JPS614620A - Electric discharge machining power supply device - Google Patents

Electric discharge machining power supply device

Info

Publication number
JPS614620A
JPS614620A JP12503784A JP12503784A JPS614620A JP S614620 A JPS614620 A JP S614620A JP 12503784 A JP12503784 A JP 12503784A JP 12503784 A JP12503784 A JP 12503784A JP S614620 A JPS614620 A JP S614620A
Authority
JP
Japan
Prior art keywords
switching element
machining
current
power supply
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12503784A
Other languages
Japanese (ja)
Inventor
Kazuo Tsurumoto
鶴本 和夫
Shoichi Nagasaka
長坂 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12503784A priority Critical patent/JPS614620A/en
Publication of JPS614620A publication Critical patent/JPS614620A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent a decrease of accuracy on a machining surface and eliminate its electrolytic corrosion or the like by an electrolytic current, by applying a voltage pulse of both positive and negative polarities across a machining gap between a electrode and a work to be machine and setting average voltage across the machining gap to zero. CONSTITUTION:Resistance values R11, R12 of current limiting resistors 16, 17 are selected to a sufficiently large level as compared with a resistance value R2 of a resistor 19. A peak current value, fed from the second DC power supply 7 by turning on a semiconductor switching element 18, is in sufficiently high level as compared with a peak current value fed from the first DC power supply 3 through switching elements 12-15, causing the switching element 18 to supply an electric current, contributing to electric discharge machining, across electrodes. An average value in a waveform of voltage between the electrodes is set to zero, but the current flowing between the electrodes never generates an average value of zero, and a device allows the currents to flow from a work 2 to be machined to the electrode 1, accurately machining the work.

Description

【発明の詳細な説明】 〔発明Q5技術分野〕 この発明は放電加工用の電源装置に関するものである。[Detailed description of the invention] [Invention Q5 technical field] The present invention relates to a power supply device for electrical discharge machining.

〔従来技術〕[Prior art]

第7図は従来の放電加工用電源装置の回路構成を示し、
図において(1)は放電加工用の電極、(2)は被加工
物、(6)は雷E ElなるMlの直流電源、(41は
電極(1)と第1の直流電源(3)との間に抵抗値R4
の電流制限用抵抗器(5)ヲ介して接続したパワMO8
、FETなどの第1の半導体スイッチング素子、(61
は第1の半導体スイッチング素子(4)ヲ駆動するため
の第1のドライブ回路である。(7)は第1の直流電源
(3)の電圧El工りも高い電IEE!である第2の直
流電源、(81は電極(1)と第2の直流電源(71間
に抵抗器(9)ヲ介して接続した第2の半導体スイッチ
ング素子である。抵抗器(9)の抵抗値焉は電流制限用
抵抗器(5)の抵抗値R1より・はるかに小さな値であ
る6(10)は第2の半導体スイッチング素子(8)ヲ
駆動するための第2のドライブ回路+  (11X:J
電極(11と被加工物(21間(以下、極間という。)
の状態に応じて上記第1のドライブ回路(6)と第2の
ドライブ回路(1o)に各半導体スイッチング素子+4
1.(81のオン・オフ信号を与、える制御回路である
Figure 7 shows the circuit configuration of a conventional electric discharge machining power supply device.
In the figure, (1) is an electrode for electrical discharge machining, (2) is a workpiece, (6) is a DC power source of lightning E El, and (41 is an electrode (1) and a first DC power source (3). Resistance value R4 between
The power MO8 connected through the current limiting resistor (5)
, a first semiconductor switching element such as an FET, (61
is a first drive circuit for driving the first semiconductor switching element (4). (7) is an electric IEE with a high voltage El of the first DC power supply (3)! (81 is a second semiconductor switching element connected between the electrode (1) and the second DC power source (71) via a resistor (9). The resistance value is much smaller than the resistance value R1 of the current limiting resistor (5). 6 (10) is a second drive circuit for driving the second semiconductor switching element (8) + ( 11X:J
Between the electrode (11) and the workpiece (21 (hereinafter referred to as the gap)
Each semiconductor switching element +4 is connected to the first drive circuit (6) and the second drive circuit (1o) according to the state of
1. (This is a control circuit that provides on/off signals of 81.

