JPS6147512B2 - - Google Patents

Info

Publication number
JPS6147512B2
JPS6147512B2 JP53097664A JP9766478A JPS6147512B2 JP S6147512 B2 JPS6147512 B2 JP S6147512B2 JP 53097664 A JP53097664 A JP 53097664A JP 9766478 A JP9766478 A JP 9766478A JP S6147512 B2 JPS6147512 B2 JP S6147512B2
Authority
JP
Japan
Prior art keywords
active substance
culture
flocculating
substances
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53097664A
Other languages
Japanese (ja)
Other versions
JPS5529902A (en
Inventor
Satoshi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIICHI TOGYO KK
Original Assignee
DAIICHI TOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIICHI TOGYO KK filed Critical DAIICHI TOGYO KK
Priority to JP9766478A priority Critical patent/JPS5529902A/en
Priority to US05/948,227 priority patent/US4258132A/en
Priority to FR7829017A priority patent/FR2424959A1/en
Priority to DE2844311A priority patent/DE2844311A1/en
Publication of JPS5529902A publication Critical patent/JPS5529902A/en
Publication of JPS6147512B2 publication Critical patent/JPS6147512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は微生物による凝集剤の製法、更に詳し
くは黒色菌科(Dematiaceae)のデマチユーム属
(Dematium)に属する凝集活性物質産生菌を培
養して対蛋白質のみならず、有機質、無機質、鉱
物質、生物菌体等に対し凝集活性を有する凝集活
性物質を産生する方法に関するものである。 従来においても微生物による蛋白質凝集活性物
質の製法については例えば特開昭51−86189号並
びに特開昭51−115993号等に提案されているが、
本発明はこれらに開示された微生物とは別個の微
生物を用いしかも蛋白質に対してのみならず、有
機質、無機質、鉱物質、生物菌体等が液体に懸
濁、分散、浮遊している広範なコロイド状物質に
対し優れた凝集活性を有する凝集活性物質を生産
する方法を提供したものである。 本発明者は先に黒色菌科(Dematiaceae)のデ
マチユーム(Dematium)属に属する凝集活性物
質産生菌を培養することを特徴とする微生物によ
る凝集活性物質の製法について出願(特許第
1223494号(特公昭58−47159号)………以下これ
を原発明と称する)したが、本発明はこの原発明
を更に改良、拡張したものである。 原発明では発明の詳細な説明において、炭素源
の培地濃度は5%前後が良いと記述した(即ち、
本分離菌(DematiaceaeのDematium)、微工研菌
寄No.4257号菌の生産する凝集活性物質は、基質
濃度が増加するにつれて基質に対する凝集物質の
生産量が低下する)。 しかし本発明者が更に炭素源の培地濃度を5%
以下にして培養した結果(静置培養又は3の醗
酵槽によるタンク培養の結果)、培地濃度1%前
後が5%よりも単位、溶液当りの凝集活性物質又
は基質に対する凝集活性物質生産量が増加するこ
とを見出して本発明に至つた。 このように培地濃度1%前後という希薄な濃度
で目的の産生物質について最大の収量を示すとい
うことは、例えば各種の農産業、畜産業、食品加
工業等からの諸廃排水でブドウ糖、蔗糖等の炭素
源の1%前後の希薄なものでも本発明菌の培地と
して好適であることを意味し、従つてこれら廃排
水の有効な処理、利用にもつながり、又上記炭素
源を産出する菌との共存によつて本発明菌を培養
し目的の凝集活性物質を高収量で得ることができ
ることにもなり、その工業的、経済的価値大であ
る。 本発明法に用いられる微生物は微工研菌寄
No.4257号の菌(以下単に実施例菌と称す)を含
む黒色菌科(Dematiaceae)のデマチユーム属
(Dematium)に属する凝集活性物質産生菌であ
り、以下その菌学的特徴を上記の実施例菌によつ
て説明すると次の通りである。 A 分離菌の菌学的特徴 コロニーは初め表面平滑で灰白色、粘液性、
光沢ある油滴状(脂肪様)の酵母様に発育し、
その周縁から糸状の菌体が放射状に成長し、ち
ぢれた様な糸状で丁度樹枝状発育をする。この
糸状菌体は培地表面のみならず地培中にもよく
発育する。しばらくするとコロニー表面に淡暗
褐色の斑点が点々と現われ次第に黒色の斑点に
なり遂に全面が暗黒色となる。この糸状菌体に
淡褐色の楕円又は卵形の多数の分生子を側生す
る。この分生子は容易にばらばらになる。一方
油滴状のコロニーの表面にも点々と分生子をつ
ける。 糖類を含んだ培養液は非常に粘稠性となり、
液面に厚いコロニーで皮革の黒色培苔を生ず
る。最適発育温度は20〜25℃でブドウ糖、シヨ
糖などの糖類からアルコール類、有機酸類を生
成し、又特有の芳香を有する。 1 培養的特徴*(注) ○イ 固体培地:バレイシヨ、グルコース寒天
培地上最初コロニーは表面平滑、透明、光
沢ある油滴状、粘稠性の灰白色の酵母様
で、コロニーの周縁から放射状にちぢれた
糸状様の丁度樹枝状の菌体が発育し、この
糸状様菌体は培地表面のみならず、培地中
にもよく発育する。やがてその樹枝様のと
ころどころの部分が黒褐色になる。培養し
て3〜4日たつとコロニー表面に淡暗褐色
の斑点が点々と現われるが、以後次第に淡
暗黒色になり全面に広がり、遂に全体が黒
色になる(培養7日)、尚ツアペツク寒天
培地上では発育がおそいが、培養的特徴は
前記の様であるコロニー表面が全面黒色に
なるのに3週間くらいかかる。 ○ロ 液体培養:バレイシヨ、グルコース培地
中点々と浮遊状態に菌体が発育し(培養3
日)、次第にコロニーが増え、やがて(培
養7日)液中に粘性のコロニーが充満す
る。そして管壁に暗褐色の菌苔が現われ、
次第に液面にも出来る(培養15日)。この
菌蓋はゼラチナスな粘性のある厚いもので
ある。 尚ツアペツク培地中にも同様に発育する
が非常におそく菌体も少く、約3週間培養
で液面にかなり黒色菌苔をつくる。 2 形態的特徴 若い細胞は透明な糸状のちぢれた樹枝状
で、菌は(糸状様)ところどころから黒く卵
形の胞子様のものが側生する。又油滴状のコ
ロニーはその中に点々と黒色の胞子様のもの
が着生する。これは衝撃点をあたえるとばら
ばらになる。 3 生理的特徴 最適発育温度は20〜25℃、グルコース、シ
ユークローズなどから粘性物を生成又グルコ
ースなどの糖類から、アルコール類、有機酸
類を生ずる。 *(注) 文献として George SMITH著 応用菌学指針(An
introduction to industrial mycology)
(P68〜97) 応用微生物学各論(P83〜87) に準拠。 B 菌の分離と凝集性の検出 菌の分離培地として原糖の1%の溶液を作
り、常法で殺菌し、100mlの三角フラスコに20
ml分注しPHを微酸性に調整後再度殺菌し、この
液体培地に下記に記述した原液を1mlづつ添加
し、静置法で(室温25〜30℃)培養し、一日毎
にサンプリングして凝集性を調べた。即ち通常
凝集試験に使用するカオリン(武田薬品製の試
薬特級)の1%溶液を作り、PHを微酸性として
供試液とした。 上記の原液はグラニユー糖、原糖に含まれて
いる高分子多糖の分離、分析中ビーカーに長時
間放置していた原糖の希薄溶液(24Å(径口)
のセルローズ膜で透析した液)の粘性が高くな
つている事に気付き、再度透析をする為に過
をしたものである。その操作に於て硅藻土又は
活性炭を少量添加した時本溶液が非常に著しい
凝集性、即ち硅藻土又活性炭が一瞬にしてビー
カの底部に凝固し他の市販凝集剤には見られな
い凝集力がある事を発見した。更に本溶液に
種々の物質、カオリン、ペントナイト等のケイ
酸アルミニユームを主成物とする物質又無機物
質、即ち炭酸カルシウム、硫酸バリユーム、塩
化銀等の中性塩、有機物質を添加するといづれ
も著しい凝集をする事を定性的に確認した。こ
の凝集試験には本供試液を50mlの試験管に25ml
取り、これに培養液を1ml添加し上下に10回撹
拌後3分間静止しその上澄液の濁度を光電比色
計を使用して720mph/10mm/cellで濁度を
測定した。又 上澄液中に残留するカオリン量を重量法で測定し
凝集性を調べた結果、初期培養時間の培養液から
その凝集性は著しいことを認めた。この事は培地
中に代謝される本凝集活性物質は微量で凝集作用
がある事を示唆している。尚培養時間の経過と共
に(96時間)アセトン、ブタノール臭が強くなつ
た。そこで培養時間を72時間として、この培養を
10回くり返して凝集力の強い培養液でアセトン、
ブタノール臭がなく、本培養液特有の香気(バラ
の花の香気)を有する培養液を選びこの液から本
菌の純粋分離を行つた。 本菌の純粋分離〜原糖又シユークローズ(蔗
糖)もしくはブドウ糖の1%溶液を作りPH5〜6
に調製し更に粉末酵母エキス(武田薬品製)を
0.2%添加し寒天(0.16%)を加え常法により加
熱殺菌し、シヤーレに分注して分離培地とした。
これに培養液を殺菌水で100倍、200倍、500倍に
稀釈してシヤーレに1ml分注し30℃で培養した。
その結果3種類のコロニーを検出し、更にスラン
ト培養、液体培養をくり返して3種類の菌を純粋
に分離した。培養初期のコロニーは(培養時間48
時間前後)全べてクリーム色であるが、時間の経
過とともにコロニーの表面中央部が黒色となり更
に時間が経過するとコロニーの裏面に黒い菌糸が
コロニーを中心にして培地に植根状に延びてくる
菌を分離菌とする。クリーム色コロニーが時間
の経過で変色せずもりあがる菌を分離菌、更に
クリーム色が培養時間とともに褐色になる菌を分
離菌とする。 分離した3種類の菌を本文に記述した組成の培
養液で静置培養し、その培養液の凝集力をカオリ
ン1%溶液を使用して調べた。その結果は分離菌
、即ちコロニー表面が時間の経過とともに黒色
となり更に裏面に黒い菌糸が植根状に延びる菌に
のみ凝集性があり、本培養液の見掛上の粘性は培
養時間とともに増加し、更に本菌に特有の香気
(バラの花の香気)を検出した。他の分離菌、
の培養液には凝集性を検出せず、分離菌では
アセトン臭を、分離菌では酪酸臭を検出した。 上記の分離菌が本発明の対象とする黒色菌科
(Dematiaceae)のデマチユーム属(Dematium)
