JP3857160B2 - Photoconductor and image forming apparatus - Google Patents

Photoconductor and image forming apparatus Download PDF

Info

Publication number
JP3857160B2
JP3857160B2 JP2002057891A JP2002057891A JP3857160B2 JP 3857160 B2 JP3857160 B2 JP 3857160B2 JP 2002057891 A JP2002057891 A JP 2002057891A JP 2002057891 A JP2002057891 A JP 2002057891A JP 3857160 B2 JP3857160 B2 JP 3857160B2
Authority
JP
Japan
Prior art keywords
photoreceptor
substrate
photoconductor
ppm
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002057891A
Other languages
Japanese (ja)
Other versions
JP2003255577A5 (en
JP2003255577A (en
Inventor
伸英 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002057891A priority Critical patent/JP3857160B2/en
Publication of JP2003255577A publication Critical patent/JP2003255577A/en
Publication of JP2003255577A5 publication Critical patent/JP2003255577A5/ja
Application granted granted Critical
Publication of JP3857160B2 publication Critical patent/JP3857160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアモルファスシリコン層からなる感光層を備えた感光体、ならびに本発明の感光体を搭載した画像形成装置に関するものである。
【0002】
【従来の技術】
アモルファスシリコン層(以下、アモルファスシリコンをa−Siと略記する)を感光層とした感光体が、すでに製品化されているが、このa−Si感光体はアルミニウム金属から成るドラム状基板の外周面を切削などによって精密仕上げをおこない、次いでプラズマCVD法によってa−Si感光層を10μm〜50μmの厚みで、さらに80μm程度にまで厚くするなどして成膜形成して得られる。
【0003】
このようにドラム状基板に対し、成膜前に精密仕上げをおこなうことで、基板上に成膜形成した感光層の表面のクリーニング性を高め、これによって画像特性を向上させている。
【0004】
【発明が解決しようとする問題点】
しかしながら、前述したようなプラズマCVD法により作製した感光体によれば、その膜の内部応力が大きく(4.0×108〜5.0×108N/m2)、下記のような課題があった。
【0005】
▲1▼ 基板の変形が大きく、そのために基板の厚みが薄い場合、寸法不良が発生する。
【0006】
▲2▼ 基板に対する感光層の密着性がわるく、基板の厚みが薄いと、剥離等の不良が発生する。
【0007】
▲3▼ 基板に対する感光層の密着性がわるく、基板の粗さが大きいと、剥離等の不良が発生する。
【0008】
本発明者は上記事情に鑑みて鋭意研究に努めたところ、触媒CVD法によりa−Si層を成膜し、この触媒CVD法に用いる触媒体をTa、W、Moから選択される触媒元素にて成し、このa−Si層に触媒元素を0.5ppm〜15%の原子比率にて含有せしめたことで、低応力の膜となり、基板の厚みを薄くでき、これにより、膜が剥がれにくい安定した感光体が得られることを見出した。
【0009】
本発明は上記知見により完成されたものであり、その目的は▲1▼〜▲3▼の各課題を解消し、良好な画像形成を達成した感光体ならびに画像形成装置を提供することにある。
【0010】
参考までに、a−Si層の他の成膜法としては、真空蒸着法、光CVD法、熱CVD法、反応性スパッタリング法、イオンプレーティング法なども提案されているが、感光体に関しては、ほとんどプラズマCVD法が用いられ、その他の成膜技術については、ほとんど開発されていなかった。
【0011】
触媒CVD法も開発されているが、いまだ感光体用としての技術が確立されていないと言える(特開平6−338491号公報参照)。
【0012】
【課題を解決するための手段】
本発明の第1の側面に係る感光体は、基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はTa0.55ppm以上12500ppm以下の原子比率にて含有せしめたことを特徴とする。本発明の第2の側面に係る感光体は、基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はWを0.55ppm以上12400ppm以下の原子比率にて含有せしめたことを特徴とする。本発明の第3の側面に係る感光体は、基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はMoを0.50ppm以上145000ppm以下の原子比率にて含有せしめたことを特徴とする。本発明の第1〜第3の側面に係る感光体において前記感光層の内部応力は3.8×10 N/m 〜8.2×10 N/m に設定されているのが好ましい。本発明の第1〜第3の側面に係る感光体において前記感光層は触媒CVD法により成膜されるのが好ましい。
【0013】
また、本発明に係る画像形成装置は、本発明の第1〜第3の側面に係る感光体と、該感光体の表面に電荷を付与する帯電手段と、感光体の帯電領域に対し照射するための露光手段とを備え、前記帯電手段および前記露光手段により感光体の表面に形成される静電潜像に対応したトナー像を感光体の表面に形成するための現像手段と、該トナー像を被転写材に転写するための転写手段と、該転写後において感光体表面に残留する残留トナーを除去するためのクリーニング手段と、該転写後において感光体に残る残余静電潜像を除去するための除電手段とを配設したことを特徴とする
【0014】
【発明の実施の形態】
感光体の構成:
図1と図2は発明の実施形態に係る感光体1、2の構成を示す断面拡大図である。
【0015】
これら各図において、ドラム状もしくは平板状の導電性の基板3の外面に、a−Siから成る感光層4を触媒CVD法で成膜形成している。
【0016】
この感光層4は、図1に示すように単層の光導電層にする構成でもよく、この層はa−Siからなり、さらにカーボンや窒素を、酸素をドープしてもよい。
【0017】