上記のL5に構成した従来装置の動作を第8図に示した
フローチャート及び第9図faljblに示した電圧及
び電流波形に基いて説明する、 動作開始(状態800〕により、第1の半導体スイッチ
ング素子(4)がオン、第2の半導体スイッチング素子
(8)がオフし第9図(alに元す工うに極間に第1の
直流電源(3)の富8EE、が印加さオqる(博801
)、。
The operation of the conventional device configured as L5 above will be explained based on the flowchart shown in FIG. 8 and the voltage and current waveforms shown in FIG. (4) is turned on, the second semiconductor switching element (8) is turned off, and the first DC power supply (3) of 8EE is applied between the electrodes (based on the circuit shown in FIG. 9). Hiroshi 801
),.

コツトきには第9図fblに示すように電流ピーク値は
低い状態である。この状態は極間の微小間隙での絶縁状
態が破壊し放電電流が流れるまで継続し、極間に放電が
発生するとただちに第1の半導体スイッチング素子(4
)及び第2の半導体スイッチング素子(8)が共にオン
となり、放電電流Ipが供給される(状態803)。こ
の状態が一定時間Tp継続した後(状態804)、第1
と第2の半導体スイッチング素子+41.+81がオフ
となり、いわゆる休止状態に入る(状態805)、この
休止状態が一定時間TOFF継続後(状態806)、再
び第1の半導体スイッチング素子(4)がオン、第2の
半導体スイッチング素子(8)がオフの状態に戻る。
At the end of the cycle, the current peak value is in a low state as shown in FIG. 9 fbl. This state continues until the insulation state in the minute gap between the electrodes breaks down and a discharge current flows, and as soon as the discharge occurs between the electrodes, the first semiconductor switching element (4
) and the second semiconductor switching element (8) are both turned on, and the discharge current Ip is supplied (state 803). After this state continues for a certain period of time Tp (state 804), the first
and a second semiconductor switching element +41. +81 is turned off and enters a so-called hibernation state (state 805). After this hibernation state continues as TOFF for a certain period of time (state 806), the first semiconductor switching element (4) is turned on again, and the second semiconductor switching element (8 ) returns to the off state.

上記した第1の半導体スイッチング素子(4)及び第2
の半導体スイッチング素子(8)のオン・オフ動作を制
御回路(11)によって繰返し行なわせる。すなわち第
1の直流電源(3)、半導体スイッチング素子(4)、
電流制限用抵抗器【5)、電極(1)及び被加工物(2
)で形成される第1のスイッチング回路は極間に放電を
発生するまでの一種0〕イグニション回路で。
The above-described first semiconductor switching element (4) and the second semiconductor switching element (4)
The semiconductor switching element (8) is repeatedly turned on and off by the control circuit (11). That is, the first DC power supply (3), the semiconductor switching element (4),
Current limiting resistor [5], electrode (1) and workpiece (2)
) The first switching circuit formed by the type 0] ignition circuit until a discharge occurs between the poles.

電流ピーク値は低い。一方、第2の直流電源(7)。Current peak value is low. On the other hand, the second DC power supply (7).

半導体スイッチング素子(81、抵抗器f91.電極(
1)及び被加工物(2)で形成される第2のスイッチン
グ回路は放電発生後の電流を供給するためのもので、電
流ピーク値Ipは第1のスイッチング回路にくらべて%
はるかに高くなるように構成さねでいる。
Semiconductor switching element (81, resistor f91. electrode (
1) and the workpiece (2), the second switching circuit is for supplying current after the discharge occurs, and the current peak value Ip is % compared to the first switching circuit.
It is configured to be much higher.