に属する凝集活性物質産生菌(以下単に本発明菌
と称する)である。 C 純粋分離した分離菌の説明 純粋分離した分離菌を下記組成の培地にス
ラント培養し、更にこの培地組成で液体静置培
養した。 培地組成 Czapek′s〜Glucose1% 〜Sucrose1% Potat.extract〜Glucose1% 〜Sucrose1% Yeast.extract〜Glucose1% 〜Sucrose1% Koji.Wasser〜Glucose1% 〜Sucrose1% D 分離菌を使用しての培養と凝集物質の生産 純粋に分離した菌(Dematiaceaeの
Dematium属)を使用しての凝集物質の生産、
培養条件の結果は下記の通りである。5醗酵
槽に炭素源としてグルコース、フラクトース、
ガラクトース等のヘキソーズ又シユークローズ
等の二糖類、澱粉等の多糖を使用しこれに酵母
エキスを1%添加して(培地3)静置法で培
養し(空気量は培地と等量/min、初期PH
5.0)1週間後に培養液の凝集性を調べたがい
ずれの場合も凝集性を有する培養液を得た。そ
の際の基質に対する生産量、PHの変化、残存糖
は第1図の通りである。又通常使用する合成培
地例えばCzapeke(ツアペク)培地に炭素源と
してグルコース等を入れるだけで凝集物質を培
養液に生産することも認めた。上述の如く本発
明菌は炭水化物を主成分とする単純な培地組成
で凝集物質を培養液に産出する事がわかつた。
例えば原糖、シユークローズ、ブドウ糖等を炭
素源として使用すれば他の栄養素(N素源無機
質等)を添加する事は必要でない。原糖のみを
培地組成として培養した時の凝集物質成生結果
を調べたところ、炭素源の培地濃度を5%以下
にして培養した結果、濃度が低下するにつれて
基質に対する凝集物質の生産量が増大し、1%
前後で最大収量を与える事が判明した。 PHは初期に微酸性に調整しておけば特に厳密
な調整を必要としない。培養経過中に多少酸性
に低下する。静置又振盪培養とも凝集物質を産
出するが、振盪培養の方が凝集物質成生が早い
事が判明した。本凝集物質の基質(炭素源)に
対する収量は10%以上50%程度であり、基質濃
度に逆比例する。 即ち第2図の培養時間と 凝集活性物質/基質×100(収量10%) との関係から明らかなように、基質(原糖)濃
度1%で最大値の約50%収量を示し、これより
濃度を増加しても減少しても収量は下降する傾
向を示した。基質(原糖)濃度5%又は0.5%
で10%程度の収量を示した。基質(原糖)濃度
が5%を超える場合には収量の大巾な低下をき
たし、経済的でない。又0.5%より近い濃度の
場合にも収量の大巾な低下が認められる。 E 分離菌が産出する凝集活性物質の分離精製
法 分離精製法 前出の培養条件の培地に分離菌(黒色菌科
のDematium属)を接種して培養した培養液を
加熱し(100℃/5分)、遠沈処理3000rpm/mi
nして菌体を除去又過、分離して菌体を除去
し分離液にエタノールを30〜40%濃度になるよ
うに添加すると(アセトン、メタノールでもよ
い)エタノールと培養液の液面に薄膜が生じ、
撹拌すると瞬時に繊維状又綿状の物質が1ケ所
に凝集する。凝集した物質を遠心分離又撹拌棒
に附着させて分離し、再度水に溶解させエタノ
ールを添加し再凝集させ、分離後減圧乾燥する
と凝集活性物質が得られる。分離した凝集活性
物質は灰白色で粉末状にする事は容易である。
尚本凝集活性物質は低濃度のエチルアルコール
で瞬時に凝集する事から均一な高分子量物質で
ある事が推論される。 分離精製法 培養液中の本凝集活性物質は酸性に於て、ア
ルミニユームを添加すると著しい凝集をし、ア
ルカリ性に於てはカルシユームイオンにより凝
集する事を見出した。添加するアルミニユーム
イオンとしては硫酸アルミニユーム又はその重
合体で、カルシユームイオンは塩化物として、
又は石灰等である。特定無機イオンによる本凝
集活性物質の凝集結果から培養液中の凝集活性
物質を分離する方法を確立した。即ち培養液を
加熱処理後(100℃/5分)過又遠心処理で
菌体を除し、菌体を除去した液に0.05〜0.10%
の無機イオン、即ち液を酸性にした時はアルミ
ニユーム化合物、アルカリの時はカルシユーム
化合物を加え撹拌すると本凝集活性物質が完全
に凝集してくる。これを過又は遠心処理して
分離し乾燥して固型粉末の凝集活性物質を得る
事が出来る。 分離精製法 培養液を加熱処理後(100℃/5分)菌体を
除去し、菌体を含有しない液を濃縮し(10%前
後)て凝集剤とする。工業的に凝集剤として使
用する時は本物質が非常に安定した物質である
事と、使用時に溶解の必要性がない事など使用
上、製造上液体で取扱う事が非常に合理的であ
る。下表に本凝集活性物質の分離、精製法を一
括して示す。
The present invention relates to a method for producing a flocculant using microorganisms, and more specifically, by culturing flocculant-active substance-producing bacteria belonging to the genus Dematium of the family Dematiaceae, it is possible to produce a flocculant that not only targets proteins but also organic matter, inorganic matter, mineral matter, and living organisms. The present invention relates to a method for producing an agglutinating substance having agglutinating activity against bacterial cells and the like. Conventionally, methods for producing protein aggregation active substances using microorganisms have been proposed, for example, in JP-A-51-86189 and JP-A-51-115993.
The present invention uses microorganisms different from the microorganisms disclosed in these publications, and is applicable not only to proteins, but also to a wide range of substances such as organic substances, inorganic substances, mineral substances, biological cells, etc. suspended, dispersed, or floating in liquids. The present invention provides a method for producing a flocculating active substance having excellent flocculating activity against colloidal substances. The present inventor previously applied for a method for producing an agglutinating active substance using a microorganism characterized by culturing an agglutinating active substance producing bacterium belonging to the Dematium genus of the Dematiaceae family (patent no.
No. 1223494 (Japanese Patent Publication No. 58-47159) (hereinafter referred to as the original invention), the present invention is a further improvement and expansion of this original invention. In the detailed description of the invention, the original invention states that the concentration of the carbon source in the medium is preferably around 5% (i.e.,
The flocculating active substance produced by this isolate (Dematium of Dematiaceae), Microtechnical Laboratory Bacteria No. 4257, shows that as the substrate concentration increases, the amount of flocculating substance produced relative to the substrate decreases). However, the inventor further increased the concentration of carbon source in the medium to 5%.
As a result of culturing as follows (results of static culture or tank culture using fermentation tank 3), the production amount of flocculating active substance per unit or solution per unit or solution is higher when the medium concentration is around 1% than when it is 5%. This discovery led to the present invention. In this way, the fact that the maximum yield of the target product is shown at a dilute medium concentration of around 1% means that, for example, glucose, sucrose, etc. can be obtained from wastewater from various agricultural industries, livestock industries, food processing industries, etc. This means that even a dilute carbon source of around 1% is suitable as a culture medium for the bacteria of the present invention, and this also leads to effective treatment and utilization of these wastewaters, and also allows for the use of bacteria that produce the carbon sources. The coexistence of the present invention also makes it possible to culture the bacteria of the present invention and obtain the desired agglutinating active substance in high yields, which has great industrial and economical value. The microorganisms used in the method of the present invention are
