JPS6146748B2 - - Google Patents
Info
- Publication number
- JPS6146748B2 JPS6146748B2 JP58131478A JP13147883A JPS6146748B2 JP S6146748 B2 JPS6146748 B2 JP S6146748B2 JP 58131478 A JP58131478 A JP 58131478A JP 13147883 A JP13147883 A JP 13147883A JP S6146748 B2 JPS6146748 B2 JP S6146748B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- column
- heat exchanger
- oxygen
- rectification column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 16
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 238000000926 separation method Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 7
- 230000000630 rising effect Effects 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims 1
- 238000003303 reheating Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000005381 potential energy Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Separation By Low-Temperature Treatments (AREA)
Description
本発明は空気を液化して分離する方法に関し、
特に全低圧方式によつて空気を分離し高純度の製
品酸素を経済的に製造する方法に関するものであ
る。
空気を液化して精留することによりN2、O2、
Ar等を分離する空気の液化分離装置は種々の分
野で稼動している。この種の空気液化分離装置で
は、原料空気等に対して運転条件に応じた加圧、
減圧操作を施す必要がある為、圧縮機や膨張ター
ビン等の機器の設置が不可欠である。そして空気
液化分離装置は一般に大容量のものが多く運転動
力費が嵩むため、製品酸素の製造コストの低減を
図るには精留効率を向上させると共に、運転動力
費をできる限り節約しなければならないとする産
業上の要請が強くて、本発明者等もこの要請に対
応すべく特に製品酸素圧送用圧縮機について鋭意
検討を行なつてきた。
従来の全低圧式空気分離による高純度酸素製造
方法(以下単に酸素製造方法という)は、主とし
て第1図に示す様な系統図に従つて行なわれてい
る。
以下の説明中、切換式熱交換器は特許請求の範
囲に記載の「主熱交換器」の一例であつて、例え
ば切替式吸着器を入口側に有する熱交換器等にも
適用可能である。第1図において原料空気は空気
過器1を通して供給され、空気圧縮機2で約5
Kg/cm2Gに圧縮加圧された後、アフタクーラ3で
冷却される。次いで導管5から切換式熱交換器6
に導入され、精留塔8で分離精製された戻りガス
により冷却されると共に、空気中に含まれる水分
及び炭酸ガス等が除去される。この空気は、導管
7を経て精留塔下塔(以下単に下塔という)8b
に導かれる。こうして下塔8bに導入された空気
は上昇ガスとなる一方、該下塔8bの頂部で凝縮
して得られる還流液(富窒素液)に接触させて粗
精留し、下塔8bの頂部で富液体窒素を得ると共
に、前記還流液は下塔8bの底部で酸素成分約30
〜40%の富酸素液体空気となる。下塔8bで前述
の如く粗精留された液体空気は、管路9を通つて
液体空気過冷却器10内に導入・冷却された後、
管路11から精留塔上塔(以下単に上塔という)
8aの中部へ導かれる。又下塔8bの頂部に貯留
された富窒素液は管路12を通つて液体空気過冷
却器10内に導入・冷却された後、管路13から
上塔8aの上部へ導かれる。一方下塔8b内を上
昇する気体空気の一部は導管14から抜出された
後、切換式熱交換器6の再熱回路15に導入さ
れ、切換式熱交換器6の中間温度を調整した後、
調整弁16を経て膨張タービン17に送られる。
膨張タービン17において約0.32Kg/cm2Gに陛膨
張され外部仕事をとり出すことによつて所要寒冷
を得た空気は、導管18を経て上塔8aに吹込ま
れる。但し、この空気は富窒素ガスとして下塔8
bから抜出された場合は上塔8aに吹きこまれる
ことなく、不純窒素ライン21に導入される場合
もある。こうして上塔8aで分離精製された高純
度酸素成分、高純度窒素成分及び不純窒素成分
は、それぞれ導管19,20,21よりガス状で
抽気されて切換式熱交換器6に送られ、前述の如
く原料空気と熱交換することによつて、常温まで
温度回復を受けた後製品として取り出され、特に
酸素は導管22から圧縮機30に導入して例えば
約30/cm2Gまで加圧された後、製品酸素として回
収される。
これに対し本発明質等は上記の従来プロセスに
おける圧縮機30についての、製品酸素圧送用動
力の効率的な低減の可能性について種々検討を行
なつているが、圧縮機30に導入される気化製品