また、図2に示すように、たとえばキャリア注入阻止層5、光導電層6、アモルファスシリコンカーバイド(a−SiC)、アモルファスカーボン(a−C)、アモルファスシリコンナイトライド(a−SiN)、アモルファスシリコンオキサイドなどで構成した表面保護層7とを順次積層して成る。
【0018】
上記基板3には銅、黄銅、SUS、Al、Niなどの金属導電体、あるいはガラス、セラミックなどの絶縁体の表面に導電性薄膜を被覆したものなどがある。
【0019】
かかる感光層4は触媒CVD法により成膜形成する。参考までに特開平6−338491号公報に記載された技術を用いればよい。
【0020】
図3にて触媒CVD装置の構成を示す。
同図にて、8は真空容器であり、この真空容器8の内部に支持体9が配置され、この支持体9の上に被成膜用基板10を配設する。そして、11はガス導入部であり、ガス導入部11と被成膜用基板10との間に、前記触媒体であるフィラメント12を配している。
【0021】
そして、半導体ガスを導入すると、ガス導入部11より噴出し、フィラメント12を通して被成膜用基板10上に成膜される。
【0022】
この成膜条件は、たとえば真空度13.3Pa、基板温度250℃、触媒体(フィラメント12)の温度2200℃である。
【0023】
原料用ガスとしては、水素化珪素ガス(モノシラン、ジシラン)等を用いられ、キャリアガスとしては一般に常用される水素ガスあるいはアルゴンガス等が用いられる。さらに、抵抗値の調整用に若干のドーピングガスを添加するとよく、そのためのガスとして、B26等のガスを用いればよい。
【0024】
本発明によれば、触媒体には、Ta、W、Moから選択される触媒元素にて成し、触媒体温度をたとえば2200℃にまでに高めることで、触媒体を蒸発させ、そして、薄膜層中に触媒体の元素を取り込んでいる。
【0025】
かくして本発明によれば、かかる触媒CVD法により、少ないドーピングガス(B26等のガス)を添加するだけで、所望の電気特性の成膜体を安価に得ることができた。
【0026】
また、本発明においては、触媒CVD法にて成膜を行なったことで、プラズマのダメージを受けなくなり、これにより、膜の内部応力が小さくなり、剥れにくい膜を形成できた。
【0027】
画像形成装置の構成
図4は本発明の感光体を搭載したデジタル複写機構成の画像形成装置13であり、14は感光体であり、この感光体14の周面に帯電手段であるコロナ帯電器15と、その帯電後に光照射する露光手段である露光器16(レーザービーム)と、トナー像を感光体14の表面に形成するためのトナー17を備えた現像手段である現像機18と、そのトナー像を被転写材19に転写する転写手段である転写器20と、その転写後に感光体表面の残留トナーを除去するクリーニング手段21と、その転写後に残余静電潜像を除去する除電手段22とを配設した構成である。また、23は被転写材19に転写されたトナー像を熱もしくは圧力により固着するための定着器である。
【0028】
このカールソン法は次の(1)〜(6)の各プロセスを繰り返し経る。
(1)感光体14の周面をコロナ帯電器15により帯電する。
(2)露光器16により画像を露光することにより、感光体14の表面上に電位コントラストとしての静電潜像を形成する。
(3)この静電潜像を現像機18により現像する。この現像により黒色のトナーが静電潜像との静電引力により感光体表面に付着し、可視化する。
(4)感光体表面のトナー像を紙などの被転写材19の裏面よりトナーと逆極性の電界を加えて、静電転写し、これにより、画像を被転写材19の上に得る。
(5)感光体表面の残留トナーをクリーニング手段21により機械的に除去する。
(6)感光体表面を強い光で全面露光し、除電手段21により残余の静電潜像を除去する。
【0029】
なお、画像形成装置13はプリンターの構成であるが、露光機16に代えて原稿からの反射光を通すレンズやミラーなどの光学系を用いることで、複写機の構成になる。さらに通常の乾式現像を用いているが、その他、湿式現像に使用される液体現像剤にも適用される。
【0030】
【実施例】
(例1)
純度99.9%のAlから成るドラム状の基板3(外形寸法:30mm、長手寸法:260mm、基板厚み:2.5mm、基板の面粗さRz:0.1μm)の上に触媒CVD法によってa−Si層の感光層4を20μmの厚みにて成膜形成する。
【0031】
この感光層4は表1に示す成膜条件にて形成した。
【0032】
【表1】

Figure 0003857160
【0033】
かくして得られた本発明の感光体によれば、基板のソリも無く、良好な結果が得られた。
【0034】
上記の成膜によれば、ドラム状基板を用いたが、これに代えて、つぎに平板状基板を用いて、基板のソリを評価した。
【0035】
図5に示すごとく、AF45ガラスからなる基板25(40mm×10mm×厚み0.1mm)の上にa−Si層を触媒CVD法(触媒体:Ta)により形成する。この層は表1に示す成膜条件により20μmの厚みでa−Si層を成膜形成した。そして、ソリ量から測定した。
【0036】
同図によれば、基板25の端部を基板支持体24に固定し、そして、この基板25の上にa−Si層を成膜して、ソリ量δを測定した。
【0037】
かくして得られた本発明の平板状の感光体について、その内部応力(4.2×107N/m2)をソリ量から測定した。そして、そのようなソリもなかった。
【0038】
(例2)
つぎに(例1)に示す感光体を作製するに当たり、触媒体を1500〜2500℃の範囲で変え、その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。
【0039】
このように触媒体温度を増減させることにより、触媒元素Taの含有量を0.04ppm〜18.7%にまで幾とおりにも変えた各種感光体を作製した。そして、これら感光体の内部応力と密着性、電気特性を測定したところ、表2に示すような結果が得られた。なお、基板はドラム状と平板状の双方に対し、実験したが、双方とも同じ結果が得られた。この点は、以下のすべての実験に共通する。
【0040】
密着性の評価は、○、△、×の3とおりに区分し、○印は膜ハガレの全くない状態の場合、×印は全面に膜ハガレがある状態の場合、また、△印は一部に膜ハガレがある状態の場合を示す。
【0041】
【表2】
Figure 0003857160
【0042】
この表から明らかなとおり、触媒体温度が増大することで触媒体元素の含有量が多くなることがわかる。これは、触媒体温度が上昇することで、触媒元素が蒸発し、膜中に元素が入っていくからである。
【0043】
触媒体温度が1500℃〜2000℃では、電気特性で帯電がのらない結果となった。これは、膜の抵抗が低くなるからである。
【0044】
触媒体温度が2100℃〜2300℃では、発熱・密着性・電気特性共良好な結果が得られた。触媒体温度が2400℃では、膜中に触媒元素が入りすぎ、粗な膜となり、ボロボロと剥がれてしまう結果となった。また、温度が高すぎて触媒体が切れてしまうこともあった。
【0045】
さらに、2500℃以上では、触媒体が成膜中にいつも切れてしまい、膜がつかない結果となった。
【0046】