It is an agglutinating active substance producing bacterium belonging to the genus Dematium of the family Dematiaceae, including the bacterium No. 4257 (hereinafter simply referred to as the example bacterium), and its mycological characteristics are described in the example above. The explanation based on bacteria is as follows. A. Mycological characteristics of the isolated bacteria Colonies initially have a smooth surface, are grayish white, and have a mucous,
It grows like a shiny oil droplet (fat-like) yeast,
Filament-like fungal cells grow radially from the periphery, forming a curly, filamentous structure that resembles a tree. These filamentous fungi grow well not only on the surface of the medium but also in the soil. After a while, light brown spots appear on the surface of the colony, which gradually turn into black spots until the entire surface becomes dark black. A large number of light brown oval or oval conidia are lateral to this filamentous fungal body. These conidia easily break apart. On the other hand, conidia are also attached to the surface of the oil droplet-shaped colonies. The culture solution containing sugar becomes very viscous,
Produces leathery black moss in thick colonies on the liquid surface. The optimal growth temperature is 20 to 25°C, at which it produces alcohols and organic acids from sugars such as glucose and sucrose, and has a unique aroma. 1 Culture characteristics * (Note) ○A Solid medium: Potato, glucose agar medium Initially, the colony has a smooth surface, is transparent, has a shiny oil drop shape, and is viscous, grayish-white, yeast-like, and curls radially from the periphery of the colony. Filament-like, just dendritic, fungal cells grow, and these filament-like fungi grow well not only on the surface of the medium but also in the medium. Eventually, some parts of the tree-like branches turn blackish brown. After 3 to 4 days of culture, light and dark brown spots appear on the surface of the colony, but after that it gradually becomes light and dark black and spreads over the entire surface, and finally turns black as a whole (after 7 days of culture). Growth is slow on the top, but the culture characteristics are as described above.It takes about 3 weeks for the colony surface to completely turn black. ○B Liquid culture: Bacterial cells grow in suspension in the potato and glucose medium (Culture 3)
Days), the number of colonies gradually increases, and eventually (7 days after culture), the liquid is filled with viscous colonies. Then, dark brown fungal moss appeared on the tube wall,
It gradually appears on the liquid surface (15 days of culture). This fungal lid is thick and gelatinous. Although it grows in the same way in Czapetz medium, it is very slow and the number of bacterial cells is small, and after about 3 weeks of culturing, a considerable amount of black fungal moss is formed on the liquid surface. 2. Morphological characteristics Young cells are transparent, filamentous, curly, and arborescent, and the fungus (filament-like) has black, oval, spore-like cells growing laterally from here and there. In addition, the oil drop-shaped colonies have black spore-like substances attached to them. This will break apart if you hit a point of impact. 3. Physiological characteristics The optimal growth temperature is 20-25°C. Viscous substances are produced from glucose, sucrose, etc., and alcohols and organic acids are produced from sugars such as glucose. *(Note) References include Guidelines for Applied Mycology (An
introduction to industrial mythology)
(P68-97) Based on Applied Microbiology (P83-87). B Isolation of bacteria and detection of flocculation Make a 1% solution of raw sugar as a bacterial isolation medium, sterilize it by the usual method, and add 20
After dispensing ml and adjusting the pH to slightly acidic, sterilize again, add 1 ml of the stock solution described below to this liquid medium, culture by standing method (room temperature 25-30℃), and sample every day. Cohesion was investigated. That is, a 1% solution of kaolin (special grade reagent manufactured by Takeda Pharmaceutical Co., Ltd.), which is normally used in agglutination tests, was prepared, and the pH was made slightly acidic to use as a test solution. The above stock solution is granulated sugar, a dilute solution of raw sugar (24Å (diameter)) that was left in a beaker for a long time during analysis.