従来の放電加工用電源装置は上記の工5に構成されてい
るので、極間電圧の平均値が極性ケもつため5例えば極
間に加工液として水を用いることが多いワイヤ放電加工
機において第9図fblに斜°線で示すよ5な電解電流
が一方向に流ねる。この電解作用により金属イオンが被
加工物の表面に付着したり、さらに被加工物または加工
根太体の導電部が次第に表面から電蝕する原因にもつな
がる等の問題点があった。また被加工物の表面積が犬ぎ
い場合や5とぶづけ加工lこおいては電解電流が増加し
、大容量電源が必要となるため加工液の比抵抗?高めな
けわば放電力ロエができないという問題点もあった。
Since the conventional electric discharge machining power supply device is configured as shown in step 5 above, the average value of the voltage between the machining electrodes has a polarity. An electrolytic current of 5 flows in one direction, as shown by the diagonal line in Fig. 9 fbl. This electrolytic action causes problems such as metal ions adhering to the surface of the workpiece and further causing electrolytic corrosion of the conductive parts of the workpiece or the workpiece joist gradually starting from the surface. In addition, when the surface area of the workpiece is large or when the workpiece is subjected to overlapping machining, the electrolytic current increases and a large-capacity power source is required. There was also the problem that the discharge power could not be achieved unless it was increased.

〔発明の概要〕[Summary of the invention]

この発明は、かかる問題点を改善する目的でなされたも
ので、電極と被加工物間の加工間隙に正負両極性の電圧
パルスを印加することにより、加工間隙の平均電圧を零
とし電解作用の影響を受けず、かつ加工電流は一方向に
流すことのできる放電加工用電源装置を提供するもので
ある。
This invention was made with the aim of improving this problem, and by applying voltage pulses of both positive and negative polarities to the machining gap between the electrode and the workpiece, the average voltage in the machining gap is brought to zero and the electrolytic action is suppressed. It is an object of the present invention to provide a power supply device for electric discharge machining that is not affected by the influence and can flow machining current in one direction.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例の回路構成ケ示し図におい
て(12)〜(15)は各々半導体スイッチング素子で
、半導体スイッチング素子(12)は電圧E1なる第1
の直流電源+310)陽極と電極(1)間に抵抗値R1
□1の電流制限用抵抗器(16)を介して接続し、半導
体スイッチング素子(15)は第1の直流電源〔3)の
陰極と被加工物(2)間に接続している。また半導体ス
イッチング素子(13)は第1嗜の直流電源(31の陰
極表電極(1)間に接続し、半導体スイッチング素子(
14)i!第1の直流電源(3)の陽極と被加工物(2
)間に抵抗値R’12の電流制限用抵抗器(i7))k
介して接続していも(18)は電極(11と被加工物(
2)に対し電圧E2なる第2の直流電源(力、抵抗値R
2なる抵抗器(19)、電流逆流防止用ダイオード(2
0)と直列に接続された半導体スイッチング素子である
。ここで従来装置と同様第2の直流電源(7)の電圧E
2は第1の直流電源(3)の電IEE1エリ高く、抵抗
器(19)の抵抗値R2は電流制限用抵抗器(16)、
(17)の抵抗値”’11 * R42よりはるかに小
さな値である。(21)〜(25)は各々の半導体スイ
ッチング素子(12)〜(15) 418)v駆動する
ドライブ回路% (26)は極間の状態に応じてこれら
のドライブ回路(21) 艷1(>25; 9.’=・
に各半導体スイッチ御回路である。
FIG. 1 is a diagram showing a circuit configuration of an embodiment of the present invention, in which numerals (12) to (15) are semiconductor switching elements, and the semiconductor switching element (12) is a first
DC power supply + 310) Resistance value R1 between the anode and electrode (1)
The semiconductor switching element (15) is connected between the cathode of the first DC power supply [3] and the workpiece (2). Further, the semiconductor switching element (13) is connected between the cathode surface electrode (1) of the first DC power supply (31), and the semiconductor switching element (
14)i! The anode of the first DC power supply (3) and the workpiece (2)
) between the current limiting resistor (i7) with a resistance value of R'12)
Even if the electrode (18) is connected through the electrode (11) and the workpiece (
2), a second DC power supply with a voltage E2 (power, resistance value R
2 resistor (19), current backflow prevention diode (2)
0) is a semiconductor switching element connected in series with 0). Here, as in the conventional device, the voltage E of the second DC power supply (7)
2 is the voltage IEE1 of the first DC power supply (3), and the resistance value R2 of the resistor (19) is the current limiting resistor (16).
This is a much smaller value than the resistance value of (17) "'11 * R42. (21) to (25) are the drive circuits that drive each semiconductor switching element (12) to (15) 418)v% (26) are these drive circuits (21) depending on the state between the poles.
This is each semiconductor switch control circuit.