酸素を別の圧縮機によることなく、即ち動力の消
費を伴わずに予め昇圧させておくことができれば
圧縮機30についての動力消費量を効果的に低減
し得るという技術的指針の下にその様な非動力的
昇圧手段を開発すべく鋭意研究の結果、本発明を
完成したものである。
しかしてこの様な本発明の空気分離方法とは、
精留塔上塔の最下底部から抜出された高純度液体
酸素成分を該最下底部より更に下方に配置された
蒸発器に液状で導入する一方、前記精留塔下塔か
ら抜出された気体空気の一部を前記蒸発器内に設
置された熱交換器に導入して高純度液体酸素成分
を気化せしめると共に自らは液化し、気化酸素成
分は上記切換式熱交換器に送る一方、液化空気は
前記精留塔下塔内に戻す様にした点に要旨を有す
るものである。
以下実施例図面に基づき本発明の構成及び作用
効果を説明するが、下記実施例は単に一代表例に
過ぎないものであつて、前・後記の趣旨に沿つて
適宜変更して実施し得ることは言うまでもない。
第2図は本発明の全低圧式空気分離方法の系統
図を示し、第1図に示す従来例と基本的構成は同
一であり、同一構成のものには同一の符号を付
し、その説明は省略する。以下本実施例の特徴と
する構成を中心に説明する。
上塔8aの最下底部8′aより下方位置には蒸
発器31が配設され、該蒸発器31下部と最下底
部8′aは導管32で連結されると共に、蒸発部
31の最下底部31aから延設された導管33は
循環ポンプ34及び吸着器35を介して上塔8a
の底部と連結されており、又蒸発器31の頂部か
ら延設された導管36は切換式熱交換器6と旅連
結されている。更に蒸発器31にはリボイラ37
が収納されており、該熱交換器37の上部と気体
空気抜出用導管14からの分岐導管38が連結さ
れると共に、熱交換器37の下部と下塔8aは導
管39で連結されている。
この様に構成された酸素製造プロセスにおい
て、上塔8aの底部に留まる液体酸素は導管32
を通つて蒸発器31に供給されるが、この間に位
置エネルギー△H(△Hは上塔8a内における液
体酸素上面L1と蒸発器31における液体酸素上
面L2との間の水頭差)に相当する分だけ昇圧す
る。一方熱交換器37には下塔8bから抜出され
た気体空気が分岐導管38から供給されるので、
熱交換によつて蒸発器31内の液体酸素を気化せ
しめると共に自らは液化する。即ち液体酸素を高
圧で蒸発せしめる為に、窒素より、液化点の高い
空気を用いるわけである。こうして気化された液
体酸素(以下気化酸素という)は導管36から抜
出されて切換式熱交換器6を経由した後圧縮機3
0に供給されるが、このときの供給圧力は従来の
場合に比べて高くなつている。即ち従来プロセス
では第1図に示した様に上塔8a内の液面L1付
近で蒸発しつつある気化酸素を単に導管19から
抜出して圧縮機30に供給しているのに対し、本
発明プロセスでは前述した様に上塔8a内の液体
酸素蒸発部とも言える蒸発器31での液体酸素気
化能力は位置エネルギー△Hに相当する分だけ増
加するので、導管36内を輸送される気化酸素の
圧力は第1図に示す導管19内を輸送される気化
酸素の圧力よりも高くなつている。従つて圧縮機
30における消費動力をその分削減することがで
きる。
尚蒸発器31内で気化状態にない液体酸素につ
いては循環ポンプ34により導管33から抜出し
た後、吸着器35に導入して純度の回復を図ると
共に気化させて上塔8a内の底部へ返送する。従
つて上塔8a内の上昇ガス量は変化せず、従来プ
ロセスと比べて上塔8a内の精留条件が悪くなる
ことはないので特に製品酸素については十分な収
率を維持することができる。
一方リボイラ37内で液化した空気は導管39
から下塔8b内に返送されるが、この液化分だけ
下塔8b内の上昇ガス量が減少するので、下塔8
bについては精留条件の多少の低下が懸念され
る。しかしこの場合は製品窒素の収率が若干低下
するだけであつて製品酸素の収率には何ら影響し
ないので、製品酸素の回収を主目的とする本発明
プロセスにおいて上記構成即ち液化空気の下塔8
b内への返送は何ら問題とはならない。
実施例
製造規模10000Nm3、回収酸素圧力30Kg/cm2Gの
酸素製造装置について第1図に示す従来方法及び
第2図に示す本発明方法を夫々適用して製品酸素
圧送動力の比較を行なつた所、第1表に示す結果
が得られた。
The present invention relates to a method for liquefying and separating air,
In particular, the present invention relates to a method for economically producing high-purity product oxygen by separating air using a completely low-pressure system. By liquefying air and rectifying it, N 2 , O 2 ,
Air liquefaction separation equipment that separates Ar, etc. is in operation in various fields. This type of air liquefaction separation equipment pressurizes the raw air etc. according to the operating conditions.