内部応力については、一般的なプラズマCVD法で作製されたa−Si層は、4.0×108〜5.0×108(N/m2)であり、例1で作製された感光体はかなり小さい値(1桁小さい)であり、密着性等にかなり高い効果がある。
【0047】
(例3)
つぎに(例1)に示す感光体を作製するに当たり、感光層の成膜において、触媒体(Ta)を2200℃とし、基板の厚みを1mm、1.75mm、2.5mmの3種類にておこなって、さらに基板の面粗さを、Rz:0.1μm〜3.0μmの範囲にて変化させた。その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。すなわち、感光層を成膜形成するに際し、基板の厚み、基板の面粗さを幾とおりにも変えた各種感光体を作製した。
【0048】
そして、これら感光体の内部応力と密着性を測定したところ、表3に示すような結果が得られた。
【0049】
【表3】
Figure 0003857160
【0050】
同表から、触媒CVD法により、内部応力が小さくなり、密着性が上がることがわかる。これは、触媒CVD法で成膜を行うことにより、プラズマのダメージを受けないためである。そして、基板の肉厚を薄くしても、面粗さを大きくしても密着性が維持できている。
【0051】
(例4)
本例において、(例2)のように、触媒元素をTaを用いた実施例に代えて、Wにした場合でもって(例1)に示す感光体を作製した。
【0052】
この感光体によれば、感光層の成膜において、触媒体を1500〜3000℃の範囲で変え、その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。
【0053】
このように触媒体温度を増減させることにより、触媒元素Wの含有量を0.04ppm以上に幾とおりにも変えた各種感光体を作製した。そして、これら感光体の内部応力と密着性を測定したところ、表4に示すような結果が得られた。
【0054】
【表4】
Figure 0003857160
【0055】
この表から明らかなとおり、触媒体温度が増大することで触媒体元素の含有量が多くなることがわかる。これは、触媒体温度が上昇することで、触媒元素が蒸発し、膜中に元素が入るためである。
【0056】
Wの場合、触媒体温度が1500℃〜1900℃では電気特性で帯電がのらない結果となった。触媒体温度が2000℃〜2500℃では、密着性・電気特性ともに良好な結果が得られた。触媒体温度が2800℃では、膜中に触媒元素が入りすぎ、粗な膜となりボロボロと剥がれてしまう結果となった。また、温度が高すぎて触媒体が切れてしまうこともあった。さらに、3000℃以上では、触媒体が成膜中に常時切れてしまい、膜が付着しない結果となった。
【0057】
内部応力については、一般的なプラズマCVD法で作製されたアモルファスシリコン膜であれば、4.0×108〜5.0×108(N/m2)であるが、本例にて作製された感光体については、相当に小さい値(一桁小さい)であり、密着性等に顕著な効果を奏する。
【0058】
(例5)
つぎに(例4)に示す感光体を作製するに当たり、感光層の成膜において、触媒体(W)を2200℃とし、基板の厚みを1mm、1.75mm、2.5mmの3種類にておこなって、さらに基板の面粗さを、Rz:0.1μm〜3.0μmの範囲にて変化させた。その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。
【0059】
そして、これら感光体の内部応力と密着性を測定したところ、表5に示すような結果が得られた。
【0060】
【表5】
Figure 0003857160
【0061】
同表から、触媒CVD法により、内部応力が小さくなり、密着性が上がることがわかる。これは、触媒CVD法で成膜を行うことにより、プラズマのダメージを受けないためである。そして、基板の肉厚を薄くしても、面粗さを大きくしても密着性が維持できている。
【0062】
(例6)
本例において、(例2)のように、触媒元素をTaを用いた実施例に代えて、Moにした場合でもって(例1)に示す感光体を作製した。
【0063】
この感光体によれば、感光層の成膜において、触媒体を1500〜3000℃の範囲で変え、その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。
【0064】
このように触媒体温度を増減させることにより、触媒元素Moの含有量を0.05ppm以上に幾とおりにも変えた各種感光体を作製した。そして、これら感光体の内部応力と密着性、電気特性を測定したところ、表6に示すような結果が得られた。
【0065】
【表6】
Figure 0003857160
【0066】
この表から明らかなとおり、触媒体温度が増大することで触媒体元素の含有量が多くなることがわかる。これは、触媒体温度が上昇することで、触媒元素が蒸発し、膜中に元素が入るためである。
【0067】
Moの場合、触媒体温度が1500℃〜1900℃では、電気特性で帯電がのらない結果となった。触媒体温度が2000℃〜2700℃では、密着性・電気特性ともに良好な結果が得られた。触媒体温度が2800℃では、膜中に触媒元素が入りすぎ、粗な膜となりボロボロと剥がれてしまう結果となった。また、温度が高すぎて触媒体が切れてしまうこともあった。さらに、3000℃以上では、触媒体が成膜中に常時切れてしまい、膜が付着しない結果となった。
【0068】
内部応力については、一般的なプラズマCVD法で作製されたアモルファスシリコン膜であれば、4.0×108〜5.0×108(N/m2)であるが、本例にて作製された感光体については、相当に小さい値(一桁小さい)であり、密着性等に顕著な効果を奏する。
【0069】
(例7)
つぎに(例6)に示す感光体を作製するに当たり、感光層の成膜において、触媒体(Mo)を2200℃とし、基板の厚みを1mm、1.75mm、2.5mmの3種類にておこなって、さらに基板の面粗さを、Rz:0.1μm〜3.0μmの範囲にて変化させた。その他の成膜条件を(例1)の感光体と同じにて設定し、各種感光体を作製した。
【0070】
そして、これら感光体の内部応力と密着性を測定したところ、表7に示すような結果が得られた。
【0071】
【表7】
Figure 0003857160
【0072】
同表から、触媒CVD法により、内部応力が小さくなり、密着性が上がることがわかる。これは、触媒CVD法で成膜を行うことにより、プラズマのダメージを受けないためである。そして、基板の肉厚を薄くしても、面粗さを大きくしても密着性が維持できている。
【0073】
なお、本発明は上記の実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等はなんら差し支えない。たとえば、本発明によれば、触媒体には、Ta、W、Moを単独にて用いたが、これに代えて、これらを組合せた複合材にて、そして、複数の触媒元素を発熱層に添加してもよい。
【0074】
【発明の効果】
以上の通り、本発明によれば、感光層の密着性にすぐれた感光体を得ることができ、これにより基板の厚みを薄くでき、面粗さの管理範囲が大きくなり、安価で品質が安定し、量産性に優れた感光体を提供することができる。
