter is extremely large compared to regular products). Although there is a big difference, the binder is easily removed by washing with water.

加工屑としては、口出し屑、残糸屑、マット状製品の耳
屑、不良品、端尺品等があるが、いづれもバインダーは
水洗によって除去することはできない。
Processing waste includes cutting waste, residual thread waste, edge waste of mat-like products, defective products, end-size products, etc., but the binder cannot be removed by washing with water.

上述した硝子繊維屑は、たとえば特願昭58−1903
5号、同5B−29810号に開示されたような方法に
よって好適に微粉砕しうる。このようにして微粉砕され
た硝子繊維屑は、篩分けて異物を除去し、5メツシュ以
下、望ましくは20メツシュ以下のものを使用するのが
適当である。特願昭58−19035号及び同5B−2
9810号の方法においては、微粉砕は湿った状態で行
なうのが望ましく、得られた微粉砕物は6〜12wt%
程度の水分を含有している。このような湿った微粉砕物
(以下湿潤微粉砕物という、)を乾燥して水分を1wt
%以下とした後選別工程に送り、混入する可能性がある
鉄分、アルミ、ステンレス等の金属分を除去する。鉄分
は磁力により除去することができる。アルミ、ステンレ
ス等の非磁性材料は磁力では除去することがで!  き
ないが、微粉砕された硝子繊維が乾燥されている場合に
は通常の全屈検出装置を用いれば好適に除去することが
できることが判明した。
The above-mentioned glass fiber waste is, for example, disclosed in Japanese Patent Application No. 58-1903.
No. 5, No. 5B-29810. The thus finely pulverized glass fiber waste is sieved to remove foreign matter, and it is appropriate to use a material with a mesh size of 5 mesh or less, preferably 20 mesh or less. Patent Application No. 58-19035 and No. 5B-2
In the method of No. 9810, it is preferable to carry out the pulverization in a wet state, and the obtained pulverized product has a content of 6 to 12 wt%.
Contains some amount of moisture. This wet finely ground material (hereinafter referred to as wet finely ground material) is dried to remove 1wt of moisture.
% or less and then sent to a sorting process to remove metals such as iron, aluminum, and stainless steel that may be mixed in. Iron can be removed by magnetic force. Non-magnetic materials such as aluminum and stainless steel can be removed using magnetic force! However, it has been found that if the finely pulverized glass fibers are dried, they can be suitably removed by using a normal total refraction detection device.

このようにして乾燥した硝子繊維微粉砕物中に混入した
金属を精度よく除去できるが硝子繊維微粉砕物が湿潤し
ている場合は混入金属の検出精度が大きく低下し良好な
分離を行ない得ないことが判明した。混入金属を分離し
た硝子繊維屑の微粉砕物を硝子繊維用微粉調合原料と混
合する。微粉調合原料としては、珪砂、炭醜カルシウム
、コレマナイト、アルミナ等の硝子原料を 200メツ
シュ以下に粉砕、混合したものが好適に使用できる。
In this way, metals mixed in the dried glass fiber finely ground material can be removed with high precision, but if the glass fiber finely ground material is wet, the detection accuracy of the mixed metals will be greatly reduced and good separation will not be possible. It has been found. The finely pulverized glass fiber waste from which mixed metals have been separated is mixed with the fine powder preparation raw material for glass fibers. As the raw material for fine powder preparation, a mixture of glass raw materials such as silica sand, charcoal calcium, colemanite, and alumina pulverized to a particle size of 200 mesh or less can be suitably used.

原料組成は、硝子ta雑用組成である限り、特に限定さ
れないが、例えば次のような組成が好適である。
The raw material composition is not particularly limited as long as it is a glass ta miscellaneous composition, but for example, the following composition is suitable.