上記のX)に構成した実施例の動作?第2図tこ示した
フローチャート及び第3図に示した電圧。
What is the operation of the embodiment configured in X) above? The flowchart shown in FIG. 2 and the voltages shown in FIG.

電流波形に基いて説明する。The explanation will be based on the current waveform.

まず動作開始lこLす(状態201) )、電極11)
及び被加工物乞挾んでブリッジに接続された半導体スイ
ッチング素子(12)〜(15)の5ち対角線にある半
導体スイッチング素子(12)、(15) ’&共にオ
ン、他の対角線にある半導体スイッチング素子(13)
、(14)及び第2の直流電源(7)に接続した半導体
スイッチング素子(18)をオフとする(状態201)
にのとぎ極間には第6図(alに示すように(1の電圧
が印加される。この状態が極間の放電発生の有無tこ拘
らず時間T1だげ経過した後(状態202)、全ての半
導体スイッチング素子(12)〜(15)、(18)’
&オフとし、休止状態とする(状態203)にの休止状
態が時間T2だげ経過後(状態204)、半導体スイッ
チング素子(12)、(75) ’&オフ、半導体スイ
ッチング素上13λ(14珍オンとする。なおこのとぎ
半導体スイッチング素子(18)もオフの状態でおる(
状態205 )、、このとき極間には十E1の電圧が印
加されている。この電圧により極間に放電が開始すると
(状態2061半導体スイッチング素子(18)がオン
となり極間にR2の直流電源(71から放電時の電流I
pが供給される(状態207)、そして状態(205)
になってから時間Tl経過後(状態208)、放電の有
無したがって半導体スイッチング素子(18)のオン・
オフにカカわらず、再び会での半導体スイッチング素子
(1・2)〜(15)、(18)をオフとし休止状態と
する(状態2’091゜この休止状態で時間T、経過後
(状態210 )、再び状態(201’)に戻り、以後
上記したサイクルを繰返を上記したこの実施例において
、電流制限用抵抗器(16)、(17)の抵抗値R4s
 r R42は抵抗器(19)0)抵抗値鳥に比べて十
分大きく選ばれているため、第3図(blの電流波形に
示すように半導体スイッチング素子(18)のオンによ
り第2の直流電源(7)から供給するピーク電流値は半
導体スイッチング素子(12)〜(15)な介して第1
の直流電源(3)がら供給するピーク電流値に比べて十
分高く、実際の放電加工に一寄与する電流はほとんど半
導体スイッチング素子(18)により極間に供給される
。したがって第6図1al貝b1に示すLつlこ、極間
電圧の電圧波形は平均値が零となるが、極間を流れる電
流の電流波形の平均値は零とならず、被加工物(2)か
ら電極(11に電流が流れる。
First, start operation (state 201), electrode 11)
And the semiconductor switching elements (12) to (15) connected to the bridge to be processed, the semiconductor switching elements (12), (15) ' on the diagonal line, and the semiconductor switching elements on the other diagonal line Motoko (13)
, (14) and the semiconductor switching element (18) connected to the second DC power supply (7) are turned off (state 201).
As shown in FIG. 6 (al), a voltage of 1 is applied between the two electrodes. After a period of time T1 has elapsed in this state (state 202), regardless of whether or not a discharge occurs between the electrodes. , all semiconductor switching elements (12) to (15), (18)'
& off, and the hibernation state (state 203) has elapsed for a period of time T2 (state 204), the semiconductor switching elements (12), (75) '&off, and the semiconductor switching elements 13λ (14 The semiconductor switching element (18) is also turned off (
State 205), at this time a voltage of 10E1 is applied between the electrodes. When discharge starts between the electrodes due to this voltage (state 2061, the semiconductor switching element (18) is turned on, and the current I during discharge from the DC power supply R2 (71) is applied between the electrodes.
p is supplied (state 207), and state (205)
After time Tl has elapsed (state 208), whether or not there is a discharge, it is determined whether the semiconductor switching element (18) is turned on or off (state 208).
Regardless of whether they are turned off or not, the semiconductor switching elements (1, 2) to (15), and (18) are turned off again to enter a dormant state (state 2'091°) After a period of time T has elapsed in this resting state (state 210), returns to state (201'), and repeats the above-described cycle.
r Since R42 is selected to be sufficiently large compared to the resistance value of the resistor (19), the second DC power supply is turned on by turning on the semiconductor switching element (18) as shown in the current waveform in Figure 3 (bl). (7) The peak current value supplied from the first
The current, which is sufficiently high compared to the peak current value supplied from the DC power source (3) of the present invention, and which contributes to actual electrical discharge machining, is mostly supplied between the electrodes by the semiconductor switching element (18). Therefore, the average value of the voltage waveform of the inter-electrode voltage shown in FIG. A current flows from the electrode (2) to the electrode (11).

なお、上記実施例て゛は正負両極性の電圧パルスを発生
させる第1のスイッチング回路と、放電が発生した後、
極間に一方向に電流パルスを供給する第2のスイッチン
グ回路を別に設けたが、電流制限用抵抗器(17)の抵
抗値R112k電流制限用抵抗(16)の抵抗値R11
1より十分小さくすれば、第2のスイッチング回路を省
ぎ、第1のスイッチング回路のみでも同様の作用を行な
わせることができる。
In addition, in the above embodiment, the first switching circuit generates voltage pulses of both positive and negative polarities, and after the discharge occurs,
A second switching circuit that supplies a current pulse in one direction between the electrodes was separately provided, but the resistance value of the current limiting resistor (17) was R112k, and the resistance value of the current limiting resistor (16) was R11.
If it is made sufficiently smaller than 1, the second switching circuit can be omitted and the same effect can be achieved using only the first switching circuit.

また第4図に示すように第1の半導体スイッチング素子
(12)’&電極11 、 M加工物(21、!圧E1
なる第1の直流電源(ろ)及び抵抗値’B、lc+)電
流制限用抵抗器(16)と直列に接続し、第2の半導体
スイッチング素子(18)を電極(1)、被加工物(2
)、電圧Elなる第2の直流電源(7)及び抵抗値&の
抵抗器(19)と直列に接続し、抵抗値Rq’l抵抗値
抵抗値的4工小さくすることζこより、簡単な回路増白
こ11)R5図、のフローチャート及び第6図1al貝
b1の電圧・電流波形に示す如く、上記実施例と同様の
動作を行なわせることができる。
In addition, as shown in FIG.
The second semiconductor switching element (18) is connected to the electrode (1), the workpiece ( 2
), the voltage El is connected in series with the second DC power source (7) and the resistor (19) with the resistance value &, and the resistance value Rq'l is reduced by 4 mm.This makes the circuit simple. As shown in the flowchart in Figure 11) R5 and the voltage and current waveforms in Figure 6, the same operation as in the above embodiment can be performed.

さらに上記実施ψ11においては、正負両極性の電圧パ
ルスのパルス中、休止時間を固定としたが、極間電圧の
平均値が零となる範囲で、これらを極間状態及び外部信
号に工っで変化させてもよい。
Furthermore, in the above implementation ψ11, the rest time was fixed during the voltage pulse of both positive and negative polarities, but these were modified to the inter-electrode state and external signal within the range where the average value of the inter-electrode voltage was zero. It may be changed.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したよ5に、正負両極性で同じピー
ク値をもった電圧パルスン電極と敲加工物間に印加し、
極間の平均型lEを零としながら電流パルスは正又は負
の一方向のピーク値が他方より十分に太きくなるように
したので、電解電流lこよる加工面の精度低下5電蝕等
ケ排除することができ、特に加工液として水を使用する
ことの多いワイヤ放電加工機において高精度で高速な加
工ができる効果ケ有する。
As explained above, the present invention is based on the following points: applying a voltage pulse having the same peak value in both positive and negative polarities between the electrode and the workpiece;
While the average type lE between the electrodes was set to zero, the current pulse was made so that the peak value in one direction (positive or negative) was sufficiently thicker than the other, so that the accuracy of the machined surface decreased due to the electrolytic current l.5 Electrolytic corrosion etc. This has the effect of enabling highly accurate and high-speed machining, especially in wire electric discharge machines that often use water as a machining fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例ケ示した回路構成図、第2図
は第1図に示した実施例のフローチャート−第3図(a
l、(blは第1図に示した実施例の市IE−甫流波形
ン示し、(alは電圧波形図、fblは電流波形図、第
4図はこQ]発明の他の実施例ケ示した回路構成図、第
5図は第4図に示した実施例のフローチャート、第6図
[aljblは第4図に示した実施例の定圧・電流波形
ケ示し、(alは電圧波形図、(blは電流波形図、第
7図は従来の放電加工用電源装置?示した回路構成図、
第8図は第7図に示した従来装置のフローチャート、第
9図(al、(blは第7図に示した従来装置の定圧・
電、泥波形を示し、(alは′F!t、Ff、波形図。 fblは電流波形図である。 (1)・・・電極、(2)・・・被加工物、(3)・・
・第1の直流電源。 +41.(81,(12)〜(15)、(18)・・・
半導体スイッチング素子、+51.(16)、(17)
・・・電流制限用抵抗器、(61,(10)、(21)
(25)・・・ドライブ回路、(ア)・・・第2の直流
電源、+91.(19)、・・抵抗器、(11)、(2
6)・・・制御回路。 なお、各図中同一符号は同−又は相当部分な示す。 代理人 弁理士 木 村 三 朗 第 1 図 第2図 第3図 第6図 第7f!f 第81!r
FIG. 1 is a circuit configuration diagram showing an embodiment of the present invention, and FIG. 2 is a flowchart of the embodiment shown in FIG.
l, (bl is the current waveform of the embodiment shown in FIG. 1, (al is the voltage waveform diagram, fbl is the current waveform diagram, and FIG. 4 is the current waveform diagram) 5 is a flowchart of the embodiment shown in FIG. 4, FIG. 6 is a diagram showing the constant pressure/current waveform of the embodiment shown in FIG. (bl is a current waveform diagram, Figure 7 is a circuit configuration diagram of a conventional electric discharge machining power supply device,
Fig. 8 is a flowchart of the conventional device shown in Fig. 7, and Fig. 9 (al, (bl) is a flowchart of the conventional device shown in Fig. 7.
(al is 'F!t, Ff, waveform diagram. fbl is current waveform diagram. (1)...electrode, (2)...workpiece, (3)...・
・First DC power supply. +41. (81, (12) ~ (15), (18)...
semiconductor switching element, +51. (16), (17)
... Current limiting resistor, (61, (10), (21)
(25)...Drive circuit, (A)...Second DC power supply, +91. (19),...Resistor, (11), (2
6)...control circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Sanro Kimura No. 1 Figure 2 Figure 3 Figure 6 Figure 7f! f 81st! r

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物との間に加工液を介して形成される加工
間隙に周期的なオン・オフ動作を繰返すスイッチング素
子によつてパルス電流を供給しながら放電加工を行なう
放電加工機において、上記加工間隙及び第1の直流電源
に接続され上記加工間隙の電圧・時間積の平均値が常に
零になるように正極性パルス電圧と負極性パルス電圧を
交互に発生させる1個あるいは複数個の第1のスイッチ
ング素子と、上記加工間隙に正極性パルス電圧または負
極性パルス電圧のいずれか一方の極性で放電が発生した
ときに上記第1のスイッチング素子による電流と同一極
性の電流パルスを上記加工間隙に供給する第2の直流電
源及び第2のスイッチング素子と、上記第1のスイッチ
ング素子及び第2のスイッチング素子の動作を制御する
制御回路とを備えたことを特徴とする放電加工用電源装
置。
In an electric discharge machine that performs electric discharge machining while supplying a pulse current to a machining gap formed between an electrode and a workpiece through a machining fluid by a switching element that repeatedly turns on and off periodically, the above-mentioned method is used. One or more first DC power supplies connected to the machining gap and the first DC power source and alternately generating a positive pulse voltage and a negative pulse voltage so that the average value of the voltage/time product in the machining gap is always zero. When a discharge occurs in the machining gap with either a positive pulse voltage or a negative pulse voltage, a current pulse of the same polarity as the current generated by the first switching element is applied to the machining gap. A power supply device for electrical discharge machining, comprising: a second DC power supply and a second switching element that supply the power to the electrical discharge machining device; and a control circuit that controls operations of the first switching element and the second switching element.
JP12503784A 1984-06-20 1984-06-20 Electric discharge machining power supply device Pending JPS614620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12503784A JPS614620A (en) 1984-06-20 1984-06-20 Electric discharge machining power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12503784A JPS614620A (en) 1984-06-20 1984-06-20 Electric discharge machining power supply device

Publications (1)

Publication Number Publication Date
JPS614620A true JPS614620A (en) 1986-01-10

Family

ID=14900278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12503784A Pending JPS614620A (en) 1984-06-20 1984-06-20 Electric discharge machining power supply device

Country Status (1)

Country Link
JP (1) JPS614620A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368316A (en) * 1986-09-08 1988-03-28 Brother Ind Ltd Electric discharge machining device
JPS6368317A (en) * 1986-09-09 1988-03-28 Brother Ind Ltd Electric discharge machining device
JPH01295716A (en) * 1988-05-19 1989-11-29 Hoden Seimitsu Kako Kenkyusho Ltd Power supply device for electric discharge machining
JPH0271920A (en) * 1988-09-06 1990-03-12 Seibu Electric & Mach Co Ltd Power device for electric discharge machining
EP0545156A2 (en) * 1991-12-02 1993-06-09 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine
DE4302406A1 (en) * 1992-01-28 1993-07-29 Mitsubishi Electric Corp
US5416290A (en) * 1992-10-08 1995-05-16 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine power supply circuit
WO1997024202A1 (en) * 1995-12-28 1997-07-10 Sodick Co., Ltd. Device and method for electric discharge machining
US6140600A (en) * 1998-02-10 2000-10-31 Sodick Co., Ltd. Electric discharge machining apparatus
US6211481B1 (en) 1998-06-10 2001-04-03 Sodick Co., Ltd. Power supply device for electric discharge machining apparatus
US6222149B1 (en) 1998-06-10 2001-04-24 Sodick Co., Ltd. Power supply device for electric discharge machining apparatus
US6727455B1 (en) * 2000-06-06 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Power supply system for applying a voltage of both positive and negative polarities in electric discharge machining
US7645958B2 (en) * 2004-10-27 2010-01-12 Mitsubishi Electric Corporation Electric-discharge-machining power supply apparatus and small-hole electric-discharge machining apparatus
JP2010005705A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Power supply unit for wire electric discharge machine
CN102554374A (en) * 2010-12-17 2012-07-11 财团法人工业技术研究院 Self-adjusting discharge machining energy-saving power supply device and method thereof
JP5220036B2 (en) * 2008-01-31 2013-06-26 三菱電機株式会社 EDM machine
CN103240470A (en) * 2012-02-01 2013-08-14 发那科株式会社 Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368316A (en) * 1986-09-08 1988-03-28 Brother Ind Ltd Electric discharge machining device
JPS6368317A (en) * 1986-09-09 1988-03-28 Brother Ind Ltd Electric discharge machining device
JPH01295716A (en) * 1988-05-19 1989-11-29 Hoden Seimitsu Kako Kenkyusho Ltd Power supply device for electric discharge machining
JPH0271920A (en) * 1988-09-06 1990-03-12 Seibu Electric & Mach Co Ltd Power device for electric discharge machining
EP0545156A2 (en) * 1991-12-02 1993-06-09 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine
JPH05208317A (en) * 1991-12-02 1993-08-20 Mitsubishi Electric Corp Electric discharge machining device
DE4302406A1 (en) * 1992-01-28 1993-07-29 Mitsubishi Electric Corp
DE4302406C2 (en) * 1992-01-28 2003-11-27 Mitsubishi Electric Corp Power supply unit for electrical discharge machining
US5416290A (en) * 1992-10-08 1995-05-16 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine power supply circuit
WO1997024202A1 (en) * 1995-12-28 1997-07-10 Sodick Co., Ltd. Device and method for electric discharge machining
US5986232A (en) * 1995-12-28 1999-11-16 Sodick Co., Ltd. Electrical discharge machining apparatus and electrical discharge machining method
US6140600A (en) * 1998-02-10 2000-10-31 Sodick Co., Ltd. Electric discharge machining apparatus
US6222149B1 (en) 1998-06-10 2001-04-24 Sodick Co., Ltd. Power supply device for electric discharge machining apparatus
US6211481B1 (en) 1998-06-10 2001-04-03 Sodick Co., Ltd. Power supply device for electric discharge machining apparatus
US6727455B1 (en) * 2000-06-06 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Power supply system for applying a voltage of both positive and negative polarities in electric discharge machining
US7645958B2 (en) * 2004-10-27 2010-01-12 Mitsubishi Electric Corporation Electric-discharge-machining power supply apparatus and small-hole electric-discharge machining apparatus
JP5220036B2 (en) * 2008-01-31 2013-06-26 三菱電機株式会社 EDM machine
JP2010005705A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Power supply unit for wire electric discharge machine
CN102554374A (en) * 2010-12-17 2012-07-11 财团法人工业技术研究院 Self-adjusting discharge machining energy-saving power supply device and method thereof
TWI413559B (en) * 2010-12-17 2013-11-01 Ind Tech Res Inst Self-adjusting power device for high efficiency electrical discharge machining and method thereof
US9205504B2 (en) 2010-12-17 2015-12-08 Industrial Technology Research Institute Self-adjusting power device for high efficiency electrical discharge machining and method thereof
CN103240470A (en) * 2012-02-01 2013-08-14 发那科株式会社 Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap
JP2013154461A (en) * 2012-02-01 2013-08-15 Fanuc Ltd Wire electric discharge machine for detecting machining state and determining average voltage between poles
US8735762B2 (en) 2012-02-01 2014-05-27 Fanuc Corporation Wire electric discharge machine capable of detecting machining state and determining average voltage in machining gap

Similar Documents

Publication Publication Date Title
JPS614620A (en) Electric discharge machining power supply device
JPH0244648B2 (en)
EP0812643A1 (en) Device and method for electric discharge machining
KR20040028673A (en) Electric power unit for machining of wire electric discharge machine
US20150217391A1 (en) Electric discharge machining apparatus
JP3773696B2 (en) Electric discharge machine power supply device
JPH0818184B2 (en) Electric discharge machine
JPH03294116A (en) Method and device for supplying pulse for electric discharge machining
JP2677375B2 (en) Power supply unit for electric discharge machining
KR860000619B1 (en) Wire-cut electric discharge machining device
JP3938044B2 (en) Power supply for electric discharge machining
JP3252622B2 (en) Machining power supply controller for wire electric discharge machine
JPH0120013B2 (en)
EP0185101B1 (en) Power source for discharge machining
JP2547365B2 (en) EDM power supply
JPH03208520A (en) Method for controlling machining pulse for electric discharge machine and device thereof
JPH08281516A (en) Electric discharge machining device
JPH027770B2 (en)
JPH058121A (en) Electric discharge macining apparatus
JPS60146624A (en) Method of electric discharge machining and device therefor
JP4224556B2 (en) Electric discharge machining method and electric discharge machining apparatus
JPH0392220A (en) Electric source for wire cut electric discharging machining
JPH07290317A (en) Electric discharge machining method and device therefor
JPH11333632A (en) Electrical discharging device
JPS61249213A (en) Electric power source apparatus for wire electric discharge machine