【図面の簡単な説明】
【図1】本発明の感光体の層構成を示す断面図である。
【図2】本発明の他の感光体の層構成を示す断面図である。
【図3】触媒CVD装置の概略図である。
【図4】本発明の画像形成装置の概略図である。
【図5】ソリ量の測定方法を示す説明図である。
【符号の説明】
2・・・感光体
3・・・基板
4・・・感光層
5・・・キャリア注入阻止層
6・・・光導電層
7・・・表面保護層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photoconductor provided with a photosensitive layer made of an amorphous silicon layer, and an image forming apparatus equipped with the photoconductor of the present invention.
[0002]
[Prior art]
A photoreceptor using an amorphous silicon layer (hereinafter abbreviated as a-Si) as a photosensitive layer has already been commercialized. This a-Si photoreceptor is an outer peripheral surface of a drum-shaped substrate made of aluminum metal. The film is precisely finished by cutting or the like, and then formed into a film by forming the a-Si photosensitive layer to a thickness of 10 μm to 50 μm and further to about 80 μm by plasma CVD.
[0003]
As described above, by performing precision finishing on the drum-shaped substrate before film formation, the cleaning property of the surface of the photosensitive layer formed on the substrate is improved, thereby improving the image characteristics.
[0004]
[Problems to be solved by the invention]
However, according to the photoreceptor manufactured by the plasma CVD method as described above, the internal stress of the film is large (4.0 × 10 8 to 5.0 × 10 8 N / m 2 ), and the following problems are caused. was there.
[0005]
{Circle around (1)} When the substrate is greatly deformed and therefore the substrate is thin, a dimensional defect occurs.
[0006]
(2) The adhesion of the photosensitive layer to the substrate is poor, and if the substrate is thin, defects such as peeling occur.
[0007]
{Circle around (3)} The adhesion of the photosensitive layer to the substrate is poor, and when the roughness of the substrate is large, defects such as peeling occur.
[0008]
The present inventor made extensive research in view of the above circumstances, and formed an a-Si layer by the catalytic CVD method, and made the catalyst body used in the catalytic CVD method a catalytic element selected from Ta, W, and Mo. Thus, the a-Si layer contains a catalytic element in an atomic ratio of 0.5 ppm to 15%, so that a low-stress film can be obtained and the thickness of the substrate can be reduced, whereby the film is difficult to peel off. It has been found that a stable photoreceptor can be obtained.
[0009]
The present invention has been completed based on the above findings, and an object of the present invention is to provide a photoreceptor and an image forming apparatus that can solve the problems (1) to (3) and achieve good image formation.
[0010]
For reference, vacuum deposition, photo CVD, thermal CVD, reactive sputtering, ion plating, and the like have been proposed as other film formation methods for the a-Si layer. The plasma CVD method is mostly used, and other film forming techniques have hardly been developed.
[0011]
Although a catalytic CVD method has been developed, it can be said that a technique for a photoconductor has not been established yet (see JP-A-6-338491).
[0012]
[Means for Solving the Problems]
The photoreceptor according to the first aspect of the present invention is a photoreceptor in which a photosensitive layer containing amorphous silicon is coated on a substrate, and the photosensitive layer contains Ta in an atomic ratio of 0.55 ppm to 12,500 ppm. It is characterized by that. The photoreceptor according to the second aspect of the present invention is a photoreceptor in which a photosensitive layer containing amorphous silicon is coated on a substrate, and the photosensitive layer contains W in an atomic ratio of 0.55 ppm to 12400 ppm. It is characterized by that. The photoreceptor according to the third aspect of the present invention is a photoreceptor in which a photosensitive layer containing amorphous silicon is coated on a substrate, and the photosensitive layer contains Mo in an atomic ratio of 0.50 ppm to 145000 ppm. It is characterized by that. That the internal stress of the photosensitive layer in the photosensitive member according to the first to third aspect of the present invention is set to 3.8 × 10 7 N / m 2 ~8.2 × 10 7 N / m 2 preferable. In the photoreceptor according to the first to third aspects of the present invention, the photosensitive layer is preferably formed by a catalytic CVD method.
[0013]
The image forming apparatus according to the present invention, a photosensitive member according to the first to third aspect of the present invention, a charging means for imparting an electrical charge to a surface of the photoreceptor with respect to the charged areas of the photoreceptor optical developing means for a exposing means for irradiating, to form a toner image corresponding to the electrostatic latent image formed on the surface of the more the photoreceptor to the charging means and the exposure hand stage on the surface of the photoconductor When the cleaning means for removing a transfer unit for transferring the toner image to a transfer material, residual toner remaining Oite photoreceptor surface after the transfer, residual remaining in Oite photosensitive member after the transfer And a charge eliminating means for removing the electrostatic latent image.
DETAILED DESCRIPTION OF THE INVENTION
Structure of photoconductor:
1 and 2 are enlarged sectional views showing the structures of the photoreceptors 1 and 2 according to the embodiment of the invention.
[0015]
In each of these drawings, a photosensitive layer 4 made of a-Si is formed on the outer surface of a drum-shaped or flat-plate conductive substrate 3 by a catalytic CVD method.
[0016]
The photosensitive layer 4 may be configured as a single photoconductive layer as shown in FIG. 1. This layer is made of a-Si, and may be doped with carbon or nitrogen and oxygen.
[0017]
In addition, as shown in FIG. 2, for example, carrier injection blocking layer 5, photoconductive layer 6, amorphous silicon carbide (a-SiC), amorphous carbon (a-C), amorphous silicon nitride (a-SiN), amorphous silicon A surface protective layer 7 made of oxide or the like is sequentially laminated.
[0018]
Examples of the substrate 3 include metal conductors such as copper, brass, SUS, Al, and Ni, or those obtained by coating a conductive thin film on the surface of an insulator such as glass and ceramic.
[0019]
The photosensitive layer 4 is formed by catalytic CVD. For reference, the technique described in JP-A-6-338491 may be used.
[0020]
FIG. 3 shows the configuration of the catalytic CVD apparatus.
In the figure, reference numeral 8 denotes a vacuum container, and a support 9 is disposed inside the vacuum container 8, and a film formation substrate 10 is disposed on the support 9. Reference numeral 11 denotes a gas introduction part, and a filament 12 which is the catalyst body is disposed between the gas introduction part 11 and the deposition target substrate 10.
[0021]
When the semiconductor gas is introduced, the semiconductor gas is ejected from the gas introduction unit 11 and is formed on the deposition target substrate 10 through the filament 12.
[0022]
The film forming conditions are, for example, a degree of vacuum of 13.3 Pa, a substrate temperature of 250 ° C., and a temperature of the catalyst body (filament 12) of 2200 ° C.
[0023]
As the raw material gas, silicon hydride gas (monosilane, disilane) or the like is used. As the carrier gas, hydrogen gas or argon gas which is generally used is used. Further, a slight doping gas may be added for adjusting the resistance value, and a gas such as B 2 H 6 may be used as the gas.
[0024]
According to the present invention, the catalyst body is made of a catalyst element selected from Ta, W, and Mo, and the catalyst body is evaporated by increasing the catalyst body temperature to, for example, 2200 ° C. The catalyst element is incorporated in the layer.
[0025]
Thus, according to the present invention, a film-forming body having desired electrical characteristics can be obtained at low cost only by adding a small doping gas (a gas such as B 2 H 6 ) by the catalytic CVD method.
[0026]
Further, in the present invention, since the film was formed by the catalytic CVD method, the film was not damaged by the plasma, thereby reducing the internal stress of the film and forming a film that was not easily peeled off.
[0027]
Configuration of image forming apparatus FIG. 4 shows an image forming apparatus 13 having a configuration of a digital copying machine equipped with the photoconductor of the present invention, 14 is a photoconductor, and a charging means is provided on the peripheral surface of the photoconductor 14. A developing machine which is a developing means provided with a corona charger 15, an exposure device 16 (laser beam) as an exposure means for irradiating light after the charging, and a toner 17 for forming a toner image on the surface of the photoreceptor 14. 18, a transfer device 20 as a transfer means for transferring the toner image to the transfer material 19, a cleaning means 21 for removing residual toner on the surface of the photoreceptor after the transfer, and a residual electrostatic latent image after the transfer The charge removing means 22 is disposed. Reference numeral 23 denotes a fixing device for fixing the toner image transferred to the transfer material 19 by heat or pressure.
[0028]
In the Carlson method, the following processes (1) to (6) are repeated.
(1) The peripheral surface of the photoreceptor 14 is charged by the corona charger 15.
(2) By exposing the image with the exposure device 16, an electrostatic latent image as a potential contrast is formed on the surface of the photoreceptor 14.
(3) The electrostatic latent image is developed by the developing machine 18. By this development, black toner adheres to the surface of the photoreceptor due to electrostatic attraction with the electrostatic latent image, and is visualized.
(4) The toner image on the surface of the photoreceptor is electrostatically transferred by applying an electric field having a polarity opposite to that of the toner from the back surface of the transfer material 19 such as paper, whereby an image is obtained on the transfer material 19.
(5) Residual toner on the surface of the photoreceptor is mechanically removed by the cleaning means 21.
(6) The entire surface of the photosensitive member is exposed with strong light, and the remaining electrostatic latent image is removed by the charge eliminating unit 21.
[0029]
Although the image forming apparatus 13 has a printer configuration, an optical system such as a lens or a mirror that transmits reflected light from a document is used instead of the exposure device 16 to form a copying machine. Furthermore, normal dry development is used, but it is also applicable to liquid developers used for wet development.
[0030]
【Example】
(Example 1)
On a drum-shaped substrate 3 (outside dimension: 30 mm, longitudinal dimension: 260 mm, substrate thickness: 2.5 mm, substrate surface roughness Rz: 0.1 μm) made of Al with a purity of 99.9% by catalytic CVD method The photosensitive layer 4 of the a-Si layer is formed with a thickness of 20 μm.
[0031]
This photosensitive layer 4 was formed under the film forming conditions shown in Table 1.
[0032]
[Table 1]
Figure 0003857160
[0033]
According to the photoreceptor of the present invention thus obtained, there was no warpage of the substrate and good results were obtained.
[0034]
According to the above film formation, a drum-shaped substrate was used, but instead of this, a flat substrate was used to evaluate the warpage of the substrate.
[0035]
As shown in FIG. 5, an a-Si layer is formed on a substrate 25 (40 mm × 10 mm × thickness 0.1 mm) made of AF45 glass by a catalytic CVD method (catalyst body: Ta). This layer was formed as an a-Si layer with a thickness of 20 μm under the film formation conditions shown in Table 1. And it measured from the amount of warping.
[0036]
According to the figure, the edge part of the board | substrate 25 was fixed to the board | substrate support body 24, and the a-Si layer was formed on this board | substrate 25, and the amount of curvature (delta) was measured.
[0037]
With respect to the flat photoreceptor of the present invention thus obtained, the internal stress (4.2 × 10 7 N / m 2 ) was measured from the amount of warpage. And there was no such warp.
[0038]
(Example 2)
Next, in producing the photoreceptor shown in (Example 1), the catalyst body is changed in the range of 1500 to 2500 ° C., and other film forming conditions are set in the same manner as in the photoreceptor of (Example 1). Was made.
[0039]
In this manner, various photoreceptors were produced in which the content of the catalyst element Ta was varied from 0.04 ppm to 18.7% in various ways by increasing / decreasing the catalyst body temperature. When the internal stress, adhesion and electrical characteristics of these photoreceptors were measured, the results shown in Table 2 were obtained. In addition, although it experimented with respect to both the drum shape and flat plate shape, the same result was obtained in both. This point is common to all the following experiments.
[0040]
Evaluation of adhesion is classified into three categories: ○, Δ, ×. ○ indicates that there is no film peeling, X indicates that there is film peeling on the entire surface, and Δ indicates some The case where there is a film peeling is shown.
[0041]
[Table 2]
Figure 0003857160
[0042]
As is apparent from this table, it is understood that the content of the catalyst element increases as the catalyst body temperature increases. This is because the catalyst element evaporates and the element enters the film as the temperature of the catalyst body rises.
[0043]
When the catalyst body temperature was 1500 ° C. to 2000 ° C., no charge was obtained due to electrical characteristics. This is because the resistance of the film is lowered.
[0044]
When the catalyst body temperature was 2100 ° C. to 2300 ° C., good results were obtained in terms of heat generation, adhesion, and electrical characteristics. When the temperature of the catalyst body was 2400 ° C., the catalyst element was excessively contained in the film, resulting in a rough film, resulting in tattering. In addition, the catalyst body may be cut off due to the temperature being too high.
[0045]
Further, at 2500 ° C. or higher, the catalyst body was always cut during the film formation, resulting in no film formation.
[0046]
Regarding the internal stress, the a-Si layer produced by a general plasma CVD method is 4.0 × 10 8 to 5.0 × 10 8 (N / m 2 ), and the photosensitive material produced in Example 1 is used. The body is a fairly small value (one digit smaller) and has a very high effect on adhesion and the like.
[0047]
(Example 3)
Next, in producing the photoreceptor shown in (Example 1), in the formation of the photosensitive layer, the catalyst body (Ta) is 2200 ° C., and the substrate thickness is 1 mm, 1.75 mm, and 2.5 mm. In addition, the surface roughness of the substrate was changed in the range of Rz: 0.1 μm to 3.0 μm. Other film formation conditions were set to be the same as those of the photoreceptor in Example 1, and various photoreceptors were produced. That is, various photoconductors were produced in which the thickness of the substrate and the surface roughness of the substrate were varied in various ways when forming the photosensitive layer.
[0048]
When the internal stress and adhesion of these photoreceptors were measured, the results shown in Table 3 were obtained.
[0049]
[Table 3]
Figure 0003857160
[0050]
From the table, it can be seen that the catalytic CVD method reduces the internal stress and increases the adhesion. This is because plasma damage is not caused by film formation by the catalytic CVD method. Even if the thickness of the substrate is reduced or the surface roughness is increased, the adhesion can be maintained.
[0051]
(Example 4)
In this example, as in (Example 2), instead of the example using Ta as the catalyst element, the photoconductor shown in (Example 1) was produced by using W.
[0052]
According to this photoconductor, in the formation of the photosensitive layer, the catalyst body is changed in the range of 1500 to 3000 ° C., and other film formation conditions are set to be the same as those of the photoconductor of (Example 1). Produced.
[0053]
Thus, by varying the catalyst temperature, various types of photoconductors were produced in which the content of the catalyst element W was changed to 0.04 ppm or more. When the internal stress and adhesion of these photoconductors were measured, the results shown in Table 4 were obtained.
[0054]
[Table 4]
Figure 0003857160
[0055]
As is apparent from this table, it is understood that the content of the catalyst element increases as the catalyst body temperature increases. This is because the catalyst element evaporates and the element enters the film as the temperature of the catalyst body rises.
[0056]
In the case of W, when the catalyst body temperature was 1500 ° C. to 1900 ° C., the electric characteristics were not charged. When the catalyst body temperature was 2000 ° C. to 2500 ° C., good results were obtained for both adhesion and electrical characteristics. When the catalyst body temperature was 2800 ° C., the catalyst element was excessively contained in the film, resulting in a rough film and peeling off. In addition, the catalyst body may be cut off due to the temperature being too high. Furthermore, at 3000 ° C. or higher, the catalyst body was always cut during film formation, and the film did not adhere.
[0057]
The internal stress is 4.0 × 10 8 to 5.0 × 10 8 (N / m 2 ) in the case of an amorphous silicon film manufactured by a general plasma CVD method. The photoconductor thus obtained has a considerably small value (one digit smaller), and has a remarkable effect on adhesion and the like.
[0058]
(Example 5)
Next, in producing the photoreceptor shown in (Example 4), in forming the photosensitive layer, the catalyst body (W) was set at 2200 ° C., and the substrate thickness was 1 mm, 1.75 mm, and 2.5 mm. In addition, the surface roughness of the substrate was changed in the range of Rz: 0.1 μm to 3.0 μm. Other film formation conditions were set to be the same as those of the photoreceptor in Example 1, and various photoreceptors were produced.
[0059]
When the internal stress and adhesion of these photoreceptors were measured, the results shown in Table 5 were obtained.
[0060]
[Table 5]
Figure 0003857160
[0061]
From the table, it can be seen that the catalytic CVD method reduces the internal stress and increases the adhesion. This is because plasma damage is not caused by film formation by the catalytic CVD method. Even if the thickness of the substrate is reduced or the surface roughness is increased, the adhesion can be maintained.
[0062]
(Example 6)
In this example, as in (Example 2), instead of the example using Ta as the catalyst element, the photoconductor shown in (Example 1) was manufactured by using Mo.
[0063]
According to this photoconductor, in the formation of the photosensitive layer, the catalyst body is changed in the range of 1500 to 3000 ° C., and other film formation conditions are set to be the same as those of the photoconductor of (Example 1). Produced.
[0064]
In this manner, various photoreceptors were produced in which the content of the catalyst element Mo was changed to 0.05 ppm or more in various ways by increasing or decreasing the temperature of the catalyst body. When the internal stress, adhesion and electrical characteristics of these photoreceptors were measured, the results shown in Table 6 were obtained.
[0065]
[Table 6]
Figure 0003857160
[0066]
As is apparent from this table, it is understood that the content of the catalyst element increases as the catalyst body temperature increases. This is because the catalyst element evaporates and the element enters the film as the temperature of the catalyst body rises.
[0067]
In the case of Mo, when the catalyst body temperature was 1500 ° C. to 1900 ° C., the electric characteristics were not charged. When the catalyst body temperature was 2000 ° C. to 2700 ° C., good results were obtained in both adhesion and electrical characteristics. When the catalyst body temperature was 2800 ° C., the catalyst element was excessively contained in the film, resulting in a rough film and peeling off. In addition, the catalyst body may be cut off due to the temperature being too high. Furthermore, at 3000 ° C. or higher, the catalyst body was always cut during film formation, and the film did not adhere.
[0068]
The internal stress is 4.0 × 10 8 to 5.0 × 10 8 (N / m 2) in the case of an amorphous silicon film manufactured by a general plasma CVD method. The photosensitive member has a considerably small value (one order of magnitude smaller), and has a remarkable effect on adhesion and the like.
[0069]
(Example 7)
Next, in producing the photoreceptor shown in (Example 6), in the formation of the photosensitive layer, the catalyst body (Mo) is set at 2200 ° C., and the substrate thickness is 1 mm, 1.75 mm, and 2.5 mm. In addition, the surface roughness of the substrate was changed in the range of Rz: 0.1 μm to 3.0 μm. Other film formation conditions were set to be the same as those of the photoreceptor in Example 1, and various photoreceptors were produced.
[0070]
When the internal stress and adhesion of these photoreceptors were measured, the results shown in Table 7 were obtained.
[0071]
[Table 7]
Figure 0003857160
[0072]
From the table, it can be seen that the catalytic CVD method reduces the internal stress and increases the adhesion. This is because plasma damage is not caused by film formation by the catalytic CVD method. Even if the thickness of the substrate is reduced or the surface roughness is increased, the adhesion can be maintained.
[0073]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention. For example, according to the present invention, Ta, W, and Mo are used alone for the catalyst body, but instead of this, a composite material that combines these, and a plurality of catalyst elements in the heat generating layer. It may be added.
[0074]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a photoconductor excellent in the adhesion of the photosensitive layer, thereby reducing the thickness of the substrate, increasing the management range of surface roughness, inexpensive and stable quality. In addition, it is possible to provide a photoconductor excellent in mass productivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a layer structure of a photoreceptor of the present invention.
FIG. 2 is a cross-sectional view showing a layer structure of another photoconductor of the present invention.
FIG. 3 is a schematic view of a catalytic CVD apparatus.
FIG. 4 is a schematic view of an image forming apparatus of the present invention.
FIG. 5 is an explanatory diagram showing a method for measuring the amount of warping.
[Explanation of symbols]
2 ... Photoreceptor 3 ... Substrate 4 ... Photosensitive layer 5 ... Carrier injection blocking layer 6 ... Photoconductive layer 7 ... Surface protective layer

Claims (6)

基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はTa0.55ppm以上12500ppm以下の原子比率にて含有せしめたことを特徴とする感光体。A photoconductor in which a photosensitive layer containing amorphous silicon is coated on a substrate, wherein the photoconductive layer contains Ta in an atomic ratio of 0.55 ppm to 12500 ppm . 基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はWを0.55ppm以上12400ppm以下の原子比率にて含有せしめたことを特徴とする感光体。A photoconductor in which a photosensitive layer containing amorphous silicon is coated on a substrate, wherein the photoconductive layer contains W in an atomic ratio of 0.55 ppm to 12400 ppm. 基体上にアモルファスシリコンを含む感光層を被覆した感光体であって、前記感光層はMoを0.50ppm以上145000ppm以下の原子比率にて含有せしめたことを特徴とする感光体。A photoconductor in which a photosensitive layer containing amorphous silicon is coated on a substrate, wherein the photoconductive layer contains Mo in an atomic ratio of 0.50 ppm to 145000 ppm. 前記感光層の内部応力3.8×10 N/m 〜8.2×10N/mに設定されていることを特徴とする請求項1乃至3のいずれかに記載の感光体。The photosensitive stress according to any one of claims 1 to 3, wherein the internal stress of the photosensitive layer is set to 3.8 x 10 7 N / m 2 to 8.2 x 10 7 N / m 2. body. 前記感光層は、Ta,W,Moから選択される触媒元素により構成される触媒体を用いる触媒CVD法により成膜されることを特徴とする請求項1乃至4のいずれかに記載の感光体。5. The photosensitive member according to claim 1, wherein the photosensitive layer is formed by a catalytic CVD method using a catalytic member composed of a catalytic element selected from Ta, W, and Mo. . 請求項1乃至のいずれかに記載の感光体と、該感光体の表面に電荷を付与する帯電手段と、感光体の帯電領域に対し照射するための露光手段とを備え、前記帯電手段および前記露光手段により感光体の表面に形成される静電潜像に対応したトナー像を感光体の表面に形成するための現像手段と、該トナー像を被転写材に転写するための転写手段と、該転写後において感光体表面に残留する残留トナーを除去するためのクリーニング手段と、該転写後において感光体に残る残余静電潜像を除去するための除電手段とを配設したことを特徴とする画像形成装置。Comprising a photoconductor according to any one of claims 1 to 5, a charging means for imparting an electrical charge to a surface of the photoreceptor, with respect to the charged areas of the photoreceptor and exposing means for irradiating light, the transferring the charging means and the toner image corresponding more to the electrostatic latent image formed on the surface of the photoreceptor to the exposure hand stage and developing means for forming on the surface of the photosensitive member, the toner image to a transfer material and transfer means for a discharging means for removing the cleaning means for removing residual toner remaining on Oite photoreceptor surface after the transfer, the residual electrostatic latent image remaining on Oite photosensitive member after the transfer An image forming apparatus comprising:
JP2002057891A 2002-03-04 2002-03-04 Photoconductor and image forming apparatus Expired - Fee Related JP3857160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057891A JP3857160B2 (en) 2002-03-04 2002-03-04 Photoconductor and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057891A JP3857160B2 (en) 2002-03-04 2002-03-04 Photoconductor and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2003255577A JP2003255577A (en) 2003-09-10
JP2003255577A5 JP2003255577A5 (en) 2005-06-09
JP3857160B2 true JP3857160B2 (en) 2006-12-13

Family

ID=28668046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057891A Expired - Fee Related JP3857160B2 (en) 2002-03-04 2002-03-04 Photoconductor and image forming apparatus

Country Status (1)

Country Link
JP (1) JP3857160B2 (en)

Also Published As

Publication number Publication date
JP2003255577A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US5976745A (en) Photosensitive member for electrophotography and fabrication process thereof
US6110629A (en) Electrophotographic, photosensitive member and image forming apparatus
JP3517085B2 (en) Image forming device
JP3667024B2 (en) Electrophotographic photoreceptor
JP3462961B2 (en) Photoconductor and image forming apparatus
US5958644A (en) Process to form light-receiving member with outer layer made by alternately forming and etching
EP0762229B1 (en) Image-forming apparatus and image-forming method
JP3857160B2 (en) Photoconductor and image forming apparatus
JP3512607B2 (en) Photoconductor and image forming apparatus
JP3566621B2 (en) Electrophotographic photoreceptor and apparatus using the same
JPH1063023A (en) Electrophotographic light receiving member and its formation
JPS62151861A (en) Xerographic image forming member and image formation
JP3250962B2 (en) Photoconductor and image forming apparatus
JP2002091040A (en) Electrophotographic photoreceptor and electrophotographic device
JP4009040B2 (en) Photoconductor and image forming apparatus
JP3466410B2 (en) Image forming device
JP2005099637A (en) Substrate for photoreceptor and photoreceptor, and image forming apparatus
JP2001330980A (en) Photoreceptor and image forming device
JPH10239937A (en) Image forming device
JP2001343770A (en) Photoreceptor and device for image formation
JP2001343772A (en) Electrophotographic photoreceptor and apparatus
JPH09319099A (en) Photoreceptor and image forming device
JPH04182657A (en) Electrophotographic device using amorphous silicon photosensitive material
JPS63143559A (en) Electrophotographic sensitive body
JP2007297660A (en) Deposited film formation device and deposited film formation method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees