JPS6145922Y2 - - Google Patents

Info

Publication number
JPS6145922Y2
JPS6145922Y2 JP15457982U JP15457982U JPS6145922Y2 JP S6145922 Y2 JPS6145922 Y2 JP S6145922Y2 JP 15457982 U JP15457982 U JP 15457982U JP 15457982 U JP15457982 U JP 15457982U JP S6145922 Y2 JPS6145922 Y2 JP S6145922Y2
Authority
JP
Japan
Prior art keywords
billet
core material
composite
outer covering
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15457982U
Other languages
Japanese (ja)
Other versions
JPS5958513U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15457982U priority Critical patent/JPS5958513U/en
Publication of JPS5958513U publication Critical patent/JPS5958513U/en
Application granted granted Critical
Publication of JPS6145922Y2 publication Critical patent/JPS6145922Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、高温静水圧押出し用複合ビレツトに
関するものである。 従来、異種材料を組合せた複合材を、高温静水
圧で押出し成形するのに供されるビレツトとして
は、第1図に示すように、芯材1の外側を外被材
2で被覆した複合ビレツト3が用いられている。
この複合ビレツト3は、押出時の圧力媒体が、芯
材1と外被材2との境界面に浸入しないよう、外
部に対し完全密閉されていた。 しかし、芯材1と外被材2は、それぞれ機械加
工後嵌合されるため、両者1,2間には必ず間隙
4が存在する。この間隙4は、通常、0.1mm〜1.0
mm程度が一般的であるが、この間隙4に密封され
た空気は、押出し成形時においても外部に排出さ
れることなく、製品に種々の欠陥を発生させてい
た。 即ち、両境界面に空気が介在した場合、押出
時、芯材1と外被材2間にすべりが生じて、健全
な複合材が得られなかつたり、たとえ押出しがで
きたとしても、押出製品にプリスター等の欠陥が
生じ、品質低下を招いていた。 そこで、上記欠点を解決するものとして、特公
昭51−21948号公報に記載のものがすでに提案さ
れている。この従来技術によれば押出成形時にビ
レツト外被材と芯材の隙間に存在する空気を排出
するようにしたものである。 しかし、この従来のものは、冷間静水圧押出し
には適用できても、高温静水圧押出しには適用し
難いものであつた。 即ち、高温押出しでは、押出成形前に複合ビレ
ツトを所定の高温に加熱しなければならない。し
かし、この高温加熱の時、外被材と芯材との界面
に空気が存在すると酸化が生じ、界面接合の良好
なものが得られないと云う問題があつた。 そこで本考案は、加熱中に空気を排出し、界面
接合の良好なものが得られる高温静水圧押出し用
複合ビレツトを提供することを目的とする。 従つて、その特徴とする処は、外被材と芯材と
をその界面に圧力媒体が侵入しないように複合一
体化した高温静水圧押出し用複合ビレツトであつ
て、前記外被材と芯材との界面に連通しかつ複合
ビレツトの前端面において大気に開放される通路
をビレツトの内部に有すると共に、前記外被材の
熱膨張係数は芯材の熱膨張係数より小さく、か
つ、押出成形前の加熱終了時点での外被材と芯材
との隙間が実質上零となるような条件で、外被材
と芯材が成形されている点にある。 以下、本考案の実施例を図面に基き詳述する。 第2図に示すものは、本考案に係る複合ビレツ
ト5の一例であり、第2図aは、芯材6が外被材
7により完全に被覆されたものであり、第2図b
は、芯材6の外周一部が外被材7で被覆されたも
のである。これら複合ビレツト5の前端部は、テ
ーパ状に形成されている。そして、複合ビレツト
5の芯材6と外被材7との界面には、製作誤差等
により若干の間隙8が介在する。この間隙8は、
次に説明する圧力媒体が押出成形時に浸入しない
よう、圧力媒体に対しては完全に密閉されてい
る。しかし、上記間隙8は、複合ビレツト5の前
端面ほぼ中央部に設けられた開口部9に、通気孔
10又は通気溝11を介して連通している。この
通気孔10は芯材6の内部を通つて開口部9に連
通し、通気溝11は芯材6の外周部に凹設されて
開口部9に連通している。この通気孔10又は通
気溝11は、いずれも間隙8の前部において間隙
8に連通している。しかして、間隙8内の空気
は、大気に連通している。 上記複合ビレツト5を用いて、複合材を押出成
形するのに、第3図に示す高温静水圧押出用プレ
ス12が用いられる。13はダイス、14はコン
テナ、15は静水圧ピストン、16は圧力媒体で
ある。 複合ビレツト5は、その前端面の開口部9側が
ダイス13に対面するようコンテナ14に収納さ
れ、複合ビレツト5の後面側から圧力媒体16を
介して静水圧ピストン15で押圧され、ダイス孔
17から押出されて、複合材18が押出成形され
るのである。 このコンテナ14に収納される前、複合ビレツ
ト5は所定温度に加熱昇温される。このとき、芯
材6の外径d1、熱膨張率a1、外被材7の内径d2
熱膨張率a2とし、温度がT0からT℃に昇温され
た場合、外被材7と芯材6の間隙8をΔhとすれ
ば、 Δh=d2a2(T−T0)−d1a1(T−T0) =(d2a2−d1a1)(T−T0) になる。従つて、芯材6の熱膨張率a1が外被材7
のa2より大きい場合には、加熱温度によつてΔh
が負になる場合が生じる。 例えば、耐食性のある電極棒として用いられる
チタンクラツド銅棒や、Niクラツド銅棒などの
複合材では、第1表に示すように、芯材6である
銅の熱膨張率a1に比べ、外被材7の熱膨張率a2
方が小さいので、Δh≦0の状態が容易に得られ
る。
The present invention relates to a composite billet for high temperature isostatic extrusion. Conventionally, as a billet used to extrude a composite material made by combining different materials under high temperature isostatic pressure, a composite billet in which the outside of a core material 1 is covered with an outer covering material 2 is used, as shown in Fig. 1. 3 is used.
This composite billet 3 was completely sealed from the outside so that the pressure medium during extrusion would not enter the interface between the core material 1 and the outer covering material 2. However, since the core material 1 and the outer sheath material 2 are fitted together after being machined, a gap 4 always exists between them. This gap 4 is usually 0.1mm to 1.0mm.
The air sealed in this gap 4, which is generally on the order of mm, is not discharged to the outside even during extrusion molding, causing various defects in the product. In other words, if air is present between both interfaces, slippage will occur between the core material 1 and the outer sheath material 2 during extrusion, resulting in a failure to obtain a sound composite material, or even if extrusion is possible, the extruded product Defects such as pristars occurred in the process, leading to a decline in quality. Therefore, as a solution to the above-mentioned drawbacks, a method described in Japanese Patent Publication No. 51-21948 has already been proposed. According to this prior art, air present in the gap between the billet jacket material and the core material is discharged during extrusion molding. However, although this conventional method can be applied to cold isostatic extrusion, it is difficult