JPS6146967A - Electrophotographic device - Google Patents

Electrophotographic device

Info

Publication number
JPS6146967A
JPS6146967A JP16857784A JP16857784A JPS6146967A JP S6146967 A JPS6146967 A JP S6146967A JP 16857784 A JP16857784 A JP 16857784A JP 16857784 A JP16857784 A JP 16857784A JP S6146967 A JPS6146967 A JP S6146967A
Authority
JP
Japan
Prior art keywords
base body
light
electrophotographic photoreceptor
roughness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16857784A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16857784A priority Critical patent/JPS6146967A/en
Publication of JPS6146967A publication Critical patent/JPS6146967A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combination Of More Than One Step In Electrophotography (AREA)
  • Dot-Matrix Printers And Others (AREA)
  • Laser Beam Printer (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To prevent occurrence of interference fringes on images due to the interference between a reflected light from a conductive base body and a coherent light of the incident light for a long time by setting the roughness and the pitch of ruggedness of the surface of the conductive base body of a photosensitive body within prescribed values by etching. CONSTITUTION:The surface roughness and the pitch of projecting parts of the surface ruggedness of a conductive base body 20 of a photosensitive body 2 are set to 0.05-3.0mum and 0.2-10mum respectively, and a thin film layer 21 consisting of a layer 21A which stops electric charge injection from the base body 20, a layer 21B which receives a laser light to generate carriers, and a protective layer 21C is formed on the base body 20. In case of <=0.05mum roughness and >=0.2mum pitch, interference fringes occur on images because the incident light cannot be scattered sufficiently on the surface of the base body; and in case of >=3mum roughness, the adhesive strength between the base body and the thin film layer is degraded, and they are peeled partially to degrade the light attenuation characteristic of the surface potential. The roughness of the surface of the base body is set within prescribed values in this manner to prevent the occurrence of interference fringes when images are formed with the coherent light.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、発光波長が600rv以上の可干渉光を電子
写真感光体に照射してその表面に電荷パターンを形成す
ることにより画像を形成する電子写真装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an electrophotographic photoreceptor that forms an image by irradiating an electrophotographic photoreceptor with coherent light having an emission wavelength of 600 rv or more to form a charge pattern on its surface. Concerning photographic equipment.

[発明の技術的背景とその問題点] この種の電子写真装置としては、@e−Neレーザ光や
半導体レーザ光などの可干渉光を光源にして露光される
ものが存在する。レーザ光は波束が広がりにくいという
特徴があるので比較的簡単な光学系にて走査による像露
光が可能である。したがってコンピュータの出力等のよ
うに時系列の電気的信号に基づいて画像を形成する装置
への応用には特に適している。しかもこのような装置は
従来のインパクトタイプのプリンタ等に比較して騒音が
小さくかつ高速処理が可能である。このため可干渉光に
よる画像露光に好適な電子写真装置の需要が高まりつつ
ある。
[Technical Background of the Invention and Problems Therein] As this type of electrophotographic apparatus, there is one that uses coherent light such as @e-Ne laser light or semiconductor laser light as a light source for exposure. Laser light has a characteristic that its wave packet does not spread easily, so it is possible to perform image exposure by scanning with a relatively simple optical system. Therefore, it is particularly suitable for application to devices that form images based on time-series electrical signals such as computer output. Moreover, such a device generates less noise and is capable of high-speed processing compared to conventional impact type printers and the like. For this reason, there is an increasing demand for electrophotographic apparatuses suitable for image exposure using coherent light.

ところでレーザは一般に短波長の光を出力づ°るものほ
ど装置が大きくなり、可視域の光を発するレーザではト
1e−Neレーザ光が最も長波長(633nm )でそ
の装置も小型である。これを光源とした場合、電子写真
感光体に使用できる光導電性材料はSe 、Te或いは
ASなどの合金、又は非晶質シリコンや微結、晶シリコ
ンなどに限定される。
Generally speaking, the shorter the wavelength of laser output, the larger the device. Among lasers that emit light in the visible range, the 1e-Ne laser beam has the longest wavelength (633 nm) and the device is smaller. When this is used as a light source, photoconductive materials that can be used in the electrophotographic photoreceptor are limited to alloys such as Se, Te, or AS, or amorphous silicon, microcrystalline silicon, or crystalline silicon.

さらに最近では装置の小型化のために半導体レーザの使
用が試みられているが、この場合にはさらに長波長で感
度の高い光導電性材料が必要になる。
Furthermore, recently attempts have been made to use semiconductor lasers to miniaturize devices, but in this case a photoconductive material with higher sensitivity at longer wavelengths is required.

現在、半導体レーザの発光波長は約780ng+程度で
、このレーザ光に感度を有しかつ電子写真感光体として
使用できる光導電性材料は少なく、その1つとして非晶
質シリコンを挙げることができる。
Currently, the emission wavelength of a semiconductor laser is about 780 ng+, and there are few photoconductive materials that are sensitive to this laser light and can be used as electrophotographic photoreceptors, one of which is amorphous silicon.

この非晶質シリコンは波長780nlの光に対する感度
は必ずしも高くはなく、従来Geを混合させることで長
波長の増感が行われていたが、20〜40er(1/c
o+2 、 secの強度を有するレーザ光を全て吸収
するには、光導電性層の層厚を30μm以上にしなけれ
ばなない。
This amorphous silicon does not necessarily have high sensitivity to light with a wavelength of 780 nl, and conventionally sensitization to long wavelengths was performed by mixing Ge, but
In order to absorb all the laser light having an intensity of o+2, sec, the thickness of the photoconductive layer must be 30 μm or more.

しかし光導電性層の層厚を30μm以上にした場合には
光導電性層を形成する非晶質シリコンの光生成キャリア
の移動性が小さいことに起因して形成画像にボケを生じ
てしまうため、30μm以上という層厚には自ら限界が
ある。このため半導体レーザ光のような長波長の光源を
用いる場合、光導電性層を透過した光が導電性基体表面
で反射し、この反射光が入射光と干渉するために干渉縞
を生して形成画像が不鮮明になるという問題があった。
However, when the layer thickness of the photoconductive layer is 30 μm or more, the formed image becomes blurred due to the low mobility of photogenerated carriers in the amorphous silicon that forms the photoconductive layer. , there is a limit to the layer thickness of 30 μm or more. For this reason, when using a long wavelength light source such as a semiconductor laser beam, the light transmitted through the photoconductive layer is reflected on the surface of the conductive substrate, and this reflected light interferes with the incident light, resulting in interference fringes. There was a problem that the formed image became unclear.

このような干渉を防止するため、導電性基体と光導電性
層との間に長波長光を吸収する物質を塗布するなどの手
段が採用されていたが、光′Q電性層を形成する非晶質
シリコンの特性への影響や接着性などの点において問題
があった。
In order to prevent such interference, measures such as coating a substance that absorbs long wavelength light between the conductive substrate and the photoconductive layer have been adopted; There were problems in terms of effects on the properties of amorphous silicon and adhesiveness.

[発明の目的] 本発明は上記事情に鑑みてなされたものでその目的とす
るところは、可干渉光を光源に用いた場合、導電性基体
からの反射光と入射光との干渉に   i起因する形成
画像上の縞の発生を防止することができる電子写真装置
を提供することである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is that when coherent light is used as a light source, interference between reflected light from a conductive substrate and incident light causes i. An object of the present invention is to provide an electrophotographic apparatus that can prevent the occurrence of stripes on formed images.

[発明の概要] 斯かる目的を達成するために本発明は、表面粗さが0.
05μIn以上3.0μI11以下で表面の凹凸の凸部
間のピッチが0.2μm以下の導電性基体の表面上に光
導電性材料を含むill!層が形成されて成る電子写真
感光体と、この電子写真感光体を帯電する帯電手段と、
帯電された電子写真感光体に発光波長が60Or+n+
以上の可干渉光を照射してその表面に電荷パターンを形
成する光源と、上記電子写真感光体上の電荷パターンを
現像する現像手段と、現像された電子写真感光体上の現
像像を記録媒体に転写する転写手段とにより構成し、粗
面化された導電性基体の表面で入射光を乱反射させるよ
うにしたものである。
[Summary of the Invention] In order to achieve the above object, the present invention has a surface roughness of 0.
ill! containing a photoconductive material on the surface of a conductive substrate having a pitch of 0.05μIn or more and 3.0μI11 or less and a pitch between convex portions of the surface irregularities of 0.2μm or less! An electrophotographic photoreceptor formed of a layer, a charging means for charging the electrophotographic photoreceptor,
The charged electrophotographic photoreceptor has an emission wavelength of 60Or+n+
A light source that irradiates the above-mentioned coherent light to form a charge pattern on the surface thereof, a developing means that develops the charge pattern on the electrophotographic photoreceptor, and a recording medium for storing the developed image on the electrophotographic photoreceptor. The conductive substrate has a roughened surface, and the incident light is diffusely reflected on the roughened surface of the conductive substrate.

〔発明の実施例J 次に本発明の詳細な説明する。[Embodiment J of the invention Next, the present invention will be explained in detail.

第1図は本発明に係る電子写真装置の一実施例を示す概
略断面図である。本装置は発光波長が780nmの可干
渉光を出力する半導体レーザ1を光源に有するものであ
る。先ず装置の中央部には電子写真感光体2が矢印へ方
向に回転可能に設けられ、その上方には電子写真感光体
2の表面を均一に帯電する帯電手段としての帯電器3が
段けられている。この帯電器3で帯電された電子写真感
光体2の表面は前記半導体レーザ1を介して像露光され
るもので、そのために前記半導体レーザ1からのレーザ
光を電子写真感光体2方向へ反射させるポリゴンミラー
4と、このポリゴンミラー4で反射されたレーザ光を電
子写真感光体表面に集光するレンズ5とが設けられてい
る。レーザ光が照射された部分の電子写真感光体の表面
電位は光減衰し、そこには電荷パターンが形成される。
FIG. 1 is a schematic sectional view showing an embodiment of an electrophotographic apparatus according to the present invention. This device has a semiconductor laser 1 as a light source that outputs coherent light with an emission wavelength of 780 nm. First, an electrophotographic photoreceptor 2 is provided in the center of the apparatus so as to be rotatable in the direction of the arrow, and a charger 3 serving as a charging means for uniformly charging the surface of the electrophotographic photoreceptor 2 is arranged above it. ing. The surface of the electrophotographic photoreceptor 2 charged by the charger 3 is subjected to image exposure via the semiconductor laser 1, and for this purpose, the laser light from the semiconductor laser 1 is reflected toward the electrophotographic photoreceptor 2. A polygon mirror 4 and a lens 5 that focuses the laser beam reflected by the polygon mirror 4 onto the surface of the electrophotographic photoreceptor are provided. The surface potential of the electrophotographic photoreceptor in the portion irradiated with the laser light is optically attenuated, and a charge pattern is formed there.

そして電子写真感光体2の回転方向に沿った先方には上
記電荷パターンに現像剤を付着させて現像する現像手段
としての現像器7が配置されている。一方この現像器7
の、下方位置には記録媒体例えば用紙8を収納した給紙
カセット9が設けられていて、給紙ローラ10を介して
最上層の用紙8を取出せるようになっている。取り出さ
れた用紙8は、レジストローラ11でアライニングされ
、電子写真感光体2の矢印六方向への回転とタイミング
がとられて先方へ搬送される。用紙8が電子写真感光体
2の表面に接する位置まで搬送されてきたときには、上
記現@像はその電子写真感光体2の回転によりその用紙
8に対向する位置まで搬送されていて、現像像−を形成
している現像剤は転写手段としての転写器12を介して
用紙8に転写されるようになっている。そして転写され
た現像剤を用紙8に定着するため一方のローラにヒータ
を内蔵した定着ローラ13が設けられ、定着後の用紙8
を受は取る排紙トレイ14がその先方に配置されている
。尚、転写後において電子写真感光体2表面に残留して
いる現像剤を除去してクリーニングするためにクリーナ
15が設けられ、ざらにクリーニングされた電子写真感
光体2表面を除電するため、その全面を露光するタング
ステンランプなどの除電ランプ16が設けられている。
A developing device 7 serving as a developing means for attaching a developer to the charge pattern and developing it is disposed at the forward end of the electrophotographic photoreceptor 2 along the rotational direction. On the other hand, this developer 7
A paper feed cassette 9 containing a recording medium such as paper 8 is provided at a lower position, and the uppermost layer of paper 8 can be taken out via a paper feed roller 10. The taken out paper 8 is aligned by the registration rollers 11, and is transported forward in time with the rotation of the electrophotographic photoreceptor 2 in the six directions of arrows. When the paper 8 has been conveyed to a position where it contacts the surface of the electrophotographic photoreceptor 2, the developed image has been conveyed to a position opposite to the paper 8 by the rotation of the electrophotographic photoreceptor 2, and the developed image - The developer forming the image is transferred onto the paper 8 via a transfer device 12 as a transfer means. In order to fix the transferred developer onto the sheet of paper 8, a fixing roller 13 having a built-in heater is provided on one roller, and the sheet of paper 8 after fixing.
A paper discharge tray 14 for receiving and picking up the paper is arranged ahead of it. A cleaner 15 is provided to remove and clean the developer remaining on the surface of the electrophotographic photoreceptor 2 after transfer, and to remove static electricity from the roughly cleaned surface of the electrophotographic photoreceptor 2, the entire surface of the electrophotographic photoreceptor 2 is cleaned. A static elimination lamp 16 such as a tungsten lamp is provided for exposing.

次に上記電子写真感光体2を詳細に説明する。Next, the electrophotographic photoreceptor 2 will be explained in detail.

第2図は電子写真感光体の積層構造を示す断面図である
。本゛電子写真感光体2はアルミドラム等の導電性基体
20の表面上に光導電性材f31を含む薄膜層21が形
成されて成る。上記導電性基体20の表面は粗面化され
ており表面粗さが0.05μm以上3.0μm以下で表
面の凹凸の凸部間のピッチが0.2μm以下に仕上げら
れている。このような粗面化処理は水酸化カリウム、水
酸化ナトリウム等のアルカリ溶液のエツチング、サンド
ブラスト、又はパフ研磨等で行うことができる。特にエ
ッチ。
FIG. 2 is a sectional view showing the laminated structure of the electrophotographic photoreceptor. The present electrophotographic photoreceptor 2 includes a thin film layer 21 containing a photoconductive material f31 formed on the surface of a conductive substrate 20 such as an aluminum drum. The surface of the conductive substrate 20 is roughened so that the surface roughness is 0.05 μm or more and 3.0 μm or less, and the pitch between the convex portions of the surface irregularities is 0.2 μm or less. Such surface roughening treatment can be performed by etching with an alkaline solution such as potassium hydroxide or sodium hydroxide, sandblasting, or puff polishing. Especially naughty.

ングによる場合にはエツチング液の濃度、温度。In the case of etching, the concentration and temperature of the etching solution.

エツチング時間により粗さ調整かでき、しかも均一に粗
面化することができる。前記薄膜層21は、導電性基体
20からの電荷の注入を阻止するブロッキングJi12
1A、前記半導体レーザ1からのレーザ光を受けてキャ
リアを発生する光導電性材料から成る光導電性1121
B及びこの光導電性層21Bの表面の電荷保持と保護の
ための表面層21Cが順次積層さて構成されている。こ
のi’i9膜層21はスパッタリングやグロー敢電分解
方により形成することができる。例えばグロー放電分解
法によりSi原子を母体として非結晶材料であるアモル
ファスシリコンで構成する場合には、先ず十分に洗浄し
た導電性基体20例えばアルミドラムを反応容器内に設
置し、この反応容器内を1xio−3torr以下にな
るまで排気すると同時にアルミドラムの温度を約300
℃に設定し、反応容器内が十分に排気されアルミドラム
の温度が安定したなら、別の排気系を介して反応容器内
を0.1〜10tOrr程度にしてガス尋人管よりマス
フローコントローラを介して5iHaガス(原料ガス)
、B21−I6ガス(ドーピングガス)及びo2ガス(
不純物添加用ガス)などを所定口導入し、これらをグロ
ー放電分解して成膜することができる。特にM膜層21
を5iHaガスのグロー放電分解で形成した場合には導
電性基体20表面の凹凸に対して接着性に富み、しかも
発光波長が780nmのレーザ光に対して高い感度を有
するアモルファスシリコンによって薄膜層21が形成さ
れるので、小型な半導体レーザを光源に使用でき、装置
の小型化と高速画像形成を可能にづ゛ることができる。
The roughness can be adjusted by changing the etching time, and the surface can be evenly roughened. The thin film layer 21 has a blocking layer Ji12 that prevents charge injection from the conductive substrate 20.
1A, a photoconductive material 1121 made of a photoconductive material that generates carriers upon receiving laser light from the semiconductor laser 1;
B and a surface layer 21C for retaining and protecting the surface of the photoconductive layer 21B are successively laminated. This i'i9 film layer 21 can be formed by sputtering or glow electrolysis. For example, in the case of constructing amorphous silicon, which is a non-crystalline material using Si atoms as a matrix, by the glow discharge decomposition method, first, a thoroughly cleaned conductive substrate 20, for example, an aluminum drum, is placed in a reaction vessel, and the interior of the reaction vessel is At the same time, the temperature of the aluminum drum was raised to about 300℃ while exhausting until the temperature was below 1xio-3torr.
℃, and once the inside of the reaction vessel has been sufficiently evacuated and the temperature of the aluminum drum has stabilized, the inside of the reaction vessel is brought to about 0.1 to 10 tOrr via another exhaust system, and then the mass flow controller is pumped through the gas pipe. 5iHa gas (raw material gas)
, B21-I6 gas (doping gas) and O2 gas (
A film can be formed by introducing a gas such as a gas for adding impurities into a predetermined port and decomposing the gas by glow discharge. In particular, the M film layer 21
When the thin film layer 21 is formed by glow discharge decomposition of 5iHa gas, the thin film layer 21 is made of amorphous silicon which has excellent adhesion to the irregularities on the surface of the conductive substrate 20 and is highly sensitive to laser light with an emission wavelength of 780 nm. Therefore, a small semiconductor laser can be used as a light source, making it possible to miniaturize the device and perform high-speed image formation.

尚、薄膜層の構成は第2図で説明した積層構造に限定さ
れず、少なくとも光導電性材料から成る光導電性層が形
成されていればよい。また光導電性材料についてもアモ
ルファスシリコンに限定されるものではなく、発光波長
が600nm以上の可干渉光に対して感度を有する材料
例えばSe、Te或いはAsなどの合金であってもよい
Note that the structure of the thin film layer is not limited to the laminated structure explained in FIG. 2, but it is sufficient that at least a photoconductive layer made of a photoconductive material is formed. Further, the photoconductive material is not limited to amorphous silicon, but may also be a material sensitive to coherent light having an emission wavelength of 600 nm or more, such as an alloy of Se, Te, or As.

次に以上のような基本的構造を有する電子写真感光体2
を用いた実験結果について説明する。例えば第3図に示
す如く、触針式表面粗さ計を用いて測定した結果表面粗
さく例えばJISの最大高さ表示)が約0.8μm、凸
部間のピッチが約0,1μmの導電性基体20上にアモ
ルファスシリコンを材料とした薄I1w層21を形成し
て成る電子写真感光体2を第1図に示す装置に用いた場
合、現像器7にて現像バイアスをかけずに画像を形成す
ると形成画像上に僅かに干渉縞が見える程度であり、一
方現像によるかぶりがなくなる程度にバイアスをかける
と形成画像上に干渉縞は全く現われない。
Next, an electrophotographic photoreceptor 2 having the basic structure as described above is prepared.
We will explain the experimental results using . For example, as shown in Fig. 3, the surface roughness measured using a stylus surface roughness meter (for example, JIS maximum height) is about 0.8 μm, and the pitch between convex parts is about 0.1 μm. When an electrophotographic photoreceptor 2 comprising a thin I1w layer 21 made of amorphous silicon formed on a transparent substrate 20 is used in the apparatus shown in FIG. When formed, interference fringes are only slightly visible on the formed image, while on the other hand, when a bias is applied to such an extent that fog due to development disappears, no interference fringes appear on the formed image.

そして導電性基体20の表面粗さ及び凸部間のピッチを
変えた種々の電子写真感光体2を用いて実験をしたとこ
ろ、表面粗さが0.05μIIl以下のとき又は凸部間
のピッチが0.2μm以上のときには形成画像上に干渉
縞を生じた。これは、上記範囲では入射光を導電性基体
20表面で十分に散乱させることができないからである
と考えられる。また表面粗さが3μ…以上のときには繰
返し使用に耐えられずig電電性鉢体対して薄膜層21
が部分的に剥離し、かつ表面電位の光減衰特性が部分的
に劣化した。これは、上記範囲では導電性基体20と薄
膜層21との接着性及び密着性が悪化することに起因す
ると考えられる。
Experiments were conducted using various electrophotographic photoreceptors 2 in which the surface roughness of the conductive substrate 20 and the pitch between the convex parts were changed. When the thickness was 0.2 μm or more, interference fringes were generated on the formed image. This is considered to be because the incident light cannot be sufficiently scattered on the surface of the conductive substrate 20 within the above range. In addition, when the surface roughness is 3μ or more, it cannot withstand repeated use, and the thin film layer 21
was partially peeled off, and the light attenuation characteristics of the surface potential were partially degraded. This is considered to be due to the fact that the adhesiveness and adhesion between the conductive substrate 20 and the thin film layer 21 deteriorate in the above range.

従って、表面粗さが0.05μm以上3.0μ麟以下で
表面の凹凸の凸部間のピッチが0.2μm以下の導電性
基体20を用いた電子写真感光体2を備えた本実施例装
置は、導電性基体20か、らの反射光と入射光との干渉
に起因する形成画像上の縞の発生を画像形成の繰返しに
よる長期間の使用によっても防止することができる。
Therefore, the apparatus of this embodiment includes an electrophotographic photoreceptor 2 using a conductive substrate 20 with a surface roughness of 0.05 μm or more and 3.0 μm or less and a pitch between convex portions of the surface irregularities of 0.2 μm or less. The generation of stripes on a formed image due to interference between light reflected from the conductive substrate 20 and incident light can also be prevented by repeated image formation over a long period of use.

[発明の効果] 以上詳述したことから明らかなごとく本発明の電子写真
装置は、可干渉光を光源に用いた場合、導電性基体から
の反射光と入射光との干渉に起因する形成画像上の縞の
発生を防止することができる。
[Effects of the Invention] As is clear from the above detailed description, when coherent light is used as a light source, the electrophotographic apparatus of the present invention produces images that are formed due to interference between reflected light from a conductive substrate and incident light. It is possible to prevent the occurrence of upper stripes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電子写真装置の一実施例を示す概
略断面図、第2図は電子写真感光体の積層構造を示す断
面図、第3図は触針式表面粗さ計を用いて測定した導電
性基体の表面粗さの測定結果を示す説明図である。 1・・・・・・光源、    2・・・・・・電子写真
感光体、3・・・・・・帯電手段、   7・・・・・
・現像手段、8・・・・・・記録媒体、   12・・
・・・・転写手段、20・・・・・・導電性基体、 2
1・・・・・・薄膜層。
FIG. 1 is a schematic cross-sectional view showing an embodiment of an electrophotographic apparatus according to the present invention, FIG. 2 is a cross-sectional view showing the laminated structure of an electrophotographic photoreceptor, and FIG. FIG. 3 is an explanatory diagram showing the measurement results of the surface roughness of the conductive substrate measured by the method. 1...Light source, 2...Electrophotographic photoreceptor, 3...Charging means, 7...
・Developing means, 8...Recording medium, 12...
... Transfer means, 20 ... Conductive substrate, 2
1... Thin film layer.

Claims (3)

【特許請求の範囲】[Claims] (1)表面粗さが0.05μm以上3.0μm以下で表
面の凹凸の凸部間のピッチが0.2μm以下の導電性基
体の表面上に光導電性材料を含む薄膜層が形成されて成
る電子写真感光体と、この電子写真感光体を帯電する帯
電手段と、帯電された電子写真感光体に発光波長が60
0nm以上の可干渉光を照射してその表面に電荷パター
ンを形成する光源と、上記電子写真感光体上の電荷パタ
ーンを現像する現像手段と、現像された電子写真感光体
上の現像像を記録媒体に転写する転写手段とを具備する
ことを特徴とする電子写真装置。
(1) A thin film layer containing a photoconductive material is formed on the surface of a conductive substrate having a surface roughness of 0.05 μm or more and 3.0 μm or less and a pitch between convex portions of the surface irregularities of 0.2 μm or less. an electrophotographic photoreceptor, a charging means for charging the electrophotographic photoreceptor, and an electrophotographic photoreceptor having an emission wavelength of 60 nm.
A light source that irradiates coherent light of 0 nm or more to form a charge pattern on the surface of the light source, a developing means that develops the charge pattern on the electrophotographic photoreceptor, and records a developed image on the electrophotographic photoreceptor. An electrophotographic apparatus comprising a transfer means for transferring onto a medium.
(2)導電性基体は、アルカリ溶液のエッチングでその
表面に凹凸が形成されて成るものである特許請求の範囲
第1項に記載の電子写真装置。
(2) The electrophotographic apparatus according to claim 1, wherein the conductive substrate has irregularities formed on its surface by etching with an alkaline solution.
(3)薄膜層は、Si原子を母体とした非晶質材料又は
微結晶材料から成るものである特許請求の範囲第1項に
記載の電子写真装置。
(3) The electrophotographic apparatus according to claim 1, wherein the thin film layer is made of an amorphous material or a microcrystalline material containing Si atoms as a matrix.
JP16857784A 1984-08-10 1984-08-10 Electrophotographic device Pending JPS6146967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16857784A JPS6146967A (en) 1984-08-10 1984-08-10 Electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16857784A JPS6146967A (en) 1984-08-10 1984-08-10 Electrophotographic device

Publications (1)

Publication Number Publication Date
JPS6146967A true JPS6146967A (en) 1986-03-07

Family

ID=15870626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16857784A Pending JPS6146967A (en) 1984-08-10 1984-08-10 Electrophotographic device

Country Status (1)

Country Link
JP (1) JPS6146967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934920A (en) * 1987-06-17 1990-06-19 Mitsubishi Denki Kabushiki Kaisha Apparatus for producing semiconductor device
US4987673A (en) * 1987-06-18 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for packaging semiconductor devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934920A (en) * 1987-06-17 1990-06-19 Mitsubishi Denki Kabushiki Kaisha Apparatus for producing semiconductor device
US5026668A (en) * 1987-06-17 1991-06-25 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for producing semiconductor device
US4987673A (en) * 1987-06-18 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for packaging semiconductor devices

Similar Documents

Publication Publication Date Title
US6183930B1 (en) Electrophotographic photosensitive member having surface of non-monocrystalline carbon with controlled wear loss
JP4497682B2 (en) Image forming apparatus
JPH0526191B2 (en)
JPS6146967A (en) Electrophotographic device
JPS6146966A (en) Electrophotographic device
JPH09211878A (en) Production of light accepting member, light-accepting member, electrophotographic device having the same, and electrophotographic process using the same
JPH06250425A (en) Electrophotographic sensitive body
US4851865A (en) Electrophotographic apparatus
JPH0588392A (en) Electrophotographic sensitive body and substrate used for it and its manufacture
JPH01316752A (en) Electrophotographic device
JPS6175371A (en) Electrophotographic device
JPS59222871A (en) Electrophotographic process
JPS60169866A (en) Image forming method
JP2883233B2 (en) Electrophotographic printing plate material and method of manufacturing printing plate using the same
JPH0478880A (en) Electrophotographic copying device
JPH0375856B2 (en)
JP3857160B2 (en) Photoconductor and image forming apparatus
JPH06186763A (en) Photoreceptive member, method for recycling photosensitive body and surface treatment
JPS5917505A (en) Aluminum plate
JPH0193764A (en) Image forming device
JPS60195567A (en) Image forming device
JPS63155054A (en) Production of electrophotographic sensitive body
JPS5863948A (en) Image formation
JPS62150259A (en) Electrophotographic sensitive body
JP2002311693A (en) Electrophotographic device