JPS6145850B2 - - Google Patents

Info

Publication number
JPS6145850B2
JPS6145850B2 JP54003575A JP357579A JPS6145850B2 JP S6145850 B2 JPS6145850 B2 JP S6145850B2 JP 54003575 A JP54003575 A JP 54003575A JP 357579 A JP357579 A JP 357579A JP S6145850 B2 JPS6145850 B2 JP S6145850B2
Authority
JP
Japan
Prior art keywords
added
semiconductor
titanium
tio
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54003575A
Other languages
Japanese (ja)
Other versions
JPS5595204A (en
Inventor
Juzo Sakakyama
Hiroaki Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU CERAMIC MATERIALS
Original Assignee
KYORITSU CERAMIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU CERAMIC MATERIALS filed Critical KYORITSU CERAMIC MATERIALS
Priority to JP357579A priority Critical patent/JPS5595204A/en
Publication of JPS5595204A publication Critical patent/JPS5595204A/en
Publication of JPS6145850B2 publication Critical patent/JPS6145850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はチタン系堰層形半導体磁器コンデンサ
用磁器組成物に係り、特に還元雰囲気焼成、中性
雰囲気焼成物は勿論、空気雰囲気を含む酸化雰囲
気焼成の如何なる雰囲気焼成手法によつても、半
導体磁器を焼成、製造することが出来るチタン系
堰層形半導体磁器コンデンサ用磁器組成物を提供
するものである。 一般に知られている半導体磁器としてのチタン
酸バリウム系半導体、チタン酸ストロンチウム系
半導体等を製造するに際しては、特殊な例を除
き、希土類元素若しくは5価置換用化学物質を上
記の主成分に添加せしめ、還元雰囲気若しくは中
性雰囲気中にて焼成、製造する方法を採用するの
が普通であり、なかには半導体セラミツクを得た
後、これを基材としてさらに不純物を熱拡散させ
る後処理を施して半導体コンデンサに使用する例
もある。 また、チタン(酸化チタン)系半導体磁器に関
しても、上記と同じように酸化チタン(TiO2)を
還元雰囲気にて焼成することにより、その還元作
用の結果、TiO2より酸素の一部が離脱して、
TioO2o-1で表わされる低級酸化チタンが生じるこ
とによつて半導体が形成されるようになること
は、一般によく知られている。 しかしながら、従来のTiO2を基材とする半導
体磁器は半導体としての性能において充分でな
く、またその製造にあつても焼成に際して用いら
れるべき雰囲気は還元乃至は中性雰囲気に限定さ
れ、しかもこれらの雰囲気を採用するに際しては
特別の装置を必要とし、また作業に手間がかかつ
て面到である等の問題を内在しているのである。
更に、この半導体磁器をコンデンサに用いるため
に先述の如き不純物を熱拡散させるなどの後処理
を施す場合には、それだけ工程数が増える問題も
生じる。このため、焼成雰囲気の制限を受けるこ
となく、且つ後処理などの工程を必要としない、
良好な特性の半導体磁器を与えることの出来る酸
化チタン組成物の開発が望まれていたのである。 ここにおいて、本発明は、かかる事情を背景と
して為されたものであつて、その要旨とするとこ
ろは、TiO2を主成分とし、これに酸化ニオブ
(Nb2O5)塩を添加、配合せしめてなる組成物を用
いて、半導体磁器を製造するようにしたことにあ
り、これによつて如何なる雰囲気中でも半導体磁
器が焼成物製造することが出来るようになり、し
かも誘電率、誘電体損失角(tanδ)などの諸特
性のより優れた半導体磁器が得られることになつ
たのである。 このように、本発明に係る組成物を用いれば、
それらのチタン系半導体磁器の製造に際して、前
記従来の一般的な製造法とは異なり、添加される
Nb2O5がTiO2の還元に効果的に作用し得て、
TiO2からの酸素の解離(離脱)を有効に進行せ
しめ、以て空気雰囲気中でも性能の優れた半導体
磁器を有利に焼成製造することが出来ることとな
つたのであり、それ故各種の雰囲気炉や炉内の雰
囲気管理も必要がなくなつたのである。 なお、かかる本発明において、TiO2に添加、
配合せしめられるNb2O5の量は、採用される焼成
条件、ひいては目的とする半導体性能などに応じ
て適宜決定されることとなるが、一般的には組成
物中に少なくとも0.01モル%以上含有せしめられ
る割合にて用いられることとなる。また、その添
加量の上限として23モル%程度である。なかで
も、約1〜5モル%程度のNb2O5の配合割合にお
いて、特に優れた半導体性能を示すことは特筆す
べきことである。 また、かくの如きTiO2を主成分とし、これに
Nb2O5を添加、配合せしめてなる組成物に、第三
成分として更に(1)チタン酸ランタン
(La2Ti2O7)を5重量%より少ない割合で添加せ
しめるか、(2)二酸化セリウム(CeO2)を2重量%
より少ない割合で添加せしめるか、または(3)酸化
ビスマス(Bi2O3)を5重量%より少ない割合で添
加せしめるか、或はこれら(1),(2),(3)の方法を組
合せて二種以上の第三成分を添加せしめるように
することにより、焼成して得られる半導体磁器に
更に望ましい電気特性を付与せしめ得るのであ
る。即ち、これらLa2Ti2O7,CeO2,Bi2O3などの
第三成分の単独または二種以上を、前記TiO2
Nb2O5組成物に添加することにより、従来のチタ
ン系半導体磁器に比べて一段と高い誘電率を示
し、また面積容量が高く、更には容量温度変化も
少さく、且つ損失角も良好な半導体磁器が得られ
るのであり、以て半導体コンデンサとしての用途
にも好適に用いられ得ることになつたのである。 以下に実施例を挙げて、本発明を更に具体的に
明らかにするが、本発明が、かかる実施例の記載
並びに上記の具体的な説明のもののみに限定して
解釈されるものでは決してなく、本発明の趣旨を
逸脱しない限りおいて、当業者の知識に基づい
て、本発明には種々なる変更、証正、改良が加え
られるものであり、例えば、本発明に使用される
原料としては、それぞれの成分の酸化物が用いら
れる他、焼成することによつて容易に酸化物とな
る、それぞれの成分の塩の如き原料を用いること
も出来、それによつて同等の効果が得られること
は、言うまでもないところである。 第1表に示す如き配合割合の異なる各種TiO2
―Nb2O5組成物並びに第2〜5表に示す如き各種
第三成分(La2Ti2O7,CeO2,BiO3)添加TiO2
Nb2O5組成物を調製し、これらをそれぞれ仮焼し
た後若しくは仮焼せずに、一般的なセラミツク製
造法に従つて、直径:16mm、厚み:約0.5mmの円
板状に成形し、そしてそれを炭化珪素質発熱体を
使用した空気炉にて1350℃〜1400℃の温度で焼結
することにより、各種チタン系半導体磁器(素
子)を製造した。ついで、こうして得られた磁器
素子の両面にそれぞれ非オーミツク接触性の銀電
極を800℃の温度にて焼き付けて、堰層形半導体
磁器測定試料を形成せしめ、そしてそれらの試料
について、LCRメータ(1KHz)により面積容
量、tanδ,−30℃及び+85℃における温度容量変
化率(25℃基準)を測定した。得られた結果を、
第1〜5表にそれぞれ示した。 なお、各表における見掛けの誘電率に関して
は、次の通りである。すなち、非半導体セラミツ
クの誘電特性評価の一つに誘電率があるが、この
誘電率とは、コンデンサ、即ちセラミツクに相対
する電極面積に比例し、電極間距離(即ちセラミ
ツクの厚み)に反比例する性質の実測静電容量か
らセラミツク固有の静電分極能を誘電率として算
出される。しかし、半導体セラミツクを使用した
場合、電極と半導体の接触面に整流作用、即ち堰
層を示す電極を使用し、その堰層により現われる
静電容量は電極面積に比例するが、電極間距離、
即ち半導体セラミツクの厚みには無関係な値であ
る為に、その半導体セラミツクは非半導体セラミ
ツクの静電的分極能評価に見られる誘電率として
表せず、面積容量として表すのが正しいが、ここ
では、非半導体酸化チタンセラミツクとの比較
上、これと同面積および同電極間距離、即ち半導
体セラミツクの厚みを条件に、見掛上の誘電率を
算出し、半導体セラミツクの評価とした。
The present invention relates to a ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor, and in particular, it can be used in any atmosphere firing method such as reducing atmosphere firing, neutral atmosphere firing, as well as oxidizing atmosphere firing including air atmosphere. The present invention provides a ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor that can be fired and manufactured. When manufacturing barium titanate-based semiconductors, strontium titanate-based semiconductors, etc., which are commonly known semiconductor ceramics, rare earth elements or pentavalent substitution chemicals are added to the above-mentioned main components, except in special cases. In some cases, a semiconductor capacitor is manufactured by firing and manufacturing in a reducing atmosphere or a neutral atmosphere, and in some cases, after obtaining a semiconductor ceramic, it is used as a base material and subjected to a post-treatment to thermally diffuse impurities. There are also examples where it is used. Also, regarding titanium (titanium oxide) based semiconductor porcelain, when titanium oxide (TiO 2 ) is fired in a reducing atmosphere in the same way as above, as a result of the reducing action, some of the oxygen is released from the TiO 2 . hand,
It is generally well known that semiconductors are formed by the formation of lower titanium oxide represented by Ti o O 2o-1 . However, conventional semiconductor porcelain based on TiO 2 does not have sufficient performance as a semiconductor, and even when manufacturing it, the atmosphere used for firing is limited to a reducing or neutral atmosphere, and these When using an atmosphere, special equipment is required, and there are inherent problems such as the work is time-consuming and difficult to complete.
Furthermore, in order to use this semiconductor porcelain for a capacitor, there arises the problem that the number of steps increases accordingly when performing post-treatments such as thermally diffusing impurities as described above. Therefore, there are no restrictions on the firing atmosphere, and there is no need for processes such as post-processing.