to apply it to high temperature isostatic extrusion. That is, in high temperature extrusion, the composite billet must be heated to a predetermined high temperature before extrusion. However, when heating at this high temperature, if air is present at the interface between the jacket material and the core material, oxidation occurs and there is a problem in that good interfacial bonding cannot be obtained. Therefore, an object of the present invention is to provide a composite billet for high-temperature isostatic extrusion that allows air to be expelled during heating and provides good interfacial bonding. Therefore, its feature is that it is a composite billet for high-temperature isostatic extrusion, in which the outer covering material and the core material are integrated in a composite manner so that the pressure medium does not penetrate into the interface between the outer covering material and the core material. The billet has a passage inside the billet that communicates with the interface with the composite billet and is open to the atmosphere at the front end surface of the composite billet, and the thermal expansion coefficient of the outer jacket material is smaller than that of the core material, and The outer covering material and the core material are molded under conditions such that the gap between the outer covering material and the core material becomes substantially zero at the end of heating. Hereinafter, embodiments of the present invention will be described in detail based on the drawings. What is shown in FIG. 2 is an example of the composite billet 5 according to the present invention, in which the core material 6 is completely covered with the outer cover material 7 in FIG.
In this example, a part of the outer periphery of a core material 6 is covered with an outer covering material 7. The front end portions of these composite billets 5 are formed into a tapered shape. A slight gap 8 exists at the interface between the core material 6 and the outer covering material 7 of the composite billet 5 due to manufacturing errors and the like. This gap 8 is
It is completely sealed against the pressure medium so that the pressure medium, which will be explained next, does not enter during extrusion molding. However, the gap 8 communicates with an opening 9 provided approximately at the center of the front end surface of the composite billet 5 via a ventilation hole 10 or a ventilation groove 11. The ventilation hole 10 passes through the interior of the core material 6 and communicates with the opening 9, and the ventilation groove 11 is recessed in the outer circumference of the core material 6 and communicates with the opening 9. Both the ventilation hole 10 and the ventilation groove 11 communicate with the gap 8 at the front of the gap 8. Thus, the air within the gap 8 is in communication with the atmosphere. To extrude a composite material using the composite billet 5, a high temperature isostatic extrusion press 12 shown in FIG. 3 is used. 13 is a die, 14 is a container, 15 is a hydrostatic piston, and 16 is a pressure medium. The composite billet 5 is housed in a container 14 so that the opening 9 side of its front end face faces the die 13, and is pressed by a hydrostatic piston 15 from the rear side of the composite billet 5 via a pressure medium 16, and is released from the die hole 17. The composite material 18 is extruded. Before being stored in the container 14, the composite billet 5 is heated to a predetermined temperature. At this time, the outer diameter d 1 of the core material 6, the coefficient of thermal expansion a 1 , the inner diameter d 2 of the outer covering material 7,
If the coefficient of thermal expansion is a 2 , and the temperature is raised from T 0 to T°C, and the gap 8 between the outer cover material 7 and the core material 6 is Δh, then Δh=d 2 a 2 (T-T 0 ) −d 1 a 1 (T−T 0 )=(d 2 a 2 −d 1 a 1 )(T−T 0 ). Therefore, the coefficient of thermal expansion a 1 of the core material 6 is the same as that of the outer covering material 7.
If a is larger than 2 , Δh depends on the heating temperature.
may become negative. For example, in composite materials such as titanium-clad copper rods and Ni-clad copper rods that are used as corrosion-resistant electrode rods, as shown in Table 1 , the thermal expansion coefficient of copper, which is the core material 6, is Since the coefficient of thermal expansion a 2 of the material 7 is smaller, the state of Δh≦0 can be easily obtained.

【表】 従つて、押出時の加熱温度が予め設定できる場
合には、熱膨張率を考慮して、Δhが零もしくは
負になるように、嵌合時の間隙8を設定すればよ
く、加熱中に、間隙8内の空気は、通気溝11又
は通気孔10を通り、開口部9から排出され、押
出しが健全に行なえる。 開口部9及び通気孔10等が複合ビレツト5の
前端部に設けられているので、ビレツト5後端側
が若干高目になるようテーパ加熱すれば、よりス
ムースに排気が行なわれ、押出時の温度低下によ
る圧力上昇をも少なくすることができる。 上述の如く、間隙8内の空気は加熱中にほぼ排
気されてしまうのであるが、上記加熱においても
Δhが負にならず、依然間隙が生じている場合、
または、押出時の温度低下により間隔が生じた場
合、間隙8内の空気は、押出し時の昇圧による外
被材7変形により、外部に排出される。 即ち、昇圧時の圧力勾配は、複合ビレツト5の
後部に行くに従い高くなつているので、圧力によ
る外被材7の変形は、後部から前方に向つて進行
する。従つて間隙8は後部側から圧壊され、外被
材7と芯材6の界面は前部に向つて順次密着接当
する。そして、通気孔10や通気溝11は、間隙
8の前部に設けられているので、界面の密着によ
り、間隙8内の空気は完全に排出されることにな
る。 そして、完全排気された後、更に圧力が上昇す
ることにより、ついに、複合ビレツト5はダイス
孔17より押出されることになる。 次に、実際にチタンクラツド銅棒の熱間静水圧
押出しを、本考案に係る複合ビレツトと、従来の
複合ビレツトとを用いて行ない、その結果を比較
した結果を表2に示す。 (1) 純銅芯材の直径62.0±0.03mm、長さ200mm 外被材の外径68.0±0.05mm、内径62.0〓〓mm として第1図に示す従来ビレツトと、第2図a
に示す本考案に係るビレツトを作成した。 (2) ビレツト加熱温度600℃,700℃,800℃と
し、ダイス角度2a=60゜、押出比14とした。
[Table] Therefore, if the heating temperature during extrusion can be set in advance, the gap 8 at the time of fitting can be set so that Δh is zero or negative, taking into consideration the coefficient of thermal expansion, and the heating temperature can be set in advance. Meanwhile, the air in the gap 8 passes through the ventilation groove 11 or the ventilation hole 10 and is discharged from the opening 9, so that extrusion can be carried out soundly. Since the opening 9 and the ventilation hole 10 are provided at the front end of the composite billet 5, if the billet 5 is heated with a taper so that the rear end side is slightly higher, exhaust will be carried out more smoothly, and the temperature at the time of extrusion will be lowered. It is also possible to reduce the pressure increase due to the drop. As mentioned above, most of the air in the gap 8 is exhausted during heating, but if Δh does not become negative even during the heating and a gap still exists,
Alternatively, if a gap occurs due to a temperature drop during extrusion, the air in the gap 8 is discharged to the outside due to the deformation of the jacket material 7 due to the pressure increase during extrusion. That is, since the pressure gradient at the time of pressure increase increases toward the rear of the composite billet 5, the deformation of the jacket material 7 due to pressure progresses from the rear toward the front. Therefore, the gap 8 is crushed from the rear side, and the interface between the outer covering material 7 and the core material 6 is brought into close contact with each other toward the front. Since the ventilation hole 10 and the ventilation groove 11 are provided in the front part of the gap 8, the air in the gap 8 is completely exhausted due to the close contact of the interface. After being completely evacuated, the pressure increases further and the composite billet 5 is finally extruded from the die hole 17. Next, hot isostatic extrusion of a titanium clad copper rod was actually carried out using the composite billet according to the present invention and a conventional composite billet, and the results are shown in Table 2 for comparison. (1) The conventional billet shown in Figure 1 and Figure 2 a, with a pure copper core diameter of 62.0 ±0.03 mm and a length of 200 mm, and an outer sheath material of 68.0 ± 0.05 mm and an inner diameter of 62.0〓〓mm.
The billet according to the present invention shown in Fig. 1 was created. (2) The billet heating temperature was 600°C, 700°C, and 800°C, the die angle 2a = 60°, and the extrusion ratio was 14.