I noticed that the viscosity of the solution (dialysed using a cellulose membrane) had increased, so I decided to repeat the dialysis. When a small amount of diatomaceous earth or activated carbon is added during the operation, this solution has a very remarkable flocculating property, i.e., the diatomaceous earth or activated carbon instantly solidifies at the bottom of the beaker, which is not seen with other commercially available flocculants. I discovered that there is a cohesive force. Furthermore, various substances, substances mainly composed of aluminum silicate such as kaolin and pentonite, inorganic substances such as neutral salts such as calcium carbonate, barium sulfate, and silver chloride, and organic substances are added to this solution. It was qualitatively confirmed that significant aggregation occurred. For this agglutination test, add 25ml of this sample solution to a 50ml test tube.
1 ml of culture solution was added to this, stirred up and down 10 times, and then allowed to rest for 3 minutes. The turbidity of the supernatant was measured using a photoelectric colorimeter at 720 mph/10 mm/cell. In addition, the amount of kaolin remaining in the supernatant was measured gravimetrically to examine the flocculation, and it was found that the flocculation was significant from the culture solution at the initial culture time. This suggests that this aggregating active substance metabolized in the medium has an aggregating effect even in minute amounts. As the culture time progressed (96 hours), the odor of acetone and butanol became stronger. Therefore, the culture time was set to 72 hours, and this culture was
Repeat 10 times and add acetone to the culture solution with strong cohesive force.
A culture solution with no butanol odor and a scent unique to the main culture solution (rose flower aroma) was selected, and the main bacteria was isolated from this solution. Pure isolation of this bacterium ~ Make a 1% solution of raw sugar, sucrose, or glucose, pH 5-6
and powdered yeast extract (manufactured by Takeda Pharmaceutical).
Agar (0.16%) was added at 0.2%, heat sterilized using a conventional method, and the mixture was dispensed into a shear dish to prepare a separation medium.
The culture solution was diluted 100 times, 200 times, and 500 times with sterilized water, and 1 ml was dispensed into a shear dish and cultured at 30°C.
As a result, three types of colonies were detected, and slant culture and liquid culture were repeated to isolate pure three types of bacteria. Colonies at the initial stage of culture (culture time 48
(Before and after time) All of them are cream colored, but as time passes, the center of the surface of the colony becomes black, and as time passes, black hyphae grow on the back of the colony in the form of roots in the medium centering on the colony. The bacteria are isolated. Bacteria whose cream-colored colonies do not change color and swell over time are considered isolated bacteria, and bacteria whose cream color turns brown with the passage of culture time are considered isolated bacteria. The three types of isolated bacteria were statically cultured in a culture solution with the composition described in the text, and the cohesive force of the culture solution was examined using a 1% kaolin solution. The results showed that only the isolated bacteria, that is, the bacteria whose colony surface turned black over time and black hyphae extended in a root-like manner on the back, had flocculating properties, and the apparent viscosity of the main culture solution increased with culture time. In addition, an aroma (rose flower aroma) unique to this fungus was detected. other isolates,
No aggregation was detected in the culture solution, but an acetone odor was detected in the isolated bacteria, and a butyric acid odor was detected in the isolated bacteria. The above-mentioned isolated bacteria belong to the genus Dematium of the family Dematiaceae, which is the subject of the present invention.
This is an agglutinating active substance producing bacterium (hereinafter simply referred to as the present invention bacterium) belonging to . C. Description of the pure isolated bacteria The pure isolated bacteria were slant cultured in a medium with the following composition, and further subjected to liquid stationary culture in this medium composition. Medium composition: Czapek's ~ Glucose 1% ~ Sucrose 1% Potat. extract〜Glucose1%〜Sucrose1% Yeast.extract〜Glucose1%〜Sucrose1% Koji.Wasser〜Glucose1%〜Sucrose1% D Cultivation using isolated bacteria and production of aggregated substances Purely isolated bacteria (Dematiaceae)
Production of flocculants using Dematium spp.
The results of the culture conditions are as follows. 5 Glucose, fructose,
Using disaccharides such as hexoses such as galactose or polysaccharides such as starch, 1% yeast extract was added to this (medium 3), and cultured by the static method (air volume is equal to that of the medium/min). , initial PH
5.0) After one week, the aggregation properties of the culture solutions were examined, and in all cases, culture solutions with aggregation properties were obtained. The production amount, PH change, and residual sugar relative to the substrate at that time are shown in Figure 1. It has also been found that flocculating substances can be produced in a culture solution simply by adding glucose or the like as a carbon source to a commonly used synthetic medium such as Czapeke medium. As mentioned above, it was found that the bacteria of the present invention can produce aggregated substances in the culture solution with a simple medium composition mainly consisting of carbohydrates.
For example, if raw sugar, sucrose, glucose, etc. are used as a carbon source, it is not necessary to add other nutrients (N source minerals, etc.). When we investigated the results of flocculant production when culturing with only raw sugar as the medium composition, we found that when culturing with a carbon source concentration of 5% or less, the production of flocculent substances relative to the substrate increased as the concentration decreased. Yes, 1%
It was found that the maximum yield was given before and after. If the pH is adjusted to slightly acidic initially, there is no need for particularly strict adjustment. It becomes slightly acidic during the course of culture. Although both static and shaking culture produce aggregated substances, it was found that shaking culture produced faster aggregated substances. The yield of this flocculating substance relative to the substrate (carbon source) is approximately 10% to 50%, and is inversely proportional to the substrate concentration. That is, as is clear from the relationship between culture time and aggregation active substance/substrate x 100 (yield 10%) in Figure 2, the yield is about 50% of the maximum value at a substrate (raw sugar) concentration of 1%, and from this Regardless of whether the concentration was increased or decreased, the yield tended to decrease. Substrate (raw sugar) concentration 5% or 0.5%
The yield was about 10%. If the substrate (raw sugar) concentration exceeds 5%, the yield will be drastically reduced, making it uneconomical. A significant decrease in yield is also observed at concentrations closer to 0.5%. E Separation and purification method of agglutinating active substance produced by isolated bacteria Separation and purification method The culture solution obtained by inoculating the isolated bacteria (Dematium sp. minute), centrifugation treatment 3000rpm/mi
When the bacterial cells are removed by filtration and separation, and ethanol is added to the separated solution to a concentration of 30 to 40% (acetone or methanol may be used), a thin film is formed on the surface of the ethanol and culture solution. occurs,
When stirred, fibrous or cotton-like substances instantly aggregate in one place. The aggregated substance is separated by centrifugation or attached to a stirring rod, dissolved in water again, ethanol is added to cause re-agglomeration, and after separation, the substance is dried under reduced pressure to obtain an aggregated active substance. The separated aggregated active substance is grayish white and can be easily made into powder.
It is inferred that this agglutinating active substance is a homogeneous high-molecular-weight substance because it coagulates instantaneously with ethyl alcohol at a low concentration. Separation and purification method It was discovered that this agglutinating active substance in the culture solution shows significant aggregation when aluminum is added in acidic conditions, and agglomerates due to calcium ions in alkaline conditions. The aluminum ion to be added is aluminum sulfate or its polymer, and the calcium ion is added as a chloride.
Or lime etc. We established a method to separate the agglutinating active substance in the culture solution from the results of aggregation of the agglutinating active substance using specific inorganic ions. That is, after heat-treating the culture solution (100℃/5 minutes), remove the bacterial cells by centrifugation, and add 0.05 to 0.10% to the solution from which the bacterial cells were removed.
When the inorganic ions, that is, an aluminum compound when the liquid is made acidic, and a calcium compound when the liquid is alkaline, are added and stirred, the flocculating active substance is completely agglomerated. This can be separated by filtration or centrifugation, and then dried to obtain the agglomerated active substance in the form of a solid powder. Separation and Purification Method After heating the culture solution (100°C/5 minutes), remove the bacterial cells, and concentrate the liquid that does not contain bacterial cells (approximately 10%) to use as a flocculant. When used industrially as a flocculant, it is very rational to handle it as a liquid for both use and production, as it is a very stable substance and does not require dissolution during use. The table below summarizes the separation and purification methods for this agglutinating active substance.