There has been a desire to develop a titanium oxide composition that can provide semiconductor porcelain with good characteristics. The present invention has been made against this background, and its gist is that TiO 2 is the main component, to which niobium oxide (Nb 2 O 5 ) salt is added and blended. The purpose is to manufacture semiconductor porcelain using a composition consisting of This made it possible to obtain semiconductor porcelain with better properties such as tan δ). In this way, if the composition according to the present invention is used,
When manufacturing these titanium-based semiconductor porcelains, unlike the conventional general manufacturing method described above, additives are added.
Nb 2 O 5 can effectively act on the reduction of TiO 2 ,
By effectively promoting the dissociation (elimination) of oxygen from TiO 2 , it became possible to advantageously produce semiconductor porcelain with excellent performance even in an air atmosphere. There is no longer any need to control the atmosphere inside the furnace. In addition, in the present invention, addition to TiO 2 ,
The amount of Nb 2 O 5 to be blended will be determined appropriately depending on the firing conditions employed and the desired semiconductor performance, but generally it is contained at least 0.01 mol% in the composition. It will be used at the required rate. Further, the upper limit of the amount added is about 23 mol%. Among these, it is noteworthy that particularly excellent semiconductor performance is exhibited at a blending ratio of about 1 to 5 mol % of Nb 2 O 5 . In addition, the main component is TiO 2 as shown above, and this
To the composition in which Nb 2 O 5 is added and blended, (1) lanthanum titanate (La 2 Ti 2 O 7 ) is further added as a third component in a proportion less than 5% by weight, or (2) lanthanum dioxide is added. 2% by weight of cerium (CeO 2 )
(3) Add bismuth oxide (Bi 2 O 3 ) in a proportion less than 5% by weight, or combine these methods (1), (2), and (3). By adding two or more kinds of third components, more desirable electrical properties can be imparted to the semiconductor porcelain obtained by firing. That is, one or more of these third components such as La 2 Ti 2 O 7 , CeO 2 , Bi 2 O 3 are added to the TiO 2
By adding Nb 2 O 5 to the composition, it is possible to create a semiconductor that exhibits a much higher dielectric constant than conventional titanium-based semiconductor ceramics, has a high areal capacitance, has little change in capacitance with temperature, and has a good loss angle. As a result, porcelain can be obtained, which can be suitably used as a semiconductor capacitor. Examples will be given below to clarify the present invention in more detail; however, the present invention should not be construed as being limited to the description of such examples or the specific explanation above. Without departing from the spirit of the present invention, various changes, modifications, and improvements may be made to the present invention based on the knowledge of those skilled in the art.For example, the raw materials used in the present invention include: In addition to using oxides of each component, it is also possible to use raw materials such as salts of each component that easily become oxides by firing, and it is possible to obtain the same effect by doing so. , it goes without saying. Various TiO 2 with different blending ratios as shown in Table 1