【表】 以上のように、本考案によれば、界面間の空気
が加熱中に排出される為、酸化が生ぜず、広い温
度域で健全な製品が押出され、また接着強度の変
動が少なく、強度そのものが大きくなつて高品質
の複合材を得ることができるものである。
[Table] As described above, according to the present invention, since the air between the interfaces is exhausted during heating, oxidation does not occur, a healthy product can be extruded over a wide temperature range, and there is little variation in adhesive strength. , it is possible to obtain a high-quality composite material with increased strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合ビレツトを示す断面図、第
2図は本考案の実施例を示す断面図、第3図は熱
間水圧押出プレスの断面図である。 5……複合ビレツト、6……芯材、7……外被
材、8……間隙、9……開口部、10……通気
孔、11……通気溝。
FIG. 1 is a sectional view showing a conventional composite billet, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 3 is a sectional view of a hot hydraulic extrusion press. 5... Composite billet, 6... Core material, 7... Outer covering material, 8... Gap, 9... Opening, 10... Ventilation hole, 11... Ventilation groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外被材と芯材とをその界面に圧力媒体が侵入し
ないように複合一体化した高温静水圧押出し用複
合ビレツトであつて、前記外被材と芯材との界面
に連通しかつ複合ビレツトの前端面において大気
に開放される通路をビレツトの内部に有すると共
に、前記外被材の熱膨脹係数は芯材の熱膨張係数
より小さく、かつ、押出成形前の加熱終了時点で
の外被材と芯材との隙間が実質上零となるような
条件で、外被材と芯材が成形されていることを特
徴とする高温静水圧押出し用複合ビレツト。
A composite billet for high-temperature isostatic extrusion, in which an outer covering material and a core material are integrated into a composite body so that pressure medium does not enter the interface thereof, the billet is connected to the interface between the outer covering material and the core material, and the composite billet is connected to the interface between the outer covering material and the core material. The billet has a passage inside the billet that is open to the atmosphere at the front end surface, and the coefficient of thermal expansion of the outer covering material is smaller than that of the core material, and the outer covering material and the core are bonded together at the end of heating before extrusion molding. A composite billet for high-temperature isostatic extrusion, characterized in that an outer cover material and a core material are formed under conditions such that the gap between the material and the material is substantially zero.
JP15457982U 1982-10-13 1982-10-13 Composite billet for high temperature isostatic extrusion Granted JPS5958513U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15457982U JPS5958513U (en) 1982-10-13 1982-10-13 Composite billet for high temperature isostatic extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15457982U JPS5958513U (en) 1982-10-13 1982-10-13 Composite billet for high temperature isostatic extrusion

Publications (2)

Publication Number Publication Date
JPS5958513U JPS5958513U (en) 1984-04-17
JPS6145922Y2 true JPS6145922Y2 (en) 1986-12-24

Family

ID=30341654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15457982U Granted JPS5958513U (en) 1982-10-13 1982-10-13 Composite billet for high temperature isostatic extrusion

Country Status (1)

Country Link
JP (1) JPS5958513U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
JP2012007872A (en) * 2010-05-24 2012-01-12 Kobe Steel Ltd Multi-layered heat transfer tube, method for producing the multi-layered heat transfer tube, and molding tool used for the method

Also Published As

Publication number Publication date
JPS5958513U (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US4040162A (en) Method of producing composite extruded aluminum products from aluminum swarf
JPS6145922Y2 (en)
US3631586A (en) Manufacture of copper-clad aluminum rod
US4967583A (en) Method of manufacturing extruded seamless hollow materials
JPS6349356B2 (en)
JPS61190007A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JP2535223B2 (en) Molding method for parts having deformed flanges
EP0789936B1 (en) Method of extruding a superconducting rod
SU1109293A1 (en) Process for manufacturing multilayer panels by diffusion welding
JPH02165811A (en) Method for extrusive forming duplex tube
JPH08243634A (en) Aluminum sheath press
JPS61143112A (en) Method for solid phase extrusion of synthetic resin
JPS61190008A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPS5937300Y2 (en) Rotating wheel continuous extruder
JP3126823B2 (en) Semi-molten metal forming equipment
JPH067835A (en) Method for forming hollow extruded shape
JPH0578360U (en) Mold for semi-molten billet molding
JPH02179802A (en) Metal powder clad tube extruded billet and heat insulating steel tube
JPH0541116A (en) Manufacture of aluminum composite superconducting wire
JPH0647129B2 (en) Clad material manufacturing method
JPS61190006A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPH067968A (en) Joining method for billets
JPS6255925B2 (en)
JPH0354036B2 (en)
JPH0143002B2 (en)