【表】 F 無機塩添加による本凝集活性物質の分離 分離法は本凝集活性物質と無機塩が定量的
に反応する為に培養液中の本凝集活性物質の濃
度を定量しておき計算量の無機塩を添加する。
尚分離法の残液は多少炭素源が残留している
為に培養に適したPHに調整してくり返し使用す
る。添加したアルミニユーム等の無機イオンは
本発明菌の培養阻害剤にはならない。 G 凝集剤としての使用又利用 分離菌即ち黒色菌科のDematium属を培養
し、前出の分離法で本凝集活性物質が得られ
た。これらの液体、固体又無機オンを含む本固
体凝集活性物質は非常に微量で、即ち液量に対
して0.1ppm〜3.0ppm添加することにより、水
又水を含む液体に分散、懸濁、コロイド状、浮
遊する有機、無機物質又生物菌体を完全に凝集
沈澱させる性質がある事を発見した。尚本凝集
活性物質の凝集作用は現有市販凝集剤(無機、
有機)に比較すると著しく強いと言える。又微
生物の代謝物質である為に凝集剤による二次汚
染の問題もないメリツトを有している。 凝集時の条件は至適PHの範囲は酸性〜微酸
性でアルカリ性では所期の凝集力は示さない。
反応温度度は常温から高温まで凝集力に関係
ない。本凝集物質添加後、緩やかな撹拌をす
るのが有利である。凝集剤としての使用量は
0.1ppm〜3.0ppmでよく、使用量は特殊物質を
除いて凝集させられる物質には関係ない。酸性
側に於て本凝集活性物質では凝集しない物質、
例えばセルローズ粉末、澱粉粒子等の水溶液で
は本凝集活性物質を添加撹拌後、添加した凝集
活性物質の1/30〜1/40量のアルミニユームイオ
ンを添加して撹拌すると、セルローズ粉末、澱
粉粒子等は一瞬にして凝集沈澱する事を発見し
た。この事により、酸性側に於て水に懸濁、分
散、浮遊、コロイド状で存在する有機、無機物
質は全べて凝集沈澱させる事ができた。 アルカリ側に於ける本凝集活性物質の凝集力
は非常に微弱であるが、カルシユームイオンを
添加する事によりその凝集力は酸性側に於ける
本物質の凝集力と同様になる事を発見した。カ
ルシユームイオンの添加量は酸性側に於けるア
ルミニユームイオン添加量より多く、添加した
本凝集物質量の20〜30倍量、即ち40〜80ppm
あればよい。この実験結果からすべてのPH領域
に於て本凝集物質は微量で水に懸濁、分散、浮
遊、コロイド状に存在する有機、無機物質を凝
集沈澱させる事が出来る事が認められた。本凝
集物質による凝集作用は、本凝集物質がきわめ
て均一な高分子量で水に対する親和力が非常に
高いので(この推論は低濃度のアルコールで瞬
時に凝集する事から出来る)あたかも水の中に
きめのこまかい網を均一に詰めこんだ状態で水
と水和しているが、これに荷電した微粒子又無
機物質が入ると、その分散した網が電気的にバ
ランスを失い凝集する時、あたかも網で魚を捕
える様に物質を捕えると推論される。この事は
アルミニユームイオンを本凝集活性物質の水溶
液に微量添加した時の凝集を観察する事により
明瞭となる。又本凝集活性物質の溶液にエタノ
ールを添加するとその境界面に薄膜がコロヂオ
ン膜を作る時の様に生じこの様な膜がいくえに
も重なつている事を観察出来る。尚本凝集活性
物質は使用時に於て水溶液として使用する。又
精製法によつて得られたアルミニユーム含有
凝集物質、カルシユーム含有凝集活性物質は使
用時にアルカリ又は酸性の水溶液として使用す
る。 H 本凝集活性物質の物理化学的性質 エタノールで分離精製した本凝集活性は水に
可溶でその0.1%の水溶液の比粘度は4〜5で
あり砂糖の40%溶液の粘度に相当する。 本凝集活性物質のアンスロン、モーリツシ
ユ、ビユ−レツト反応はいずれもであり、カ
ルバゾール反応による−COOH基の定性反応
もでその定量値をガラクチユロン酸で示す
と、その含有量は10〜15%である。又INH2SO4
で24時間加水分解した際に未分解物質が残留し
加水分解液の糖組成はペーパークロマトで、グ
ルコース、ガラクトース、マンノース等の糖を
検出した。更に本凝集活性物質の赤外クロマト
(KBr法)の結果を第3図に示す。この赤外で
は−COOHの吸収が確認さたが、アミド基等
についてはその吸収が明瞭でなかつた。 本凝集活性物質はグルコース、ガラクトース
等の主構成成分とする有機酸を含有した高分子
量物質と推定される。
[Table] F Separation of this flocculating active substance by adding inorganic salts In the separation method, the flocculating active substance and inorganic salt react quantitatively, so the concentration of this flocculating active substance in the culture solution is quantified and the calculated amount is calculated. Add inorganic salts.
Since the residual liquid from the separation method still contains some carbon source, it must be adjusted to a pH suitable for culture and used repeatedly. The added inorganic ions such as aluminum do not act as a culture inhibitor for the bacteria of the present invention. G. Use as a flocculant The isolated bacterium, ie, the genus Dematium of the family Black Mycoceae, was cultured, and the present flocculating active substance was obtained by the above-mentioned separation method. These liquids, solids, or solid agglomerated active substances containing inorganic ions can be dispersed, suspended, or colloided in water or a liquid containing water by adding very small amounts, that is, 0.1 ppm to 3.0 ppm to the liquid amount. It was discovered that it has the property of completely coagulating and precipitating floating organic and inorganic substances and biological bacteria. The flocculating action of this flocculating active substance is similar to that of existing commercial flocculants (inorganic,
It can be said that it is extremely strong compared to organic (organic). Furthermore, since it is a metabolite of microorganisms, it has the advantage of not having the problem of secondary contamination caused by flocculants. The optimal pH range for aggregation is acidic to slightly acidic, and the desired cohesive force will not be achieved under alkaline conditions.
The reaction temperature ranges from room temperature to high temperature and has no relation to cohesive force. It is advantageous to carry out gentle stirring after addition of the flocculent. The amount used as a flocculant is
It may be 0.1 ppm to 3.0 ppm, and the amount used is not related to substances to be aggregated except for special substances. Substances that do not aggregate with this aggregation active substance on the acidic side,
For example, in an aqueous solution of cellulose powder, starch particles, etc., after adding and stirring the present flocculating active substance, adding aluminum ions in an amount of 1/30 to 1/40 of the added flocculating active substance and stirring, cellulose powder, starch particles, etc. It was discovered that the particles coagulate and precipitate in an instant. As a result, all organic and inorganic substances that are suspended, dispersed, floating, or colloidal in water on the acidic side were able to coagulate and precipitate. Although the cohesive force of this agglomerating active substance on the alkaline side is very weak, it was discovered that by adding calcium ions, the cohesive force becomes similar to the cohesive force of this substance on the acidic side. . The amount of calcium ions added is greater than the amount of aluminum ions added on the acidic side, and is 20 to 30 times the amount of the main flocculation substance added, i.e. 40 to 80 ppm.
Good to have. From the results of this experiment, it was confirmed that in all pH ranges, this flocculating substance can coagulate and precipitate a small amount of organic and inorganic substances that are suspended, dispersed, floating, or colloidal in water. The flocculation effect of this flocculating substance is because this flocculating substance has an extremely uniform high molecular weight and has a very high affinity for water (this inference can be made from the fact that it flocculates instantly with low concentration of alcohol), so it is as if the flocculating effect is caused by fine grains in water. The fine net is uniformly packed and hydrated with water, but when charged particles or inorganic substances enter the net, the dispersed net loses electrical balance and clumps together, as if catching fish with a net. It is inferred that it captures matter as it captures it. This becomes clear by observing the aggregation when a small amount of aluminum ion is added to an aqueous solution of the present aggregation active substance. Furthermore, when ethanol is added to the solution of the flocculating active substance, a thin film is formed at the interface, similar to when a collodion film is formed, and it can be observed that many such films overlap. The aggregating active substance is used as an aqueous solution. Furthermore, the aluminum-containing flocculating substance and calcium-containing flocculating active substance obtained by the purification method are used as an alkaline or acidic aqueous solution. H Physical and chemical properties of the flocculating active substance The flocculating active substance separated and purified with ethanol is soluble in water, and its 0.1% aqueous solution has a specific viscosity of 4 to 5, which corresponds to the viscosity of a 40% sugar solution. This agglutinating active substance undergoes all of the Anthrone, Moritzsch, and Buillet reactions, as well as the qualitative reaction of the -COOH group by the carbazole reaction.If the quantitative value is expressed in terms of galactulonic acid, the content is 10 to 15%. . Also INH 2 SO 4
When hydrolyzed for 24 hours, undecomposed substances remained, and the sugar composition of the hydrolyzed solution was determined using paper chromatography, and sugars such as glucose, galactose, and mannose were detected. Furthermore, the results of infrared chromatography (KBr method) of this aggregation active substance are shown in FIG. In this infrared ray, absorption of -COOH was confirmed, but the absorption of amide groups etc. was not clear. This aggregation active substance is estimated to be a high molecular weight substance containing an organic acid as a main component such as glucose or galactose.

【表】 精製分離した凝集活性物質の元素分析 H 6.52% C 41.04 N 0.14 O 51.74 Ash 0.56 (吸湿性) 分子量 100万以上(推定) 定性反応 アンスロン反応 ガルバゾール反応 ビユーレツト反応 ニンヒドリン反応 【table】 Elemental analysis of purified and separated aggregated active substances H 6.52% C 41.04 N 0.14 O 51.74 Ash 0.56 (hygroscopicity) Molecular weight: 1 million or more (estimated) qualitative reaction Anthrone reaction Galbazole reaction Beuretz reaction ninhydrin reaction

【表】 エチルアルコールに対する溶解性 濃度(アルコール)% 40%以下 可溶 40〜45% 不溶、卵白状になる。 保水性大 45%以上 卵白状又は膜状(コロヂオン
膜)になるが撹拌すると綿状の凝集物と
なる。 精製分離した凝集活性物質の 臭気 無臭 味 無味 吸湿性 弱い(常温) 色 灰褐色の繊維状物質 本凝集活性物質の稀薄溶液(濃度1〜
100ppm)にCa++、Al---、Mg、Zn、Pd等の
二価又は三価の無機イオン又重金属イオンを添
加(等量又はその(1/10以下)とすると、本物
質が完全に凝集して繊維状となる。この無機イ
オンとの反応は定量的である。 追加の関係 原発明(特許第1228494号(特公昭58−47159
号))は「黒色菌科(Dematiaceae)のデマチユ
ーム属(Dematium)に属する凝集活性物質産生
菌を培養することを特徴とする微生物による凝集
活性物質の製法」をその発明の構成に欠くことの
できない事項とするものであるが、本発明はこの
原発明の発明の構成に欠くことのできない事項の
全部をその構成に欠くことができない事項の主要
部としている発明であつて原発明と同一の目的を
達成するものであるから、特許法第31条第1号の
追加の特許の要件を満足するものである。
[Table] Solubility in ethyl alcohol Concentration (alcohol)% 40% or less Soluble 40-45% Insoluble, becomes albumen-like. High water retention: 45% or more It becomes albumen-like or film-like (collodion film), but when agitated, it becomes a flocculent aggregate. Odor of the purified and separated flocculating active substance Odorless Taste Tasteless Hygroscopicity Weak (room temperature) Color Grayish brown fibrous substance Dilute solution of this flocculating active substance (concentration 1~
If divalent or trivalent inorganic ions or heavy metal ions such as Ca ++ , Al --- , Mg, Zn, Pd, etc. are added (equivalent amount or (1/10 or less)) to 100ppm), this substance will be completely This reaction with inorganic ions is quantitative. Additional relations Original invention (Patent No. 1228494 (Special Publication No.
(No.)) is an essential part of its invention, which describes ``a method for producing a flocculating active substance using a microorganism characterized by culturing a flocculating active substance-producing bacterium belonging to the genus Dematium of the family Dematiaceae.'' However, the present invention is an invention in which all of the matters essential to the composition of the invention of the original invention are the main parts of the composition, and the present invention has the same purpose as the original invention. Therefore, it satisfies the requirements for an additional patent under Article 31, Item 1 of the Patent Act.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基質濃度(原糖)1%の下に本発明菌
を培養したときのPH、凝集活性物質収量%、基質
の消費糖%と培養時間との関係を示す図表であ
り、第2図は基質濃度(原糖)1%及び5%のと
きの凝集活性物質の収量と培養時間との関係を示
す図表であり、第3図は本発明法に従つて分離し
た本凝集活性物質の赤外吸収スペクトルの図であ
る。
Figure 1 is a chart showing the relationship between pH, agglutination active substance yield %, substrate consumption % sugar, and culture time when the bacteria of the present invention was cultured at a substrate concentration (raw sugar) of 1%. The figure is a chart showing the relationship between the yield of the agglutinating active substance and the culture time when the substrate concentration (raw sugar) is 1% and 5%. It is a figure of an infrared absorption spectrum.

Claims (1)

【特許請求の範囲】 1 黒色菌科(Dematiaceae)のデマチユーム属
(Dematium)に属する凝集活性物質産生菌を炭
素源の培地濃度0.5〜5%の下で培養することを
特徴とする微生物による凝集活性物質の製法。 2 特許請求の範囲第1項に記載の培養がブドウ
糖その他の炭水化物を主炭素源とした培地に接種
して行われることを特徴とする微生物による凝集
活性物質の製法。 3 凝集活性物質が液体に懸濁、分散、浮遊して
コロイド状に存在する有機質、無機質、鉱物質、
生物菌体等に凝集活性を有していることを特徴と
する特許請求の範囲第1項又は第2項記載の微生
物による凝集活性物質の製法。
[Scope of Claims] 1. A flocculating activity by a microorganism characterized by culturing a flocculating active substance-producing bacterium belonging to the genus Dematium of the family Dematiaceae under a medium concentration of carbon source of 0.5 to 5%. A method of manufacturing a substance. 2. A method for producing an agglutinating active substance using a microorganism, characterized in that the culture according to claim 1 is carried out by inoculating a medium containing glucose or other carbohydrates as the main carbon source. 3 Organic, inorganic, and mineral substances in which agglomerated active substances are suspended, dispersed, or floated in a liquid and exist in colloidal form;
3. A method for producing an agglutinating active substance using a microorganism according to claim 1 or 2, characterized in that biological cells or the like have an agglutinating activity.
JP9766478A 1977-10-11 1978-08-10 Production of coagulation-active substance by microorganism Granted JPS5529902A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9766478A JPS5529902A (en) 1978-08-10 1978-08-10 Production of coagulation-active substance by microorganism
US05/948,227 US4258132A (en) 1977-10-11 1978-10-03 Process for producing an agglutinating substance utilizing dematium ATCC 20524
FR7829017A FR2424959A1 (en) 1977-10-11 1978-10-11 PROCESS FOR THE PRODUCTION OF AN AGGLUTINANT SUBSTANCE BY CULTURE OF A MICRO-ORGANISM AND ITS USE
DE2844311A DE2844311A1 (en) 1977-10-11 1978-10-11 METHOD FOR MANUFACTURING AN AGGLUTINATING SUBSTANCE AND THE USE OF IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9766478A JPS5529902A (en) 1978-08-10 1978-08-10 Production of coagulation-active substance by microorganism

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP54007816A Division JPS60969B2 (en) 1979-01-25 1979-01-25 Food modification method

Publications (2)

Publication Number Publication Date
JPS5529902A JPS5529902A (en) 1980-03-03
JPS6147512B2 true JPS6147512B2 (en) 1986-10-20

Family

ID=14198312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9766478A Granted JPS5529902A (en) 1977-10-11 1978-08-10 Production of coagulation-active substance by microorganism

Country Status (1)

Country Link
JP (1) JPS5529902A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123332U (en) * 1981-01-27 1982-07-31
JPS59102326A (en) * 1982-12-01 1984-06-13 株式会社 松下工場 Tea leaf dispersing blade in tea leaves thrown-down conveyor
JPH10113677A (en) * 1996-10-09 1998-05-06 Kokichi Sakai Trapping agent for heavy metal and trapping method of heavy metal
JPH10113675A (en) * 1996-10-09 1998-05-06 Kokichi Sakai Trapping agent for heavy metal and trapping method of heavy metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406114A (en) * 1964-07-20 1968-10-15 Kerr Mc Gee Oil Ind Inc Process for flocculating finely divided solids suspended in an aqueous medium with amicrobial polysaccharide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406114A (en) * 1964-07-20 1968-10-15 Kerr Mc Gee Oil Ind Inc Process for flocculating finely divided solids suspended in an aqueous medium with amicrobial polysaccharide

Also Published As

Publication number Publication date
JPS5529902A (en) 1980-03-03

Similar Documents

Publication Publication Date Title
CN111849815B (en) Plant growth promoting rhizosphere strain Gxun-20 and application thereof in plant growth promotion
US4119495A (en) Method for processing activated sludge into useful products
DE1803987A1 (en) New, physiologically active peptidolipid and process for its production
JPS6147512B2 (en)
US4258132A (en) Process for producing an agglutinating substance utilizing dematium ATCC 20524
US3082155A (en) Production of cephalosporin c
DE2344006C3 (en) PROCESS FOR THE BIOTECHNICAL TREATMENT OF WASTEWATER CONTAINING EPSILON-CAPROLACTAM
JPS5847159B2 (en) Method for producing flocculating active substances using microorganisms
CN1274805C (en) Process for screening of microorganism flocculator producing bacteria
US3729378A (en) Process for the production of aeruginoic acid
JPS6129762B2 (en)
DE3247703A1 (en) METHOD FOR PRODUCING L-THREONINE
JP2751862B2 (en) Method for producing microbial flocculant by fermentation method
JPS597518B2 (en) Wastewater coagulation treatment method
CN1253553C (en) Ceramide bacillus and method for production of glycoprotein analog biological flocculant using same
NO139353B (en) PROCEDURE FOR PREPARING LIPASE
JPH10286085A (en) Brevundimonas sp. p3-4 strain and treatment of orthophosphoric acid-containing water
JP2560257B2 (en) Method for producing chitosan-chitin hollow fiber
JPH0730121B2 (en) Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same
SU348010A1 (en) METHOD OF OBTAINING LITHIC ENZYME
Netrval Effect of organic and amino acids on L-asparaginase production by Escherichia coli
SU452581A1 (en) The method of obtaining biomass
Kraus Riboflavin in sewage sludge
JPH0660B2 (en) Novel microorganism capable of degrading chitin
FR2496690A1 (en) PROCESS FOR PREPARING FOOD YEAST AND / OR ETHYL ALCOHOL FROM PLANT BY-PRODUCTS