- Nb 2 O 5 composition and various third components (La 2 Ti 2 O 7 , CeO 2 , BiO 3 ) added TiO 2 as shown in Tables 2 to 5 -
A Nb 2 O 5 composition was prepared, and after calcination or without calcination, it was formed into a disk shape with a diameter of 16 mm and a thickness of about 0.5 mm according to a general ceramic manufacturing method. , and sintered it at a temperature of 1350°C to 1400°C in an air furnace using a silicon carbide heating element to produce various titanium-based semiconductor ceramics (elements). Next, non-ohmic contact silver electrodes were baked on both sides of the ceramic element thus obtained at a temperature of 800°C to form weir layer type semiconductor porcelain measurement samples. ), the areal capacitance, tan δ, and temperature capacity change rate at -30°C and +85°C (25°C standard) were measured. The obtained results,
They are shown in Tables 1 to 5, respectively. Note that the apparent permittivity in each table is as follows. In other words, one of the dielectric property evaluations of non-semiconductor ceramics is the dielectric constant, and this dielectric constant is proportional to the area of the electrode facing the capacitor, that is, the ceramic, and is dependent on the distance between the electrodes (that is, the thickness of the ceramic). The electrostatic polarization ability unique to ceramics is calculated as the dielectric constant from the actually measured capacitance, which is inversely proportional. However, when semiconductor ceramic is used, an electrode that exhibits a rectifying effect, that is, a weir layer, is used at the contact surface between the electrode and the semiconductor, and the capacitance that appears due to the weir layer is proportional to the electrode area, but the distance between the electrodes,
In other words, since the value is unrelated to the thickness of the semiconductor ceramic, the semiconductor ceramic cannot be expressed as a dielectric constant as seen in the electrostatic polarizability evaluation of non-semiconductor ceramics, but it is correct to express it as an area capacitance, but here, For comparison with non-semiconducting titanium oxide ceramic, the apparent dielectric constant was calculated under the conditions of the same area and the same distance between electrodes, that is, the thickness of the semiconductor ceramic, and the semiconductor ceramic was evaluated.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1表の結果より明らかなように、Nb2O5の添
加によりTiO2を基材とする良好な半導体磁器が
得られているが、特に試料No.1(TiO2;99.99モ
ル%、Nb2O5;0.01モル%)から試料No.10
(TiO2;76.91モル%,Nb2O5;2309モル%)まで
のものから優れた半導体磁器が得られ、更にその
中でもNb2O5の配合量が約1〜5モル%程度の試
料No.3〜6のものが最も望ましい結果を与えてい
るのである。なお、Nb2O5の添加量が多くなる
