JPH06250425A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH06250425A
JPH06250425A JP3534993A JP3534993A JPH06250425A JP H06250425 A JPH06250425 A JP H06250425A JP 3534993 A JP3534993 A JP 3534993A JP 3534993 A JP3534993 A JP 3534993A JP H06250425 A JPH06250425 A JP H06250425A
Authority
JP
Japan
Prior art keywords
atoms
layer
atom
density
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3534993A
Other languages
Japanese (ja)
Other versions
JP3236692B2 (en
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03534993A priority Critical patent/JP3236692B2/en
Publication of JPH06250425A publication Critical patent/JPH06250425A/en
Application granted granted Critical
Publication of JP3236692B2 publication Critical patent/JP3236692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide an electrophotographic sensitive body which does not cause fog in a picture image, image flowing nor black spots. CONSTITUTION:The photosensitive body has a structure comprising an amorphous silica (a-Si) carrier injection preventing layer 5, a-Si photoconductive layer 6, and surface layer 7 successively formed on a conductive substrate 4. The atomic density of each layer is specified as follows with the unit of atoms/cm<3>. The carrier preventing layer: <=5.5X10<22> in the amorphous state (a-state) and >=2.0X10<21> for dangling bond compensation (D-compensation). Photosensitive layer: <=5.0X10<22> in the a-state and >=2.0X10<21> for D- compensation. Surface layer: <=3.0X10<22> in at least one of a-state Si and Ge, <=5.0X10<22> in at least one of a-state N and C, and >=5.5X10<22> for D- compensation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアモルファスシリコン系
光導電層から成る電子写真感光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member comprising an amorphous silicon photoconductive layer.

【0002】[0002]

【従来の技術】近年、アモルファスシリコン系光導電層
(以下、アモルファスシリコンをa−Siと略記する)
から成る電子写真感光体が実用化され、その製造量は年
々増加の一途をたどっている。
2. Description of the Related Art Recently, an amorphous silicon photoconductive layer (hereinafter, amorphous silicon is abbreviated as a-Si).
The electrophotographic photosensitive member made of is commercialized, and the production amount thereof is increasing year by year.

【0003】このa−Si系感光体の基本構成は、図3
に示すように導電性基板1の上にa−Si系光導電層2
を形成し、更に例えばアモルファスシリコンカーバイド
等から成る表面層3を積層して表面硬度を高めるように
したが、その反面、この構成の電子写真感光体を高温高
湿下で使用した場合には、画像流れ(所謂、ボケと呼ば
れる)が発生し、実用上支障があった。
The basic structure of this a-Si type photosensitive member is shown in FIG.
As shown in FIG. 1, an a-Si based photoconductive layer 2 is formed on the conductive substrate 1.
Was formed, and a surface layer 3 made of, for example, amorphous silicon carbide was laminated to increase the surface hardness. On the other hand, when the electrophotographic photoreceptor of this structure is used under high temperature and high humidity, Image deletion (so-called so-called blurring) occurred, which hindered practical use.

【0004】この問題点に対して、この電子写真感光体
の付近にヒーターを設けて、その感光体を35〜50℃
に加熱し、これにより、その感光体表面の水分を減らし
て画像流れの発生を防いでいた。
To solve this problem, a heater is provided in the vicinity of the electrophotographic photosensitive member and the photosensitive member is heated to 35 to 50 ° C.
Then, the water content on the surface of the photoconductor is reduced to prevent the occurrence of image deletion.

【0005】他方、感光体表面に付着する帯電生成物に
起因して、それが高温高湿下で水分を吸収し、画像流れ
の発生原因になっていることも判っており、それに対し
て効率的に帯電生成物を除去できるクリーニングプロセ
スが開発されている。
On the other hand, it is also known that the charged product adhering to the surface of the photoconductor absorbs moisture under high temperature and high humidity and causes the image deletion, and the efficiency is improved. A cleaning process has been developed that can electrically remove charged products.

【0006】しかしながら、上記構成のa−Si系感光
体並びにクリーニングプロセスにおいても、そのa−S
i系感光体を搭載した機器でもって常温常湿下で耐刷を
繰り返した後、電源を切り(感光体加熱用ヒーターのO
FF)、然る後に高温高湿下に数時間(または一夜)放
置し、再び電源を入れ(感光体加熱用ヒーターのO
N)、画像を形成したところ、最初の数十枚〜数百枚に
画像のかぶりを発生するという問題点があった。
However, even in the a-Si type photoconductor having the above-mentioned constitution and the cleaning process, the a-S
After repeating printing at room temperature and humidity with a device equipped with an i-type photoconductor, turn off the power (heater for the photoconductor heating
FF) After that, leave it under high temperature and high humidity for several hours (or overnight), then turn on the power again (O of the heater for heating the photoconductor).
N) When an image is formed, there is a problem that image fogging occurs on the first tens to hundreds of sheets.

【0007】かかる問題点を解決するために、本発明者
は既に特願平4−247730号により上記表面層3の
アモルファス状態の原子密度が6.5×1022原子/c
3以下であれば、また、そのダングリングボンドを補
償する水素またはフッ素のうち少なくとも1種の原子の
密度が5.0×1022原子/cm3 以上であれば、画像
のかぶりや画像流れが生じなくなることを提案した。
In order to solve such a problem, the present inventor has already disclosed in Japanese Patent Application No. 4-247730 that the atomic density of the surface layer 3 in the amorphous state is 6.5 × 10 22 atoms / c.
If the density is m 3 or less, or if the density of at least one atom of hydrogen or fluorine that compensates for the dangling bond is 5.0 × 10 22 atoms / cm 3 or more, image fogging or image deletion It is proposed that will not occur.

【0008】[0008]

【従来技術の課題】しかしながら、上記提案の電子写真
感光体を用いて、しかも、この電子写真感光体の付近に
ヒーターを設けて、その感光体を35〜50℃に加熱
し、これにより、その感光体表面の水分を減らすように
しても、そのa−Si系感光体を搭載した機器でもって
高温高湿下で耐刷を更に繰り返した後、電源を切り(感
光体加熱用ヒーターのOFF)、然る後に高温高湿下に
数時間(または一夜)放置し、再び電源を入れる(感光
体加熱用ヒーターのON)というプロセスを数回繰り返
し、その電源のON直後に画像を形成し、その画像を注
意深く観察したところ、最初の数枚に画像に軽い画像流
れや軽いかぶりを発生することが判明した。しかも、そ
の画像に黒点が発生することも判明した。
However, by using the electrophotographic photosensitive member proposed above and by providing a heater near the electrophotographic photosensitive member, the photosensitive member is heated to 35 to 50 ° C. Even if the water content on the surface of the photoconductor is reduced, after further repeating printing durability under high temperature and high humidity with a device equipped with the a-Si photoconductor, turn off the power (heater for photoconductor heating OFF). After that, the process of leaving it under high temperature and high humidity for several hours (or overnight) and turning on the power again (turning on the heater for heating the photoconductor) is repeated several times, and an image is formed immediately after turning on the power. Upon careful observation of the images, it was found that the first few images had light image smearing and light fog. Moreover, it was also found that black spots were generated in the image.