Since it is necessary to perform pressure reduction operations, it is essential to install equipment such as compressors and expansion turbines. Air liquefaction separation equipment generally has a large capacity and increases operating power costs, so in order to reduce the production cost of product oxygen, it is necessary to improve rectification efficiency and save operating power costs as much as possible. There is a strong industrial demand for this, and in order to meet this demand, the inventors of the present invention have conducted intensive studies, particularly regarding compressors for compressing product oxygen. A conventional high-purity oxygen production method (hereinafter simply referred to as an oxygen production method) using total low-pressure air separation is mainly carried out according to a system diagram as shown in FIG. In the following explanation, the switching type heat exchanger is an example of the "main heat exchanger" described in the claims, and is also applicable to, for example, a heat exchanger having a switching type adsorber on the inlet side. . In FIG. 1, raw air is supplied through an air filter 1, and an air compressor 2
After being compressed and pressurized to kg/cm 2 G, it is cooled in an aftercooler 3. Then from the conduit 5 to the switched heat exchanger 6
The air is introduced into the air and is cooled by the return gas separated and purified in the rectification column 8, and moisture, carbon dioxide, etc. contained in the air are removed. This air passes through a conduit 7 to a rectification column lower column (hereinafter simply referred to as a lower column) 8b.
guided by. The air thus introduced into the lower column 8b becomes a rising gas, and is crudely rectified by being brought into contact with the reflux liquid (nitrogen-rich liquid) obtained by condensation at the top of the lower column 8b. In addition to obtaining liquid nitrogen rich in liquid nitrogen, the reflux liquid has an oxygen content of about 30% at the bottom of the lower column 8b.
~40% oxygen enriched liquid air. The liquid air crudely rectified as described above in the lower column 8b is introduced into the liquid air supercooler 10 through the pipe 9 and cooled.
From pipe 11 to the upper tower of the rectification tower (hereinafter simply referred to as the upper tower)
You will be led to the middle of 8a. Further, the nitrogen-rich liquid stored at the top of the lower column 8b is introduced into the liquid air supercooler 10 through a pipe 12 and cooled, and then guided through a pipe 13 to the upper part of the upper tower 8a. On the other hand, a part of the gaseous air rising in the lower column 8b is extracted from the conduit 14 and then introduced into the reheat circuit 15 of the switching heat exchanger 6, to adjust the intermediate temperature of the switching heat exchanger 6. rear,
It is sent to an expansion turbine 17 via a regulating valve 16.
The air, which has been expanded to about 0.32 Kg/cm 2 G in the expansion turbine 17 and obtained the necessary cooling by extracting external work, is blown into the upper tower 8a through the conduit 18. However, this air is transferred to the lower tower 8 as nitrogen-rich gas.
When the nitrogen is extracted from the upper column 8a, it may be introduced into the impure nitrogen line 21 without being blown into the upper column 8a. The high-purity oxygen component, high-purity nitrogen component, and impure nitrogen component thus separated and purified in the upper column 8a are extracted in gaseous form through conduits 19, 20, and 21, respectively, and sent to the switching heat exchanger 6, as described above. By exchanging heat with raw material air, the product is recovered to room temperature and then taken out as a product. In particular, oxygen is introduced into the compressor 30 through the conduit 22 and pressurized to, for example, about 30/cm 2 G. Afterwards, it is recovered as product oxygen. In contrast, the present inventors have been conducting various studies on the possibility of efficiently reducing the power for pumping product oxygen with respect to the compressor 30 in the conventional process described above. This is based on the technical guideline that if the product oxygen can be pressurized in advance without using a separate compressor, that is, without consuming power, the power consumption of the compressor 30 can be effectively reduced. The present invention was completed as a result of intensive research to develop such a non-powered pressure boosting means. However, the air separation method of the present invention is as follows:
The high-purity liquid oxygen component extracted from the lowermost part of the upper column of the rectification column is introduced in liquid form into an evaporator located further below the lowermost part, while the high-purity liquid oxygen component extracted from the lower column of the rectification column A part of the gaseous air is introduced into the heat exchanger installed in the evaporator to vaporize the high-purity liquid oxygen component and liquefy itself, and the vaporized oxygen component is sent to the switching heat exchanger while being liquefied. The key point is that the air is returned to the lower column of the rectification column. The configuration and effects of the present invention will be explained below based on the drawings of the embodiments, but the embodiments below are merely representative examples, and may be implemented with appropriate changes in accordance with the spirit of the above and below. Needless to say. FIG. 2 shows a system diagram of the all-low-pressure air separation method of the present invention. The basic configuration is the same as that of the conventional example shown in FIG. is omitted. The following description will focus on the feature of this embodiment. An evaporator 31 is disposed below the lowest bottom part 8'a of the upper column 8a, and the lower part of the evaporator 31 and the lowest bottom part 8'a are connected by a conduit 32, and the lowermost part of the evaporator 31 is A conduit 33 extending from the bottom 31a is connected to the upper tower 8a via a circulation pump 34 and an adsorber 35.
A conduit 36 extending from the top of the evaporator 31 is connected to the switching heat exchanger 6. Furthermore, a reboiler 37 is provided in the evaporator 31.
The upper part of the heat exchanger 37 is connected to a branch pipe 38 from the gas air extraction pipe 14, and the lower part of the heat exchanger 37 and the lower column 8a are connected by a pipe 39. . In the oxygen production process configured in this way, the liquid oxygen remaining at the bottom of the upper column 8a is transferred to the conduit 32.
During this time, potential energy ΔH (ΔH is the water head difference between the liquid oxygen upper surface L 1 in the upper column 8a and the liquid oxygen upper surface L 2 in the evaporator 31) is generated. Boost the pressure by the corresponding amount. On the other hand, the gaseous air extracted from the lower column 8b is supplied to the heat exchanger 37 from the branch conduit 38.
Through heat exchange, the liquid oxygen in the evaporator 31 is vaporized and liquefied itself. That is, in order to evaporate liquid oxygen at high pressure, air, which has a higher liquefaction point than nitrogen, is used. The liquid oxygen vaporized in this way (hereinafter referred to as vaporized oxygen) is extracted from the conduit 36 and passes through the switching heat exchanger 6 and then the compressor 3.
0, but the supply pressure at this time is higher than in the conventional case. That is, in the conventional process, vaporized oxygen that is evaporating near the liquid level L1 in the upper column 8a is simply extracted from the conduit 19 and supplied to the compressor 30 as shown in FIG. In the process, as described above, the liquid oxygen vaporization capacity in the evaporator 31, which can be called the liquid oxygen evaporation section in the upper column 8a, increases by an amount corresponding to the potential energy ΔH, so that the vaporized oxygen transported in the conduit 36 increases by an amount corresponding to the potential energy ΔH. The pressure is higher than the pressure of vaporized oxygen transported in conduit 19 shown in FIG. Therefore, the power consumption in the compressor 30 can be reduced accordingly. The liquid oxygen that is not in a vaporized state in the evaporator 31 is extracted from the conduit 33 by the circulation pump 34, and then introduced into the adsorber 35 to restore purity, vaporized, and returned to the bottom of the upper column 8a. . Therefore, the amount of rising gas in the upper column 8a does not change, and the rectification conditions in the upper column 8a do not deteriorate compared to the conventional process, so a sufficient yield can be maintained, especially for product oxygen. . On the other hand, the air liquefied in the reboiler 37 is transferred to the conduit 39.
However, since the amount of rising gas in the lower column 8b decreases by the liquefied amount, the lower column 8
As for b, there is a concern that the rectification conditions may deteriorate somewhat. However, in this case, the yield of product nitrogen is only slightly reduced and the yield of product oxygen is not affected at all. Therefore, in the process of the present invention whose main purpose is to recover product oxygen, 8
There is no problem with sending it back to B. Example: The conventional method shown in Fig. 1 and the method of the present invention shown in Fig. 2 were applied to an oxygen production apparatus with a production scale of 10000 Nm 3 and a recovered oxygen pressure of 30 Kg/cm 2 G, and the power for pumping product oxygen was compared. The results shown in Table 1 were obtained.
【表】
第1表から明らかな様に本発明方法による場合
は従来方法に比べて動力消費原単位が約9%減少
していることが計算で求められる。従つて本発明
方法によればランニングコストの大巾な節約が期
待でき、製品酸素をより安価に製造できることが
明らかである。
本発明の空気分離方法は以上の様に構成される
が、要は製品酸素圧送用圧縮機に導入される気化
酸素を予め自己昇圧できるようにしたので、該圧
縮機の消費動力を相応に削減できることとなり、
高純度製品酸素はより安価に製造できる様になつ
た。又空気分離装置の運転に要する動力を低減す
ることによりいわゆる省エネルギー化を図ること
ができるので、エネルギーの節約が強く叫ばれて
いる今日、こうした面からの産業界に果たす役割
も大きい。[Table] As is clear from Table 1, calculations show that the method of the present invention reduces the power consumption unit by about 9% compared to the conventional method. Therefore, it is clear that the method of the present invention can be expected to significantly reduce running costs and produce oxygen product at a lower cost. The air separation method of the present invention is configured as described above, but the point is that the vaporized oxygen introduced into the product oxygen pressure-feeding compressor can be self-pressurized in advance, so that the power consumption of the compressor can be reduced accordingly. It became possible,
High-purity product oxygen can now be produced at a lower cost. Furthermore, by reducing the power required to operate the air separation device, it is possible to achieve so-called energy saving, so in today's world where there is a strong demand for energy saving, the industry plays a major role in this aspect.
第1図は従来の酸素製造方法を示す系統図、第
2図は本発明に係る酸素製造方法を例示する系統
図である。
6……切換式熱交換器、8a……精留塔上塔、
8b……精留塔下塔、17……膨張タービン、3
0……製品酸素圧送用圧縮機、31……蒸発器、
34……循環ポンプ、35……吸着器、L1,L2
……液体酸素面。
FIG. 1 is a system diagram showing a conventional oxygen production method, and FIG. 2 is a system diagram illustrating an oxygen production method according to the present invention. 6... Switching type heat exchanger, 8a... Rectification column upper column,
8b... Lower rectification column, 17... Expansion turbine, 3
0...Compressor for pressure-feeding product oxygen, 31...Evaporator,
34... Circulation pump, 35... Adsorption device, L 1 , L 2
...Liquid oxygen surface.
Claims (1)
て冷却した原料空気を精留塔下塔に導入して富酸
素液体空気と富液体窒素に粗精留した後、更にこ
れらの富酸素液体空気と富液体窒素を精留塔上塔
に導入して高純度酸素成分、高純度窒素成分及び
不純窒素成分に夫々分離精製すると共に夫々を精
留塔上塔底部、同頂部及び同上部から抽気した
後、上記主熱交換器に送つて原料空気と熱交換す
ることにより温度回復を受けた後製品として取出
す一方、塔内を上昇する気体空気の一部を精留塔
下塔から抜出して上記主熱交換器の再熱回路を通
過せしめた後膨張タービンに導入して膨張せし
め、外部仕事を行なうことによつて、系の熱平衡
を成立させる様にした空気分離方法において、前
記精留塔上塔の最下底部から抜出された高純度液
体酸素成分を該最下底部より更に下方に配置され
た蒸発器に液状で導入する一方、前記精留塔下塔
から抜出された気体空気の一部を前記蒸発器内に
設置された熱交換器に導入して高純度液体酸素成
分を気化せしめると共に自らは液化し、気化酸素
成分は上記主熱交換器に送る一方、液化空気は前
記精留塔下塔内に戻すことを特徴とする空気分離
方法。1 The raw air, which has been cooled by heat exchange with the low-temperature return gas in the main heat exchanger, is introduced into the lower column of the rectification column and crudely rectified into oxygen-rich liquid air and nitrogen-rich liquid air. Air and rich liquid nitrogen are introduced into the upper column of the rectification column to separate and purify them into high-purity oxygen components, high-purity nitrogen components, and impure nitrogen components, and each is extracted from the bottom, top, and upper part of the upper column of the rectification column. After that, it is sent to the main heat exchanger where it undergoes temperature recovery by exchanging heat with the feed air and is then taken out as a product.At the same time, a part of the gaseous air rising inside the column is extracted from the lower column of the rectification column and sent to the main heat exchanger. In the air separation method, the air is passed through a reheating circuit of a heat exchanger and then introduced into an expansion turbine for expansion to perform external work, thereby establishing thermal equilibrium in the system. The high-purity liquid oxygen component extracted from the bottom bottom of the rectification column is introduced in liquid form into an evaporator located further below the bottom bottom, while a part of the gaseous air extracted from the lower column of the rectification column is is introduced into the heat exchanger installed in the evaporator to vaporize the high-purity liquid oxygen component and liquefy itself, and the vaporized oxygen component is sent to the main heat exchanger, while the liquefied air is sent to the bottom of the rectification column. An air separation method characterized by returning the air into the tower.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13147883A JPS6023770A (en) | 1983-07-18 | 1983-07-18 | Method of separating air |
ZA845542A ZA845542B (en) | 1983-07-18 | 1984-07-18 | Air separation method |
BR8403589A BR8403589A (en) | 1983-07-18 | 1984-07-18 | AIR SEPARATION PROCESS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13147883A JPS6023770A (en) | 1983-07-18 | 1983-07-18 | Method of separating air |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6023770A JPS6023770A (en) | 1985-02-06 |
JPS6146748B2 true JPS6146748B2 (en) | 1986-10-15 |
Family
ID=15058911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13147883A Granted JPS6023770A (en) | 1983-07-18 | 1983-07-18 | Method of separating air |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6023770A (en) |
ZA (1) | ZA845542B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5634784A (en) * | 1979-08-30 | 1981-04-07 | Riken Vitamin Co Ltd | Stabilization of fat or oil |
JPS5680681A (en) * | 1979-12-07 | 1981-07-02 | Hitachi Ltd | Air separator |
-
1983
- 1983-07-18 JP JP13147883A patent/JPS6023770A/en active Granted
-
1984
- 1984-07-18 ZA ZA845542A patent/ZA845542B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5634784A (en) * | 1979-08-30 | 1981-04-07 | Riken Vitamin Co Ltd | Stabilization of fat or oil |
JPS5680681A (en) * | 1979-12-07 | 1981-07-02 | Hitachi Ltd | Air separator |
Also Published As
Publication number | Publication date |
---|---|
JPS6023770A (en) | 1985-02-06 |
ZA845542B (en) | 1985-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2865274B2 (en) | Cryogenic distillation of air for the simultaneous production of oxygen and nitrogen as gaseous and / or liquid products | |
CA1174587A (en) | Nitrogen generator cycle | |
US4615716A (en) | Process for producing ultra high purity oxygen | |
US4543115A (en) | Dual feed air pressure nitrogen generator cycle | |
CN111795544A (en) | Cryogenic air separation plant | |
JPH0875349A (en) | Air separation method for obtaining gaseous oxygen product at supply pressure | |
JPH087019B2 (en) | High-pressure low-temperature distillation method for air | |
CA2082674C (en) | Efficient single column air separation cycle and its integration with gas turbines | |
JPH06241649A (en) | Method and device for manufacturing gaseous product under at least one pressure and at least one liquid by air rectification | |
JP3190016B2 (en) | Low-temperature distillation method for feed air producing high-pressure nitrogen | |
EP0807792B1 (en) | Air separation method and apparatus | |
JP7355980B1 (en) | Ultra-high purity oxygen production method and ultra-high purity oxygen production equipment | |
JP3737611B2 (en) | Method and apparatus for producing low purity oxygen | |
JP4520668B2 (en) | Air separation method and apparatus | |
JPS6146748B2 (en) | ||
JP4177507B2 (en) | Method and apparatus for producing low purity oxygen | |
JPH11173753A (en) | Method and device for manufacturing nitrogen and argon from air | |
JPH0323831B2 (en) | ||
JPH1163812A (en) | Manufacture and device for low-purity oxygen | |
JP3703943B2 (en) | Method and apparatus for producing low purity oxygen | |
EP0709632B1 (en) | Air separation method and apparatus for producing nitrogen | |
KR0141428B1 (en) | Method and apparatus of producing brick using natural stone | |
KR880000075B1 (en) | The method for separating air | |
JPS61243273A (en) | Air liquefying separating method | |
JPH0563716B2 (en) |