匡−一一一一一−−躬            沿  
%珪         砂     45.0 〜 4
8.0J2酸カルシウム   25,0 〜28.0コ
レマナイト  11.0 〜14.0ア  ル   ミ
   す      10.0 〜  12.0蛍  
       石      1.0 〜  2.0ソ
  −  グ  灰       0.5  〜  0
.8微粉硝子Ia維としては5メツシュ以下、望ましく
は20メツシュ以下の微粉が好適である。im粉硝子繊
維の組成も特に限定されるものではないが、例えば、下
記のような組成のものを用いうる。
匡-11111--躬
%silica sand 45.0 ~ 4
8.0J Calcium Dioxide 25.0 ~ 28.0 Colemanite 11.0 ~ 14.0 Aluminum 10.0 ~ 12.0 Firefly
Stone 1.0 ~ 2.0 Sog Ash 0.5 ~ 0
.. As the 8-fine glass Ia fiber, a fine powder of 5 meshes or less, preferably 20 meshes or less is suitable. Although the composition of the im powdered glass fiber is not particularly limited, for example, one having the following composition may be used.

Si0  54.89    ROO,85TiOO,
14 AI20314.13      2 Ca 0   22 、? 7     F e 20
30.25Mg0   0.37    ”F20.7
080   8.31 微粉調合原料は微粉硝子繊維に対し2倍以上、好ましく
は3倍以上混合する。Pf者の好適な混合比は1:3〜
1:10の範囲である。
Si0 54.89 ROO, 85TiOO,
14 AI20314.13 2 Ca 0 22 ,? 7 Fe 20
30.25Mg0 0.37”F20.7
080 8.31 The finely powdered raw material is mixed at least twice as much, preferably at least three times, as much as the finely divided glass fiber. The preferred mixing ratio of Pf is 1:3~
The range is 1:10.

本発明においては両者の混合物(以下水混合物という、
)を常法に従って硝子熔融窓中に投入。
In the present invention, a mixture of both (hereinafter referred to as a water mixture) is used.
) into the glass melting window according to the usual method.

重油、ガス等によって加熱する(通常1500〜180
0℃)、しかる時は特別な加熱条件を採用することなく
、或は通常の過剰空気率(約5%)で、バインダーの炭
化の生ずることのない驚くべき結果が得られることが判
明した。何故このような好適な結果が得られるのかその
理由は充分に詳らかではないが、およそ次のように考え
られる。バインダーの付着した硝子ta維屑は充分細か
〈微粉砕され、多量の微粉硝子原料と混合されてれいる
。そしてこの混合物は嵩高であり、硝子繊M1屑の周り
には充分な空気及び硝子繊維屑より熔融し難い調合原料
が存在し、しかも加熱によって調合原料から気体が発生
する結果、硝子繊維屑同志が熔融して層状をなすことが
なく1表面積が大きく保たれ、その表面が空気と接触す
る効果があるためと思われ、泡の混入を減少する効果も
併せて得られる。
Heated with heavy oil, gas, etc. (usually 1500~180
It has been found that surprising results can be obtained without carbonization of the binder, without the use of special heating conditions or at a normal excess air content (approximately 5%). The reason why such a favorable result is obtained is not fully understood, but it is thought to be approximately as follows. The glass fiber dust to which the binder is attached is sufficiently finely pulverized and mixed with a large amount of finely powdered glass raw material. This mixture is bulky, and there is sufficient air around the glass fiber M1 scraps and mixed raw materials that are harder to melt than the glass fiber scraps.Moreover, gas is generated from the mixed raw materials by heating, so that the glass fiber scraps are mixed together. This seems to be because the surface area is kept large without melting to form a layer, and the surface comes into contact with air, which also has the effect of reducing the inclusion of bubbles.

なお本混合物を加熱熔融すべき窯の種類に特に限定はな
いが、バブラーを有する窯を用いるのが望ましい、バブ
ラーによる空気の噴出量は熔融硝子トン当り 0.2〜
4tn’程度望ましくは0.4〜2m”程度とするのが
適当である。
Although there is no particular limitation on the type of kiln in which this mixture is to be heated and melted, it is desirable to use a kiln equipped with a bubbler.
A suitable length is about 4 tn', preferably about 0.4 to 2 m''.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

支里皇」 上記組成のほぼ2:1のffi量割合の採糸側、加工屑
を含む、バインダーが付着した硝子FA %i屑を微粉
砕し、水分8wt%の微粉砕物を得た。
The glass FA%i scraps to which a binder was attached, including processing scraps, were finely pulverized to obtain a finely pulverized product with a water content of 8 wt%.

この微粉砕物を乾燥し、水分を0.08 wt%とした
。乾燥物中の全屈を常法で除去し、篩分けて20メツシ
ュ以下とし、これを200メツシュ以下の微粉調合硝子
原料と混合した。この混合物(硝子繊維Hと微粉債子原
料の重量割合1:3)を硝子熔融宮中に投入し、155
0℃で加熱熔融した、混合物の熔融状態は良好で気体の
混入増加することなく、バインダー炭化による着色を生
ずることもなかった。
This finely pulverized product was dried to have a moisture content of 0.08 wt%. The dried material was removed by a conventional method and sieved to a particle size of 20 mesh or less, which was mixed with a finely powdered glass raw material of 200 mesh or less. This mixture (weight ratio of glass fiber H and fine powder bond raw material 1:3) was put into a glass melting chamber,
The molten state of the mixture heated and melted at 0° C. was good, with no increase in gas contamination, and no coloring due to binder carbonization.

以下に示す条件のほかは実施例1と同様にして硝子繊維
材料を製造した。結果は下記の通りであった。
A glass fiber material was produced in the same manner as in Example 1 except for the conditions shown below. The results were as follows.

Claims (1)

【特許請求の範囲】 1)硝子繊維集束用バインダーの付着した硝子繊維屑の
微粉砕物を硝子繊維用微粉調合原料と混合し、硝子熔融
窯中に投入熔融することを特徴とする硝子繊維層を利用
した硝子繊維材料の製造方法。 2)硝子繊維屑の微粉砕物1重量部に対し硝子繊維用微
粉調合原料2重量部以上を混合することを特徴とする、
特許請求の範囲第1項記載の方法。 3)硝子繊維屑の微粉砕物の粒径が5メッシュ以下であ
り、硝子繊維用微粉調合原料80%以上の粒径が200
メッシュ以下であることを特徴とする特許請求の範囲第
1項記載の方法。 4)バブラーを用いて熔融硝子のトン当り0.2〜4m
^3の空気を導入する特許請求の範囲第1項記載の方法
[Scope of Claims] 1) A glass fiber layer characterized in that a finely ground glass fiber waste to which a binder for binding glass fibers is attached is mixed with a fine powder preparation raw material for glass fibers, and the mixture is put into a glass melting furnace and melted. A method for manufacturing glass fiber material using. 2) 2 parts by weight or more of a fine powder blending raw material for glass fibers is mixed with 1 part by weight of a finely ground glass fiber waste;
A method according to claim 1. 3) The particle size of the finely ground glass fiber waste is 5 mesh or less, and the particle size of 80% or more of the fine powder blending raw material for glass fiber is 200 mesh.
The method according to claim 1, characterized in that the size is smaller than a mesh. 4) 0.2-4m per ton of molten glass using a bubbler
The method according to claim 1, wherein ^3 air is introduced.
JP17082084A 1984-08-16 1984-08-16 Production of glass fiber material utilizing waste glass fiber Granted JPS6148438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17082084A JPS6148438A (en) 1984-08-16 1984-08-16 Production of glass fiber material utilizing waste glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17082084A JPS6148438A (en) 1984-08-16 1984-08-16 Production of glass fiber material utilizing waste glass fiber

Publications (2)

Publication Number Publication Date
JPS6148438A true JPS6148438A (en) 1986-03-10
JPH048389B2 JPH048389B2 (en) 1992-02-14

Family

ID=15911934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17082084A Granted JPS6148438A (en) 1984-08-16 1984-08-16 Production of glass fiber material utilizing waste glass fiber

Country Status (1)

Country Link
JP (1) JPS6148438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062164A1 (en) * 2002-01-23 2003-07-31 Paramount Glass Manufacturing Co., Ltd. Glass composition for preparing inorganic fiber, method for production thereof and formed product from the inorganic fiber
US6739152B2 (en) 1998-01-09 2004-05-25 Saint-Gobain Glass France Process for melting and refining vitrifiable materials
US7565819B2 (en) 1998-01-26 2009-07-28 Saint-Gobain Glass France Method and device for melting and refining materials capable of being vitrified
JP2016117628A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber
JP2016117627A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054434A (en) * 1975-05-15 1977-10-18 Fibreglass Limited Production of glass fibres
JPS5743530A (en) * 1981-06-16 1982-03-11 Toshiba Corp Variable speed ac motor
JPS5888137A (en) * 1981-11-19 1983-05-26 Nitto Boseki Co Ltd Preparation of glass powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054434A (en) * 1975-05-15 1977-10-18 Fibreglass Limited Production of glass fibres
JPS5743530A (en) * 1981-06-16 1982-03-11 Toshiba Corp Variable speed ac motor
JPS5888137A (en) * 1981-11-19 1983-05-26 Nitto Boseki Co Ltd Preparation of glass powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739152B2 (en) 1998-01-09 2004-05-25 Saint-Gobain Glass France Process for melting and refining vitrifiable materials
US7624595B2 (en) 1998-01-09 2009-12-01 Saint-Gobain Glass France Method and device for melting and refining materials capable of being vitrified
US7565819B2 (en) 1998-01-26 2009-07-28 Saint-Gobain Glass France Method and device for melting and refining materials capable of being vitrified
WO2003062164A1 (en) * 2002-01-23 2003-07-31 Paramount Glass Manufacturing Co., Ltd. Glass composition for preparing inorganic fiber, method for production thereof and formed product from the inorganic fiber
JP2016117628A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber
JP2016117627A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber

Also Published As

Publication number Publication date
JPH048389B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US2576312A (en) Method of making mineral wool
US3325298A (en) Increasing the melting rate of glass batch
JP2656808B2 (en) Method for producing hollow glass microspheres with high silica content
US1931921A (en) Manufacture of cement
FR2691456B1 (en) New process for producing a refractory material in sintered vitreous silica, new mixture of grains and particles of vitreous silica, and new material in sintered vitreous silica.
CA2080850A1 (en) Porous granulated steel slag composition and use of such a steel slag composition as aggregate or cement replacement in building materials, road building materials and embankment materials
JPS6148438A (en) Production of glass fiber material utilizing waste glass fiber
CN115353310B (en) Mixed material for cement with superfine tire vertical mill steel slag to replace mineral powder and preparation method thereof
CN1152758C (en) Slag-trapping covering agent for casting and its pre-treating process
US2526519A (en) Preparation of calcareous cement raw material
JP2561615B2 (en) Method for producing complex slag refiner for refining used in out-of-furnace refining
EP0826735A2 (en) Pavement material
JPH0656474A (en) Feedstock for producing rock wool
CN115466069A (en) Full-solid waste composite powder for cementing material and preparation method thereof
CN1343794A (en) V2O3 electro-aluminothermic process for smelting FeV
CA1163808A (en) Rapid strength development in compacting glass batch materials
US2023278A (en) Method of purifying sand
JPS627253B2 (en)
DE19825780B4 (en) Process for the production of melt products from cyclone dusts of the cement industry
JP3510408B2 (en) Method for producing coke for iron-containing metallurgy and iron-containing granulated product
US2260749A (en) Mineral composition
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
US4038089A (en) Process for producing vitreous fibers containing cement as major constituent
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
RU2056388C1 (en) Method of manufactur of building products