【0009】この画像流れやかぶりは、電源のON後の
数枚から数十枚の印刷により次第に回復するが、この黒
点については、次第に回復する場合と、容易に回復しな
い場合とがある。
The image deletion and fog are gradually recovered by printing several sheets to several tens of sheets after the power is turned on. There are cases where the black spots are gradually recovered and cases where they are not easily recovered.

【0010】叙上のように、高温高湿という更に過酷な
環境下で作動させると、その環境下で電源を切り、翌日
電源を入れて印刷した場合には、良好な画像が得られな
いという問題点があった。
As described above, when the printer is operated in a more severe environment of high temperature and high humidity, a good image cannot be obtained when the power is turned off in the environment and the power is turned on the next day for printing. There was a problem.

【0011】[0011]

【課題を解決するための手段】本発明の電子写真感光体
は、導電性基板の上に珪素(Si)、ゲルマニウム(G
e)、酸素(O)、窒素(N)、炭素(C)の少なくと
も1種から成るアモルファス状態の原子及び該原子のダ
ングリングボンドを補償する水素またはフッ素の原子と
から成るキャリア注入阻止層と感光層とを順次積層し、
該感光層の上に珪素、ゲルマニウム、窒素、炭素の少な
くとも1種から成るアモルファス状態の原子及び該原子
のダングリングボンドを補償する水素またはフッ素の原
子とから成る表面層を積層した構成であって、各層の原
子密度を下記の通りの設定したことを特徴とする。
The electrophotographic photoreceptor of the present invention comprises a conductive substrate on which silicon (Si) or germanium (G) is formed.
e), an atom of at least one of oxygen (O), nitrogen (N) and carbon (C) in an amorphous state, and a carrier injection blocking layer composed of hydrogen or fluorine atoms compensating for dangling bonds of the atoms. Laminate the photosensitive layer in sequence,
A structure in which a surface layer composed of atoms in an amorphous state composed of at least one of silicon, germanium, nitrogen and carbon and atoms of hydrogen or fluorine compensating for dangling bonds of the atoms is laminated on the photosensitive layer. The atomic density of each layer is set as follows.

【0012】キャリア注入阻止層 アモルファス状態の原子密度・・・・・・5.5×1022原子/cm3 以下 ダングリングボンド補償用原子の密度・・2.0×1021原子/cm3 以上感光層 アモルファス状態の原子密度・・・・・・5.0×1022原子/cm3 以下 ダングリングボンド補償用原子の密度・・2.0×1021原子/cm3 以上表面層 アモルファス状態のSiまたはGeのうち少なくとも1種の原子の密度 ・・・・・・3.0×1022原子/cm3 以下 アモルファス状態のNまたはCのうち少なくとも1種の原子の密度 ・・・・・・5.0×1022原子/cm3 以下 ダングリングボンド補償用原子の密度・・5.0×1022原子/cm3 以上 Carrier injection blocking layer Atomic density in amorphous state: 5.5 × 10 22 atoms / cm 3 or less Density of dangling bond compensating atoms: 2.0 × 10 21 atoms / cm 3 or more Atomic density of photosensitive layer in amorphous state: 5.0 × 10 22 atoms / cm 3 or less Density of atoms for dangling bond compensation: 2.0 × 10 21 atoms / cm 3 or more Surface layer in amorphous state Density of at least one atom of Si or Ge: 3.0 × 10 22 atoms / cm 3 or less Density of at least one atom of N or C in an amorphous state 5.0 × 10 22 atoms / cm 3 or less Density of dangling bond compensating atoms: 5.0 × 10 22 atoms / cm 3 or more

【0013】[0013]

【作用】本発明者は推論の域を脱し得ないが、画像に軽
い画像流れや軽いかぶりが発生したり、また、その画像
に黒点が発生する原因を多角的に考察した結果、高温高
湿下に長時間放置し、その後に電源をONにして、即座
に印字(耐刷)を開始した場合、その直後では感光体の
温度が上がっておらず、これにより、その感光体の各層
に吸収された水分が残存しており、このために各層は電
気的に低抵抗な状態にあり、その結果、帯電電位が高く
ならず、軽い画像流れや軽いかぶりを発生したり、ま
た、その画像に黒点が発生すると考える。また、この推
論を裏付けるものとして、本発明者は、この黒点は多く
の水分を含有したa−Si領域であることを実験により
確認した。
Although the present inventor cannot escape the realm of reasoning, as a result of a multi-faceted study of the causes of light image blurring and light fog in the image and the occurrence of black spots in the image, high temperature and high humidity When left for a long time and then turned on the power to immediately start printing (printing endurance), the temperature of the photoconductor does not rise immediately after that, and as a result, it is absorbed in each layer of the photoconductor. The remaining water remains and each layer is in an electrically low resistance state as a result, and as a result, the charging potential does not become high, which causes light image deletion and light fogging, and I think that black spots will occur. Further, as a proof of this inference, the present inventor has confirmed by experiments that the black dots are a-Si regions containing a large amount of water.

【0014】本発明者はこの推論に基づき、キャリア注
入阻止層については、アモルファス状態の原子密度を
5.5×1022原子/cm3 以下にして比較的粗な膜構
造に設定することにより、この層の水分含有量が少なく
なる。
Based on this inference, the present inventor sets the carrier injection blocking layer to have a relatively coarse film structure by setting the atomic density of the amorphous state to 5.5 × 10 22 atoms / cm 3 or less. The water content of this layer is low.

【0015】また、感光層のアモルファス状態の原子密
度を5.0×1022原子/cm3 以下にして比較的粗な
膜構造に設定することにより、この層の水分含有量も少
なくなる。
Further, by setting the atomic density of the photosensitive layer in the amorphous state to 5.0 × 10 22 atoms / cm 3 or less to set a relatively rough film structure, the water content of this layer also decreases.

【0016】更にまた、キャリア注入阻止層と感光層の
両層のダングリングボンド補償用原子の密度を2.0×
1021原子/cm3 以上にすれば、粗な膜構造におい
て、共有結合半径の小さな原子が隙間を埋めるように均
一に分布し、しかも、水をはじく撥水作用があり、これ
により、吸着・侵入しようとする水を減少せしめる。
Furthermore, the density of dangling bond compensating atoms in both the carrier injection blocking layer and the photosensitive layer is 2.0 ×.
If it is 10 21 atoms / cm 3 or more, in a rough film structure, atoms having a small covalent bond radius are uniformly distributed so as to fill the gaps, and further, there is a water repellent action that repels water, which results in adsorption / adsorption. It reduces the amount of water trying to enter.

【0017】また、キャリア注入阻止層と感光層の両層
に、酸素(O)もしくは少なくとも酸素(O)を含む窒
素(N)や炭素(C)から成る混合原子を5.0×10
21原子/cm3 以下含有させると、吸湿性の酸化シリコ
ン系のSiO(N:C)化合物が少なくなり、高温高湿
下に配置しても水分含有量が少なくなる。
Further, 5.0 × 10 5 mixed atoms composed of oxygen (O) or nitrogen (N) or carbon (C) containing at least oxygen (O) are provided in both the carrier injection blocking layer and the photosensitive layer.
When it is contained at 21 atoms / cm 3 or less, the hygroscopic silicon oxide-based SiO (N: C) compound is reduced, and the water content is reduced even when it is placed under high temperature and high humidity.

【0018】しかも、上記構成の電子写真感光体に係る
表面層については、3.0×1022原子/cm3 以下で
含有するアモルファス状態のSiまたはGeのうち少な
くとも1種の原子と、5.0×1022原子/cm3 以下
で含有するアモルファス状態のNまたはCのうち少なく
とも1種の原子とを組み合わせることにより、比較的粗
な膜構造の表面層を積層したことになり、その表面層の
含有水分量が少なくなると考えられる。この理由につい
ても、本発明者は推論の域を脱し得ないが、感光体加熱
用ヒーターのOFF時では、水分の吸着や侵入が抑えら
れ、また、感光体加熱用ヒーターのONの直後では、吸
着や侵入する水分の放出が早くなり、これにより、画像
のかぶりの発生が生じにくいと考える。その結果、従来
のa−Si系感光体を搭載した機器である場合には、常
温常湿下で耐刷を繰り返すという耐刷テストにより、最
初の数十枚〜数百枚に画像のかぶりを発生し、また、表
面電位が数十V低下していたのに対して、その電位低下
がなく、画像のかぶりが発生しなくなった。その結果、
高温高湿下で耐刷を繰り返すという更に過酷な耐刷テス
トをした場合でも、表面電位の低下がなく、画像のかぶ
りが発生しなくなった。
Further, in the surface layer of the electrophotographic photosensitive member having the above-mentioned constitution, at least one atom of Si or Ge in an amorphous state containing 3.0 × 10 22 atoms / cm 3 or less and 5. By combining at least one atom of amorphous N or C contained at 0 × 10 22 atoms / cm 3 or less, a surface layer having a relatively rough film structure is laminated. It is considered that the water content of is reduced. For this reason as well, the present inventor cannot escape the realm of inference. However, when the heater for heating the photoconductor is turned off, adsorption and intrusion of water are suppressed, and immediately after the heater for heating the photoconductor is turned on, It is considered that adsorption and release of invading water are accelerated, and thus fogging of an image is less likely to occur. As a result, in the case of a device equipped with a conventional a-Si-based photoconductor, an image fog is applied to the first several tens to several hundreds of sheets by a printing durability test in which printing is repeated under normal temperature and humidity. Although the surface potential was lowered by several tens of V, the potential was not lowered and the image fogging did not occur. as a result,
Even when a more severe printing durability test was performed in which the printing durability was repeated under high temperature and high humidity, the surface potential did not decrease and the image fogging did not occur.

【0019】加えて、本発明者は上記構成の電子写真感
光体に係る表面層について良好な結果が得られた理由と
しては下記の通りであると推論する。即ち、オゾン(酸
化)に弱いSiまたはGeにオゾン(酸化)に強いNま
たはCを混合したことによるものと考えられるが、その
他に光透過率を上げて高感度となったり(光学的エネル
ギーEgopt. 2.2eV以上)、残留電位を小さくして
濃度が確保できたり(光学的エネルギーEgopt. 3.0
eV以下)、その合金化により硬度が上がって必要な耐
摩耗性が確保できた等の理由も考えられる。
In addition, the inventor of the present invention deduces that the reason why good results were obtained for the surface layer of the electrophotographic photosensitive member having the above-mentioned constitution is as follows. That is, it is considered that this is caused by mixing Si or Ge, which is weak in ozone (oxidation), with N or C, which is strong in ozone (oxidation), but in addition, the light transmittance is increased to obtain high sensitivity (optical energy Egopt . 2.2eV or more), the residual potential can be reduced to secure the concentration (optical energy Egopt. 3.0).
eV or less), and the reason why it is possible to secure the necessary wear resistance by increasing the hardness due to the alloying.

【0020】しかも、表面層によれば、ダングリングボ
ンドを補償する水素またはフッ素のうち少なくとも1種
の原子の密度が5.0×1022原子/cm3 以上である
ことにより、粗な膜構造に対して共有結合半径の小さな
原子が隙間を埋めるように均一に分布し、しかも、これ
らの水をはじく撥水作用効果もあり、これらの均一分布
と撥水作用効果とが有効に組合って吸着や侵入する水分
が減少するものと考える。
Moreover, according to the surface layer, the density of at least one atom of hydrogen or fluorine that compensates for dangling bonds is 5.0 × 10 22 atoms / cm 3 or more, so that a rough film structure is obtained. On the other hand, atoms with a small covalent radius are evenly distributed so as to fill the gap, and there is also a water-repellent effect that repels these waters, and these uniform distribution and water-repellent effect are effectively combined. It is considered that the amount of water absorbed and absorbed will decrease.

【0021】上記構成の電子写真感光体によれば、従来
周知の電子写真感光体の各層と比べてアモルファス状態
の原子の密度を下げて、粗な膜構造の表面層を積層した
が、これをグロー放電分解法により製作する場合であれ
ば、成膜条件にもよるが、従来に比べて成膜速度を高
め、ガス圧力を高め、高周波電力を低くすることにより
形成できる。
According to the electrophotographic photosensitive member having the above-mentioned structure, the density of atoms in the amorphous state is lowered as compared with each layer of the conventionally known electrophotographic photosensitive member, and the surface layer having a rough film structure is laminated. In the case of manufacturing by the glow discharge decomposition method, depending on the film forming conditions, it can be formed by increasing the film forming rate, increasing the gas pressure, and decreasing the high frequency power as compared with the conventional case.

【0022】また、このような成膜条件において、更に
ダングリングボンドを補償する水素またはフッ素のうち
少なくとも1種の原子の密度を所定の含有量以上にする
には、従来に比べて、成膜速度を高め、基板温度を低め
に設定することにより形成できる。
Further, under such film forming conditions, in order to further increase the density of at least one atom of hydrogen or fluorine that compensates for dangling bonds to a predetermined content or more, film forming is performed as compared with the conventional method. It can be formed by increasing the speed and setting the substrate temperature lower.

【0023】[0023]

【実施例】以下、本発明の電子写真感光体をグロー放電
分解法により製作した場合を例に挙げて説明する。図1
はこの実施例により製作した電子写真感光体の層構成で
あり、図2はこの実施例に用いたグロー放電分解装置で
ある。
EXAMPLES Hereinafter, the case where the electrophotographic photosensitive member of the present invention is manufactured by the glow discharge decomposition method will be described as an example. Figure 1
Shows the layer structure of the electrophotographic photosensitive member produced in this example, and FIG. 2 shows the glow discharge decomposition apparatus used in this example.

【0024】先ず図1においては、導電性基板4の上に
キャリア注入阻止層5とa−Si系光導電層6と表面層
7とを順次積層した構成であり、本例では導電性基板4
をアルミニウム金属により、キャリア注入阻止層5をa
−Si系の層により、表面層7をアモルファスシリコン
カーバイド層(以下アモルファスシリコンカーバイドを
a−SiCと略記する)により形成したものである。し
かし、この例に限らず各々の部材には次の材料を用いる
ことができる。
First, in FIG. 1, a carrier injection blocking layer 5, an a-Si based photoconductive layer 6 and a surface layer 7 are sequentially laminated on a conductive substrate 4, and in this example, the conductive substrate 4 is used.
A carrier injection blocking layer 5 made of aluminum metal.
The surface layer 7 is formed of an amorphous silicon carbide layer (hereinafter, amorphous silicon carbide is abbreviated as a-SiC) of a -Si-based layer. However, not limited to this example, the following materials can be used for each member.

【0025】上記導電性基板4はアルミニウム合金など
の導電部材、もしくは樹脂やガラスの表面に導電性膜を
蒸着等により形成したものにより構成してもよい。
The conductive substrate 4 may be composed of a conductive member such as an aluminum alloy, or a conductive film formed on the surface of resin or glass by vapor deposition or the like.

【0026】上記キャリア注入阻止層5はa−Si系を
母材にして水素やフッ素を含有させ、更に周期律表第II
I 族、第IV族、第V 族のうち少なくとも1種の元素を含
有させ、また必要により炭素、酸素、窒素などを含有さ
せることにより構成してもよい。
The carrier injection blocking layer 5 is made of an a-Si base material and contains hydrogen and fluorine.
It may be constituted by containing at least one element selected from Group I, Group IV, and Group V and, if necessary, containing carbon, oxygen, nitrogen and the like.

【0027】上記表面層7は水素(H)もしくはフッ素
(F)をダングリングボンド補償用元素として用いたa
−SiC:F、a−SiC:H:F、a−SiCN:
H、a−SiCGe:H、a−SiN:H、a−Si
N:F、a−SiN:H:F、a−C:H、a−C:
F、a−C:H:F、a−CN:H、a−Ge:H、a
−Ge:F、a−SiGe:H、a−SiGe:F、a
−SiGe:H:F等のアモルファス合金層(a−はア
モルファスを表示する)であっても同様な作用効果があ
ると考える。
The surface layer 7 uses hydrogen (H) or fluorine (F) as a dangling bond compensating element.
-SiC: F, a-SiC: H: F, a-SiCN:
H, a-SiCGe: H, a-SiN: H, a-Si
N: F, a-SiN: H: F, a-C: H, a-C:
F, a-C: H: F, a-CN: H, a-Ge: H, a
-Ge: F, a-SiGe: H, a-SiGe: F, a
It is considered that even an amorphous alloy layer such as -SiGe: H: F (a- represents amorphous) has the same operational effect.

【0028】また、各層の厚みは次のように設定すると
よい。カールソンプロセスによれば、一般的に現像電位
が400〜800Vであり、これに伴ってキャリア注入
阻止層5は0.8〜1.6μm以上、a−Si系光導電
層6は28〜56μm以上必要である。
The thickness of each layer may be set as follows. According to the Carlson process, the development potential is generally 400 to 800 V, and accordingly, the carrier injection blocking layer 5 is 0.8 to 1.6 μm or more, and the a-Si based photoconductive layer 6 is 28 to 56 μm or more. is necessary.

【0029】更に導電性基板4を透光性基板により作成
し、これによって基板から光を照射する、所謂、光背面
記録方式においては、現像電位が30〜100Vであ
り、これに伴ってキャリア注入阻止層5は0.06〜
0.4μm以上、a−Si系光導電層6は2〜7μm以
上必要である。
Further, in the so-called optical backside recording system in which the conductive substrate 4 is made of a light-transmissive substrate and light is emitted from the substrate, the developing potential is 30 to 100 V, and accordingly carrier injection is performed. The blocking layer 5 is 0.06 to
0.4 μm or more, and the a-Si-based photoconductive layer 6 needs to be 2 to 7 μm or more.

【0030】次に図2のグロー放電分解装置8の構成を
説明する。同図中、9は円筒形状の金属製反応炉、10
は感光体ドラム装着用の円筒形状の導電性基板支持体、
11は基板加熱用ヒーター、12はa−Siの成膜に用
いられる円筒形状のグロー放電用電極板であり、この電
極板12にはガス噴出口13が形成されており、そし
て、14は反応炉内部へガスを導入するためのガス導入
口、15はグロー放電に晒されたガスの残余ガスを排気
するためのガス排出口であり、16は基板支持体10と
グロー放電用電極板12の間でグロー放電を発生させる
高周波電源である。また、この反応炉9は円筒体9a
と、蓋体9bと、底体9cとからなり、そして、円筒体
9aと蓋体9bとの間、並びに円筒体9aと底体9cと
の間にはそれぞれ絶縁性のリング9dを設けており、こ
れによって高周波電源16の一方の端子は円筒体9aを
介してグロー放電用電極板12と導通しており、他方の
端子は蓋体9bや底体9cを介して基板支持体10と導
通している。また、蓋体9bに上に付設したモーター1
7により回転軸18を介して基板支持体10が回転駆動
され、これに伴って基板4も回転する。
Next, the structure of the glow discharge decomposition apparatus 8 of FIG. 2 will be described. In the figure, 9 is a cylindrical metal reactor, 10
Is a cylindrical conductive substrate support for mounting the photosensitive drum,
Reference numeral 11 is a substrate heating heater, 12 is a cylindrical glow discharge electrode plate used for film formation of a-Si, a gas ejection port 13 is formed in the electrode plate 12, and 14 is a reaction gas. A gas inlet for introducing gas into the furnace, 15 for discharging residual gas of the gas exposed to glow discharge, and 16 for the substrate support 10 and the electrode plate 12 for glow discharge. It is a high frequency power source that generates glow discharge between the two. Further, the reaction furnace 9 has a cylindrical body 9a.
And a lid 9b and a bottom 9c, and an insulating ring 9d is provided between the cylinder 9a and the lid 9b, and between the cylinder 9a and the bottom 9c. As a result, one terminal of the high frequency power source 16 is electrically connected to the glow discharge electrode plate 12 via the cylindrical body 9a, and the other terminal is electrically connected to the substrate support body 10 via the lid body 9b and the bottom body 9c. ing. In addition, the motor 1 attached to the lid 9b above
The substrate support 10 is rotationally driven by the rotary shaft 18 by the rotary shaft 7, and the substrate 4 also rotates accordingly.

【0031】このグロー放電分解装置8を用いてa−S
i感光体ドラムを作製する場合には、a−Si成膜用の
ドラム状基板4を基板支持体10に装着し、a−Si生
成用ガスをガス導入口14より反応炉内部へ導入し、こ
のガスをガス噴出口13を介して基板面へ噴出し、更に
ヒーター11によって基板を所要の温度に設定するとと
もに基板支持体10と電極板12の間でグロー放電を発
生させ、更に基板4を回転させることによって基板4の
周面にa−Si膜が成膜できる。
Using this glow discharge decomposition apparatus 8, aS
In the case of producing an i photoconductor drum, the drum-shaped substrate 4 for a-Si film formation is mounted on the substrate support 10, and a-Si generation gas is introduced into the reaction furnace through the gas introduction port 14, This gas is jetted to the surface of the substrate through the gas jet port 13, the substrate is set to a required temperature by the heater 11, and glow discharge is generated between the substrate support 10 and the electrode plate 12. By rotating, an a-Si film can be formed on the peripheral surface of the substrate 4.

【0032】(例1)本例では、表1と表2に示す成膜
条件により図1の構成のa−Si系感光体Aと感光体B
を製作した。いずれの感光体A、Bも表1に示すような
キャリア注入阻止層5とa−Si系光導電層6により構
成するが、更に表2に示すような成膜条件により共通の
表面層7を形成し、これに対応して2種類の感光体A、
Bを製作した。
(Example 1) In this example, the a-Si type photoconductor A and the photoconductor B having the structure shown in FIG. 1 were formed under the film forming conditions shown in Tables 1 and 2.
Was produced. Each of the photoconductors A and B is composed of the carrier injection blocking layer 5 and the a-Si based photoconductive layer 6 as shown in Table 1. Further, the common surface layer 7 is formed under the film forming conditions as shown in Table 2. And two types of photoconductor A corresponding to
B was produced.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】また、これらの2種類の感光体A、Bの各
キャリア注入阻止層5とa−Si系光導電層6の原子密
度は、別途用意した導電性基板にそれぞれ0.5μmの
厚みの膜を表1の通りに形成し、その一部を1cm角に
切り出して、その層の分析値をRBS(ラザフォード後
方散乱)分析により求めた。また、水素原子密度につい
ても同様にSIMS(二次イオン質量)分析法により求
めた。その結果を表3に示す。
The atomic densities of the carrier injection blocking layer 5 and the a-Si photoconductive layer 6 of these two types of photoconductors A and B are 0.5 μm on the separately prepared conductive substrate. A film was formed as shown in Table 1, a part thereof was cut into 1 cm square, and the analytical value of the layer was determined by RBS (Rutherford backscattering) analysis. Further, the hydrogen atom density was similarly obtained by SIMS (secondary ion mass) analysis method. The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】かくして得られた2種類の感光体Aと感光
体Bについて、感光体温度を45℃に設定し、常温常湿
下(33℃、85%RH)にて1万枚耐刷し、この1万
枚耐刷を5回繰り返した後に、高温高湿下(33℃、8
5%RH)に12時間放置し、この状態で電源を入れて
初期画像の状態を観るという実験を行ったところ、画像
のかぶりと画像流れと黒点の有無は表4に示すような結
果が得られた。
With respect to the two types of photoreceptor A and photoreceptor B thus obtained, the photoreceptor temperature was set to 45 ° C., and 10,000 sheets were printed at room temperature and normal humidity (33 ° C., 85% RH). After repeating 10,000 copies printing 5 times, it was exposed to high temperature and high humidity (33 ° C, 8
After leaving it for 12 hours at 5% RH) and turning on the power in this state to observe the state of the initial image, the results shown in Table 4 were obtained for image fogging, image deletion, and the presence or absence of black spots. Was given.

【0038】尚、同表中の○は記録画像の全面が良好で
ある場合であり、△は記録画像の一部(5%以下)が不
具合である場合であり、×は記録画像の全面積の5%以
上が不具合である場合である。以下、同じ評価基準を採
用した。
In the table, ◯ indicates that the entire surface of the recorded image is good, Δ indicates that part (5% or less) of the recorded image is defective, and x indicates the total area of the recorded image. 5% or more of the cases are defective. Hereinafter, the same evaluation criteria are adopted.

【0039】[0039]

【表4】 [Table 4]

【0040】この結果から明らかなように、アモルファ
ス状態の原子密度が小さく、ダングリングボンド補償用
原子の密度が大きい感光体Aにおいては、画像のかぶり
と画像流れがない優れた感光体になることが判った。
As is clear from these results, the photoconductor A having a low atomic density in the amorphous state and a high density of dangling bond compensating atoms is an excellent photoconductor free from image fogging and image deletion. I understood.

【0041】(例2)本例では、表5に示す成膜条件に
より図1の構成のa−Si系感光体Cと感光体Dを製作
した。いずれの感光体も表2に示すような共通の表面層
7により構成するが、更に表5に示すように成膜条件を
変えて2種類のキャリア注入阻止層5とa−Si系光導
電層6を形成し、これに対応して2種類の感光体C、D
を製作した。
(Example 2) In this example, a-Si type photoconductors C and D having the structure shown in FIG. 1 were manufactured under the film forming conditions shown in Table 5. Each of the photoconductors is composed of a common surface layer 7 as shown in Table 2, but two different types of carrier injection blocking layer 5 and an a-Si based photoconductive layer are formed by changing the film forming conditions as shown in Table 5. 6 is formed, and two types of photoconductors C and D are correspondingly formed.
Was produced.

【0042】[0042]

【表5】 [Table 5]

【0043】また、これらの2種類の感光体C、Dの各
キャリア注入阻止層5とa−Si系光導電層6に含有す
る各酸素量と各窒素量の原子密度を同様に測定したとこ
ろ、表6に示す結果が得られた。
Atomic densities of oxygen and nitrogen contained in the carrier injection blocking layer 5 and the a-Si photoconductive layer 6 of the two types of photoreceptors C and D were measured in the same manner. The results shown in Table 6 were obtained.

【0044】[0044]

【表6】 [Table 6]

【0045】かくして得られた2種類の感光体Cと感光
体Dについて、感光体温度を45℃に設定し、常温常湿
下(33℃、85%RH)にて1万枚耐刷し、この1万
枚耐刷を5回繰り返した後に、高温高湿下(33℃、8
5%RH)に12時間放置し、この状態で電源を入れて
初期画像の状態を観るという実験を行ったところ、画像
のかぶりと画像流れと黒点の有無は表7に示すような結
果が得られた。
With respect to the two types of photoreceptor C and photoreceptor D thus obtained, the photoreceptor temperature was set to 45 ° C., and 10,000 sheets were printed at room temperature and normal humidity (33 ° C., 85% RH). After repeating 10,000 copies printing 5 times, it was exposed to high temperature and high humidity (33 ° C, 8
When left for 5 hours at 5% RH) and turned on the power in this state to see the state of the initial image, the results shown in Table 7 were obtained for image fogging, image deletion, and the presence or absence of black spots. Was given.

【0046】[0046]

【表7】 [Table 7]

【0047】この結果から明らかなように、キャリア注
入阻止層5とa−Si系光導電層6の含有する酸素・窒
素量が5.0×1021原子/cm3 より小さい感光体C
においては、画像のかぶりと画像流れがなく、また、黒
点の発生が改善された優れた感光体になることが判っ
た。
As is clear from this result, the photoconductor C in which the amount of oxygen and nitrogen contained in the carrier injection blocking layer 5 and the a-Si based photoconductive layer 6 is smaller than 5.0 × 10 21 atoms / cm 3.
It was found that in Example 1, there was no image fogging and image deletion, and an excellent photoconductor in which the generation of black spots was improved was obtained.

【0048】(例3)本例では、表8と表9に示す成膜
条件により図1の構成のa−Si系感光体Eと感光体F
を製作した。いずれの感光体も表8に示すようなキャリ
ア注入阻止層5とa−Si系光導電層6により構成し、
表2に示すような共通の表面層7により構成するが、更
に表9に示すようにキャリア注入阻止層5とa−Si系
光導電層6の各膜厚を変え、これに対応して2種類の感
光体E、Fを製作した。この膜厚は別途用意した導電性
基板に同一条件により形成し、その膜の付着領域と非付
着領域との段差を表面粗さ計により測定し、この条件と
計算に基づいて求めた。
Example 3 In this example, the a-Si type photoconductor E and the photoconductor F having the constitution shown in FIG. 1 were formed under the film forming conditions shown in Tables 8 and 9.
Was produced. Each of the photoconductors comprises a carrier injection blocking layer 5 and an a-Si based photoconductive layer 6 as shown in Table 8,
Although it is constituted by the common surface layer 7 as shown in Table 2, as shown in Table 9, the film thickness of the carrier injection blocking layer 5 and the film thickness of the a-Si based photoconductive layer 6 are changed. A variety of photoconductors E and F were manufactured. This film thickness was formed on a separately prepared conductive substrate under the same conditions, and the step between the adhesion region and the non-adhesion region of the film was measured by a surface roughness meter, and was determined based on these conditions and calculations.

【0049】[0049]

【表8】 [Table 8]

【0050】[0050]

【表9】 [Table 9]

【0051】かくして得られた2種類の感光体Eと感光
体Fについて、感光体温度を45℃に設定し、常温常湿
下(33℃、85%RH)にて1万枚耐刷し、この1万
枚耐刷を10回繰り返した後に、高温高湿下(33℃、
85%RH)に12時間放置し、この状態で電源を入れ
て初期画像の状態を観るという実験を行ったところ、画
像のかぶりと画像流れと黒点の有無は表10に示すよう
な結果が得られた。尚、この評価に用いたプリンタの現
像電位は450Vである。
With respect to the two types of the photoconductors E and F thus obtained, the photoconductor temperature was set at 45 ° C., and 10,000 sheets were printed at room temperature and normal humidity (33 ° C., 85% RH). After this 10,000-sheet printing endurance was repeated 10 times, under high temperature and high humidity (33 ° C,
After leaving it at 85% RH for 12 hours and turning on the power in this state to see the state of the initial image, the results shown in Table 10 were obtained for image fogging, image deletion, and the presence or absence of black spots. Was given. The developing potential of the printer used for this evaluation is 450V.

【0052】[0052]

【表10】 [Table 10]

【0053】この結果から明らかなように、キャリア注
入阻止層5とa−Si系光導電層6の各膜厚が機器と記
録方式により与えられた現像電位に対して、下記(a)
(b)であれば、即ち感光体Eであれば、画像のかぶり
と画像流れがなく、また、黒点の発生が改善された優れ
た感光体になることが判った。 (a)キャリア注入阻止層の膜厚(μm)>0.003
0×現像電位(V) (b)a−Si系光導電層の膜厚(μm)>0.050
×現像電位(V) (例4)本例では、表11に示すようにアルミニウム製
導電性基板4(この基板4の形状はドラム状であって、
その外径はΦ30mm、内径はΦ25mm、長手寸法は
260mmである)の厚みを変え、(例3)のa−Si
系感光体Eを製作し、これによって感光体G〜感光体I
を作製した。
As is clear from this result, the film thicknesses of the carrier injection blocking layer 5 and the a-Si photoconductive layer 6 are as follows (a) with respect to the development potential given by the equipment and recording method.
It was found that in the case of (b), that is, in the case of the photoconductor E, there was no image fogging and image deletion, and an excellent photoconductor in which the generation of black spots was improved was obtained. (A) Thickness of carrier injection blocking layer (μm)> 0.003
0 × development potential (V) (b) film thickness (μm) of a-Si-based photoconductive layer> 0.050
× Development potential (V) (Example 4) In this example, as shown in Table 11, the conductive substrate 4 made of aluminum (the substrate 4 has a drum shape,
The outer diameter is Φ30 mm, the inner diameter is Φ25 mm, and the longitudinal dimension is 260 mm).
System photoconductor E is manufactured, and thus photoconductor G to photoconductor I are produced.
Was produced.

【0054】[0054]

【表11】 [Table 11]

【0055】かくして得られた3種類の感光体G〜Iに
ついて、画像流れ防止用クリーニングプロセスのクリー
ニングレベルを劣化し、これによって画像流れが生じや
すい条件に設定し、次いでドラムヒーターONの後の画
像流れの回復時間を測定したところ、表11に示す通り
の結果が得られた。また、この作製により各基板4の変
形量を測定したところ、同表に示す結果となった。
With respect to the thus obtained three types of photoconductors G to I, the cleaning level of the image deletion prevention cleaning process is deteriorated and the image deletion is liable to occur, whereby the image after the drum heater is turned on is set. When the flow recovery time was measured, the results shown in Table 11 were obtained. When the amount of deformation of each substrate 4 was measured by this production, the results shown in the same table were obtained.

【0056】表11に示す結果から明らかな通り、基板
の厚みが小さくなるのに伴って画像流れの回復度が良好
であるが、その反面、基板の変形が進行することが判っ
た。
As is clear from the results shown in Table 11, the degree of recovery of image deletion is good as the thickness of the substrate is small, but on the other hand, the deformation of the substrate progresses.

【0057】本発明者が繰り返し行った実験によれば、
基板4の形状はドラム状であって、その外径はΦ10〜
300mm、内径はΦ8.6〜288mm、長手寸法は
50〜1,000mmである場合、その基板の厚みは
0.7〜6.0mm、好適には1.0〜4.0mmがよ
いことが判明した。
According to the experiments repeated by the present inventor,
The substrate 4 has a drum shape and the outer diameter is Φ10.
If the inner diameter is 300 mm, the inner diameter is Φ8.6 to 288 mm, and the longitudinal dimension is 50 to 1,000 mm, the thickness of the substrate is 0.7 to 6.0 mm, preferably 1.0 to 4.0 mm. did.

【0058】[0058]

【発明の効果】以上の通り、本発明によれば、キャリア
注入阻止層については、アモルファス状態の原子密度を
5.5×1022原子/cm3 以下にして比較的粗な膜構
造に設定し、更に感光層のアモルファス状態の原子密度
を5.0×1022原子/cm3以下にして比較的粗な膜
構造にすることにより、両層の水分含有量が少なくなっ
た。また、これらの両層のダングリングボンド補償用原
子の密度を2.0×1021原子/cm3 以上にすれば、
粗な膜構造において、共有結合半径の小さな原子が隙間
を埋めるように均一に分布し、しかも、水をはじく撥水
作用があり、これにより、吸着・侵入しようとする水を
減少せしめることができた。更にまた、キャリア注入阻
止層と感光層の両層に、酸素もしくは少なくとも酸素を
含む窒素や炭素から成る混合原子を5.0×1021原子
/cm3 以下含有させると、吸湿性の酸化シリコン系S
iO(N:C)化合物が少なくなり、高温高湿下に配置
しても水分含有量が少なくなった。しかも、表面層につ
いては、3.0×1022原子/cm3 以下で含有するア
モルファス状態のSiまたはGeのうち少なくとも1種
の原子と、5.0×1022原子/cm3 以下で含有する
アモルファス状態のNまたはCのうち少なくとも1種の
原子とを組み合わせることにより、比較的粗な膜構造の
表面層を積層したことになり、その表面層の含有水分量
が少なくなった。その結果、高温高湿下で耐刷を繰り返
すという更に過酷な耐刷テストをした場合でも、表面電
位の低下がなく、画像のかぶりと画像流れがなく、ま
た、黒点の発生が改善された高品質且つ高信頼性の電子
写真感光体が提供できた。
As described above, according to the present invention, the carrier injection blocking layer is set to have a relatively rough film structure by setting the atomic density of the amorphous state to 5.5 × 10 22 atoms / cm 3 or less. Further, the water content of both layers was reduced by setting the atomic density of the photosensitive layer in the amorphous state to 5.0 × 10 22 atoms / cm 3 or less to form a relatively rough film structure. If the density of dangling bond compensating atoms in both layers is set to 2.0 × 10 21 atoms / cm 3 or more,
In a rough film structure, atoms with a small covalent radius are evenly distributed so as to fill the gaps, and also have a water-repellent action that repels water, which can reduce the amount of water that tends to adsorb and enter. It was Furthermore, if both the carrier injection blocking layer and the photosensitive layer contain oxygen or a mixed atom of nitrogen or carbon containing at least oxygen of 5.0 × 10 21 atoms / cm 3 or less, a hygroscopic silicon oxide-based material is obtained. S
The iO (N: C) compound was reduced, and the water content was reduced even when the compound was placed under high temperature and high humidity. Moreover, the surface layer contains at least one atom of Si or Ge in an amorphous state contained at 3.0 × 10 22 atoms / cm 3 or less and 5.0 × 10 22 atoms / cm 3 or less. By combining at least one atom of N or C in an amorphous state, a surface layer having a relatively rough film structure was laminated, and the water content of the surface layer was reduced. As a result, even when the printing test was repeated under high temperature and high humidity, the surface potential did not decrease, image fog and image deletion did not occur, and the occurrence of black spots was improved. A high quality and highly reliable electrophotographic photosensitive member can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における電子写真感光体の層構成を示す
断面図である。
FIG. 1 is a cross-sectional view showing a layer structure of an electrophotographic photosensitive member according to an example.

【図2】実施例で用いたグロー放電分解装置の概略説明
図である。
FIG. 2 is a schematic explanatory diagram of a glow discharge decomposition apparatus used in an example.

【図3】アモルファスシリコン系電子写真感光体の基本
構成を示す断面図である。
FIG. 3 is a cross-sectional view showing the basic structure of an amorphous silicon-based electrophotographic photosensitive member.

【符号の説明】 1、4・・・導電性基板 5・・・・・キャリア注入阻止層 2、6・・・アモルファスシリコン系光導電層 3、7・・・表面層[Explanation of reference numerals] 1, 4 ... Conductive substrate 5 ... Carrier injection blocking layer 2, 6 ... Amorphous silicon-based photoconductive layer 3, 7 ... Surface layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性基板の上に珪素、ゲルマニウム、
酸素、窒素、炭素の少なくとも1種から成るアモルファ
ス状態の原子及び該原子のダングリングボンドを補償す
る水素またはフッ素の原子とから成るキャリア注入阻止
層と感光層とを順次積層し、該感光層の上に珪素、ゲル
マニウム、窒素、炭素の少なくとも1種から成るアモル
ファス状態の原子及び該原子のダングリングボンドを補
償する水素またはフッ素の原子とから成る表面層を積層
した電子写真感光体であって、前記キャリア注入阻止層
のアモルファス状態の原子密度が5.5×1022原子/
cm3 以下であり且つダングリングボンドを補償する水
素またはフッ素のうち少なくとも1種の原子密度が2.
0×1021原子/cm3 以上であり、前記感光層のアモ
ルファス状態の原子密度が5.0×1022原子/cm3
以下であり且つダングリングボンドを補償する水素また
はフッ素のうち少なくとも1種の原子の密度が2.0×
1021原子/cm3 以上であり、前記表面層のアモルフ
ァス状態の珪素またはゲルマニウムのうち少なくとも1
種の原子の密度が3.0×1022原子/cm3 以下であ
るとともにアモルファス状態の窒素または炭素のうち少
なくとも1種の原子の密度が5.0×1022原子/cm
3 以下であり且つダングリングボンドを補償する水素ま
たはフッ素のうち少なくとも1種の原子の密度が5.0
×1022原子/cm3 以上であることを特徴とする電子
写真感光体。
1. Silicon, germanium, on a conductive substrate,
A carrier injection blocking layer composed of an atom in an amorphous state composed of at least one of oxygen, nitrogen and carbon and a hydrogen atom or a fluorine atom compensating for a dangling bond of the atom, and a photosensitive layer are sequentially laminated, and An electrophotographic photoreceptor having thereon a surface layer comprising an atom in an amorphous state composed of at least one of silicon, germanium, nitrogen and carbon and an atom of hydrogen or fluorine compensating for a dangling bond of the atom, The atomic density of the carrier injection blocking layer in the amorphous state is 5.5 × 10 22 atoms /
1. The atomic density of at least one of hydrogen and fluorine, which is less than or equal to 3 cm 3 and compensates for dangling bonds, is 2.
0 × 10 21 atoms / cm 3 or more, and the atomic density of the photosensitive layer in the amorphous state is 5.0 × 10 22 atoms / cm 3
And the density of at least one atom of hydrogen or fluorine that is less than or equal to and compensates for dangling bonds is 2.0 ×
10 21 atoms / cm 3 or more, and at least one of amorphous silicon or germanium in the surface layer.
The density of the atoms of the seed is 3.0 × 10 22 atoms / cm 3 or less and the density of at least one atom of nitrogen or carbon in an amorphous state is 5.0 × 10 22 atoms / cm.
The density of at least one atom of hydrogen or fluorine that is 3 or less and compensates for dangling bonds is 5.0.
× 10 22 atoms / cm 3 or more, an electrophotographic photoreceptor.
JP03534993A 1993-02-24 1993-02-24 Electrophotographic photoreceptor Expired - Fee Related JP3236692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03534993A JP3236692B2 (en) 1993-02-24 1993-02-24 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03534993A JP3236692B2 (en) 1993-02-24 1993-02-24 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH06250425A true JPH06250425A (en) 1994-09-09
JP3236692B2 JP3236692B2 (en) 2001-12-10

Family

ID=12439389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03534993A Expired - Fee Related JP3236692B2 (en) 1993-02-24 1993-02-24 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3236692B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128603A (en) * 2009-11-17 2011-06-30 Canon Inc Electrophotographic photoreceptor and electrophotographic apparatus
US8323862B2 (en) 2008-07-25 2012-12-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8440377B2 (en) 2009-11-26 2013-05-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8445168B2 (en) 2009-11-26 2013-05-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8455163B2 (en) 2009-11-27 2013-06-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8507170B2 (en) 2008-07-25 2013-08-13 Canon Kabushiki Kaisha Image-forming method and image-forming apparatus
US8630558B2 (en) 2009-11-25 2014-01-14 Canon Kabushiki Kaisha Electrophotographic apparatus having an electrophotgraphic photosensitive member with an amorphous silicon carbide surface layer
US8758971B2 (en) 2008-12-26 2014-06-24 Canon Kabushiki Kaisha Image-forming method
CN110892514A (en) * 2017-07-19 2020-03-17 三菱电机株式会社 Method for manufacturing semiconductor device and semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323862B2 (en) 2008-07-25 2012-12-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8507170B2 (en) 2008-07-25 2013-08-13 Canon Kabushiki Kaisha Image-forming method and image-forming apparatus
US8685611B2 (en) 2008-07-25 2014-04-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8758971B2 (en) 2008-12-26 2014-06-24 Canon Kabushiki Kaisha Image-forming method
JP2011128603A (en) * 2009-11-17 2011-06-30 Canon Inc Electrophotographic photoreceptor and electrophotographic apparatus
US8465891B2 (en) 2009-11-17 2013-06-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8630558B2 (en) 2009-11-25 2014-01-14 Canon Kabushiki Kaisha Electrophotographic apparatus having an electrophotgraphic photosensitive member with an amorphous silicon carbide surface layer
US8440377B2 (en) 2009-11-26 2013-05-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8445168B2 (en) 2009-11-26 2013-05-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8455163B2 (en) 2009-11-27 2013-06-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
CN110892514A (en) * 2017-07-19 2020-03-17 三菱电机株式会社 Method for manufacturing semiconductor device and semiconductor device
CN110892514B (en) * 2017-07-19 2023-07-28 三菱电机株式会社 Method for manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP3236692B2 (en) 2001-12-10

Similar Documents

Publication Publication Date Title
US8173344B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP3124841B2 (en) Electrophotographic photoreceptor
JPH06250425A (en) Electrophotographic sensitive body
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
US4430404A (en) Electrophotographic photosensitive material having thin amorphous silicon protective layer
JP4562163B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
JP3152808B2 (en) Electrophotographic recording device
JP3279926B2 (en) Electrophotographic photoreceptor and image forming apparatus
EP0762229A2 (en) Image-forming apparatus and image-forming method
US4911998A (en) Process of electrophotographic imaging with layered light receiving member containing A-Si and Ge
US4698288A (en) Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon
US8330161B2 (en) Electronic photosensitive body and manufacturing method for same, as well as image forming apparatus
JPS61159657A (en) Photosensitive body
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
US4738914A (en) Photosensitive member having an amorphous silicon layer
JP5387273B2 (en) Image forming apparatus and process cartridge
JPH0764312A (en) Surface treatment of electrophotographic photoreceptor
JP2657491B2 (en) Electrophotographic photoreceptor
JPS6187159A (en) Electrophotographic sensitive body
JPH10104862A (en) Production of electrophotographic photoreceptor
JPH0616178B2 (en) Photoconductive member
JPS63143559A (en) Electrophotographic sensitive body
JPS61183661A (en) Photosensitive body
JPH06337531A (en) Image forming device
JPH01269945A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070928

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080928

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080928

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100928

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110928

LAPS Cancellation because of no payment of annual fees