と、試料No.11に示される如く再びTiO2単体磁器
の特性を示し始めるようである。 また第2〜5表の結果より明らかなように、
TiO2―Nb2O5組成物に対し、これに更に
LaTi2O7,CeO2,Bi2O3を第三成分としてそれら
を各種添加割合(重量%)にて配合せしめると、
TiO2―Nb2O5組成物で達成される特性の一部若し
くは全体が更に効果的に改善され得るのであり、
特に試料No.3〜6からのものについては特性の改
善が著しく良好である。第2表〜第5表結果を要
約すると、TiO2とNb2O5との組成物からなる試料
に比べ、第三成分としてBi2O3を0重量%より多
く2重量%より少なく添加した試料の結果によれ
ば、誘電率が極めて高く(40000〜190000)、温度
容量変化が小さく(−30℃〜+85℃の範囲におい
て±10%±20%程度)、またtanδが良好なもの
(3.4%)が得られ、その範囲が広く安定してい
る。但し、TiO2とNb2O5との混合モル比によつて
一定でないが、Bi2O3の添加量が5重量%に近づ
くに従い半導体化しにくくなるのである。また、
他方において、CeO2の効果を見ると、その添加
量が0重量%より多く0.5重量%より少ない範囲
であれば、Nb2O5のみを添加しただけの組成物に
比べてtanδ、温度容量変化がやや悪くなるが、
高範囲にわたるTiO2/Nb2O5のモル比の変動に対
しさほど左右されず誘電率を高める効果がある。
但し、CeO2の添加量が2重量%近づくに従つて
半導体化し難くなるのである。更に、La2Ti2O7
を第三成分とする場合の特徴は、その添加量が0
重量%より多く2重量%より少ない範囲において
は、誘電率はNb2O5だけのものに比べ低くなる
が、温度容量変化率、tanδはBi2O3を添加した場
合と同じく非常に良好である。なお、La2Ti2O7
が5重量%に近づくと半導体化し難くなるのであ
る。
[Table] As is clear from the results in Table 1, good semiconductor ceramics based on TiO 2 were obtained by adding Nb 2 O 5 , but especially sample No. 1 (TiO 2 ; 99.99 mol) %, Nb 2 O 5 ; 0.01 mol%) from sample No. 10
(TiO 2 ; 76.91 mol %, Nb 2 O 5 ; 2309 mol%). .3 to 6 give the most desirable results. It should be noted that when the amount of Nb 2 O 5 added increases, as shown in sample No. 11, it seems that the characteristics of TiO 2 single porcelain begin to be exhibited again. Also, as is clear from the results in Tables 2 to 5,
For the TiO 2 -Nb 2 O 5 composition, in addition to this
When LaTi 2 O 7 , CeO 2 , Bi 2 O 3 are added as third components at various addition ratios (wt%),
Some or all of the properties achieved with the TiO 2 -Nb 2 O 5 composition can be further effectively improved,
In particular, the properties of samples Nos. 3 to 6 were significantly improved. To summarize the results in Tables 2 to 5, compared to the sample consisting of a composition of TiO 2 and Nb 2 O 5 , Bi 2 O 3 was added as a third component in an amount greater than 0% by weight and less than 2% by weight. According to the sample results, the dielectric constant is extremely high (40,000 to 190,000), the temperature capacitance change is small (approximately ±10% ±20% in the range of -30℃ to +85℃), and the tanδ is good (3.4 %) and is stable over a wide range. However, although it is not constant depending on the mixing molar ratio of TiO 2 and Nb 2 O 5 , it becomes difficult to convert into a semiconductor as the amount of Bi 2 O 3 added approaches 5% by weight. Also,
On the other hand, looking at the effects of CeO 2 , if the amount added is greater than 0% by weight and less than 0.5% by weight, the change in tan δ and temperature capacity is lower than that of a composition with only Nb 2 O 5 added. becomes slightly worse, but
It has the effect of increasing the dielectric constant without being affected much by variations in the TiO 2 /Nb 2 O 5 molar ratio over a wide range.
However, as the amount of CeO 2 added approaches 2% by weight, it becomes difficult to convert the material into a semiconductor. Furthermore, La 2 Ti 2 O 7
The characteristic of using as the third component is that the amount added is 0.
In the range of more than 2% by weight but less than 2% by weight, the dielectric constant is lower than that of Nb 2 O 5 alone, but the temperature capacity change rate, tan δ, is very good as in the case of adding Bi 2 O 3 . be. In addition, La 2 Ti 2 O 7
When it approaches 5% by weight, it becomes difficult to make it into a semiconductor.

Claims (1)

【特許請求の範囲】 1 酸化チタンを主成分とし、これに酸化ニオブ
を添加、配合せしめてなるチタン系堰層形半導体
磁器コンデンサ用磁器組成物。 2 前記酸化ニオブを、少なくとも0.01モル%以
上含有する特許請求の範囲第1項記載の磁器組成
物。 3 酸化チタンを主成分とし、これに酸化ニオブ
を添加、配合せしめたものに、更に5重量%より
少ない量のチタン酸ランタンを添加せしめてなる
チタン系堰層形半導体磁器コンデンサ用磁器組成
物。 4 酸化チタンを主成分とし、これに酸化ニオブ
を添加、配合せしめたものに、更に2重量%より
少ない量の二酸化セリウムを添加せしめてなるチ
タン系堰層形半導体磁器コンデンサ用磁器組成
物。 5 酸化チタンを主成分とし、これに酸化ニオブ
を添加、配合せしめたものに、更に5重量%より
少ない量の酸化ビスマスを添加せしめてなるチタ
ン系堰層形半導体磁器コンデンサ用磁器組成物。
[Scope of Claims] 1. A ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor, which contains titanium oxide as a main component and contains niobium oxide added thereto. 2. The ceramic composition according to claim 1, which contains at least 0.01 mol% of the niobium oxide. 3. A ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor, which is made of titanium oxide as a main component, to which niobium oxide is added and blended, and further lanthanum titanate is added in an amount of less than 5% by weight. 4. A ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor, which is made of titanium oxide as a main component, to which niobium oxide is added and blended, and further cerium dioxide is added in an amount of less than 2% by weight. 5. A ceramic composition for a titanium-based weir layer type semiconductor ceramic capacitor, which is made of titanium oxide as a main component, to which niobium oxide is added and blended, and to which bismuth oxide is further added in an amount of less than 5% by weight.
JP357579A 1979-01-16 1979-01-16 Titanium semiconductor porcelain composition Granted JPS5595204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP357579A JPS5595204A (en) 1979-01-16 1979-01-16 Titanium semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP357579A JPS5595204A (en) 1979-01-16 1979-01-16 Titanium semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS5595204A JPS5595204A (en) 1980-07-19
JPS6145850B2 true JPS6145850B2 (en) 1986-10-09

Family

ID=11561242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP357579A Granted JPS5595204A (en) 1979-01-16 1979-01-16 Titanium semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS5595204A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641719A (en) * 1995-05-09 1997-06-24 Flex Products, Inc. Mixed oxide high index optical coating material and method
AU2012308108B2 (en) * 2011-09-16 2015-11-19 The Australian National University Giant dielectric constant material

Also Published As

Publication number Publication date
JPS5595204A (en) 1980-07-19

Similar Documents

Publication Publication Date Title
KR20000011958A (en) Composite material for positive temperature coefficient thermistor, ceramic for positive temperature coefficient thermistor and method for manufacturing ceramics for positive temperature coefficient thermistor
JPS6145850B2 (en)
JP3087644B2 (en) Dielectric porcelain composition
JPH058524B2 (en)
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH0361287B2 (en)
JPH0551254A (en) Barium titanate-containing semiconductor porcelain composition
JPH04264307A (en) Dielectric ceramic composition
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH04170361A (en) Barium titanate-based semiconductor porcelain composition
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JPS6217368B2 (en)
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JP2521862B2 (en) Dielectric porcelain composition
JPH0522667B2 (en)
JPH03274606A (en) Dielectric cramic composite
JPH04104948A (en) Positive characteristic thermister material
JPS6258128B2 (en)
JPH04170362A (en) Barium titanate-based semiconductor porcelain composition
JPS6223405B2 (en)
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPS6256102B2 (en)
JPS5820134B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof