JPS6145513B2 - - Google Patents
Info
- Publication number
- JPS6145513B2 JPS6145513B2 JP16929179A JP16929179A JPS6145513B2 JP S6145513 B2 JPS6145513 B2 JP S6145513B2 JP 16929179 A JP16929179 A JP 16929179A JP 16929179 A JP16929179 A JP 16929179A JP S6145513 B2 JPS6145513 B2 JP S6145513B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- cement
- coating
- metallic copper
- polymer cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011248 coating agent Substances 0.000 claims description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 33
- 239000011414 polymer cement Substances 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 19
- 239000010959 steel Substances 0.000 claims description 19
- 239000000839 emulsion Substances 0.000 claims description 17
- 239000013535 sea water Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000004568 cement Substances 0.000 claims description 6
- 239000011398 Portland cement Substances 0.000 claims description 5
- 239000011400 blast furnace cement Substances 0.000 claims description 3
- 230000003373 anti-fouling effect Effects 0.000 description 13
- 239000000843 powder Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 239000003973 paint Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 239000002987 primer (paints) Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229910001431 copper ion Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000011083 cement mortar Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- -1 etc. Polymers 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 229920006173 natural rubber latex Polymers 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920006174 synthetic rubber latex Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Paints Or Removers (AREA)
Description
本発明は海水と接触する鉄鋼またはコンクリー
ト製物体表面の防汚方法、特に工作船、パルプ
船、洋上石油蓄船等の各種船舶、岸壁、洋上空
港、海岸石油掘削ヤグラ等の海洋構造物および海
中パイプ、海水排水管等海水と接触して使用され
る種々の鉄鋼またはコンクリート製物体表面の腐
蝕および海棲生物の付着の防止を主目的とする表
面防汚方法に関するものである。
かかる目的に対しては従来種々の船底塗料が使
用されているが、いずれも一年以上の長期にわた
り防汚効果を持続し得るものはなく、少なくとも
一年に一度は塗膜上に付着生育するフジツボ、カ
キ、カイガラ虫、海草等の種々の海棲生物類(以
下水中付着生物類という)を除去して表面を清浄
化した後再び船底塗料を塗布して新しい防汚膜面
を形成しなければならない。
従来水中付着生物類の付着を防止する毒物とし
て、亜酸化銅や、亜酸化銅に少量の水銀酸化物を
配合したものが船底塗料の防汚有効成分として使
用されているのに対し、本発明者らはさきに、硫
化第二銅を有効毒性成分としながら、それが水中
酸素により酸化されて生成する硫酸銅が鉄鋼表面
に接触し、金属銅を析出して鉄鋼をはげしく腐蝕
するという実用上の致命的欠陥を安全かつ長期的
に排除し得る“ポリマーセメントの併用による海
水と接触する鉄鋼またはコンクリート製物体表面
の防汚方法“を提案した(特願昭54―29369号明
細書)が、今般金属銅粉末を有効毒性成分として
使用する、より有効な防汚方法を開発した。
本造の船底など海中に付設される構造体の表面
を銅板で被覆すると、この部分には水中付着生物
類が付着棲息できず、長期間にわたつてその状態
を維持し得ることは古くから知られている。とこ
ろが鉄鋼表面に対しては、銅板は勿論、銅粉や微
粒子の金属銅が接触しても局部電池を形成し、金
属銅の接触する部分の鉄鋼がはげしく腐食してし
まう。したがつて従来型の船底塗料用の防汚剤と
して金属銅を使用することは全く不可能とされて
いた。本発明は以下に詳述するポリマーセメント
塗覆剤を鉄鋼表面に対しいわば接着性コンクリー
ト被覆体として用いることにより金属銅による鉄
鋼の腐食を有効に阻止し、しかも金属銅粉末自体
をも別途ポリマーセメント塗覆剤中に配合してポ
リマーセメント保護被覆体表面に施すことによ
り、長期持続型防汚効果を達成し得るものであ
る。
したがつて本発明は、鉄鋼またはコンクリート
製物体の海水と接触する面に、ポルトランドセメ
ントまたは高炉セメント単独あるいは該セメント
細骨材との混合物に水性ポリマーエマルジヨンを
配合してなるポリマーセメント塗覆剤を塗布、硬
化させた後、その塗布面に金属銅粉末と前記ポリ
マーセメント塗覆剤との混合物を塗布することを
特徴とする海水と接触する鉄鋼またはコンクリー
ト製物体表面の防汚方法を提供するものである。
本発明の本質的特徴は水中付着生物類の付着防
止用毒性成分として金属銅粉末を使用しかつその
激しい鉄鋼腐蝕性をポリマーセメント塗覆剤との
組合せによつて有効に阻止する点にある。すなわ
ち、本発明に従えば、まず鉄鋼表面にプライマー
としてポリマーセメント塗覆剤を適当な厚み、た
とえば3〜10mm厚に施すことにより、セメントの
もつPH11以上の強アルカリ性を保持し、鉄鋼の防
蝕にきわめて有効な強靭膜を形成せ、ついで金属
銅粉末とポリマーセメント塗覆剤との混合物をさ
らに塗布する。本発明におけるかかるプライマー
の使用は単に金属銅粉末含有膜が鉄鋼表面に直接
接触するのを遮断するという物理的作用を果すの
みならず、該金属銅が水中酸素によつて酸化され
かつ海水中の塩分の作用によつて生成される銅イ
オンをアルカリ性カルシウムによつて捕獲して複
塩を形成せしめ、これによつて鉄鋼表面の電蝕を
防衛するという化学的作用を果すものである。
本発明において使用するポリマーセメント塗覆
剤の粉末部分(以下ポリマーセメントパウダー部
という)はポルトランドセメントまたは高炉セメ
ント単独で構成してもよいが、より一般的にはセ
メントモルタル基剤、すなわちセメントに珪砂、
川砂等の細骨材を配合した混合した混合物が用い
られる。骨材の粒度は1mm程度以下の微細なもの
が好ましい。骨材の配合割合はセメントモルタル
基剤に慣用のものでよく特に限定されない。通常
セメント20〜50重量部、細骨材80〜50重量部の混
合比率が用いられる。
ポリマーセメント塗覆剤用の水性ポリマーエマ
ルジヨンはアクリル系、酢酸ビニル系、エポキシ
系等を包含する種々の合成樹脂系水性エマルジヨ
ン、天然ゴムもしくは合成ゴムラテツクスまたは
これらの混合物等であり得る。特に本発明の目的
に対しては耐衝撃性、曲げ加工性、耐摩耗性、耐
侯性、耐水性、耐海水性、耐熱性等が重要で、し
かもこれらについて長期的耐久性を要求されるの
で、個々の場合に応じ適宜の添加剤を配合し得る
ことは勿論である。かかる添加剤として、ポリビ
ニルアルコール水溶液、ナフサ分解時の副生物か
ら誘導される石油樹脂、ポリイソブチレンエマル
ジヨン等が特に有効であることが認められた。
したがつて本発明における使用に特に適するポ
リマーセメント塗覆剤の配合例は、ポルトランド
セメント20〜50重量部と、珪砂80〜50重量部から
なるポリマーセメントパウダー部70〜95部に水性
ポリマーエマルジヨン30〜5重量部と清水0〜15
重量部とを混合してなるものであり、水性ポリマ
ーエマルジヨンの特に好ましい一例としてポリビ
ニルアルコール水溶液(濃度10%またはそれ以
下)、石油樹脂又はその稀釈物をノニオン系また
はカチオン系界面活性剤の存在下で混合し、これ
にSBRラテツクスを添加、撹拌して得られる水性
エマルジヨンをあげることができる。
金属銅粉末含有塗覆剤の塗覆基剤としては前述
のごとくポリマーセメント塗覆剤を用いることが
重要であり、これによプライマーとして鉄鋼表面
に施したポリマーセメント被覆体と強固に密着、
付着され、脱落のおそれのない、水中付着生物類
の付着に対し長期にわたり所望の防汚効果を発揮
し得る防汚塗膜を得ることができる。さらに前述
のごとく、複塩の形成による銅イオン捕獲効果も
特筆される。この目的に従来塗料型のベヒクルを
用いてもかかる効果は期待できず、プライマーと
して施したポリマーセメント被覆体の強アルカリ
性によつて長期間海水中に浸漬されている間に膨
潤し、剥離、脱落して所望の効果は達成されな
い。
金属銅粉末としては鱗状、樹枝状、破砕状等の
形態を包含する任意の粉末銅を使用することがで
き、形態、粒度等特に制限されず市販のものを使
用できる。たとえば通常市販されている100メツ
シユ以下の粒度のもの、たとえば粒度分布として
325メツシユ以下20〜90%、200〜325メツシユ40
〜20%、100〜200メツシユ50〜1%の範囲のもの
をあげることができる。
本発明の一特徴は多量の金属銅粉末をポリマー
セメント塗覆剤に配合し得ることであり、一般に
金属銅粉末対ポリマーセメントパウダー部の比率
として70:30ないし20:80の範囲を用い得る。こ
の比率を適宜選定することにより塗膜中の銅イオ
ン濃度、すなわち毒性の程度を調節することがで
き、勿論金属銅粉末の割合が多いほど毒性は大で
ある。
金属銅粉末含有塗覆剤中の金属銅粉末とポリマ
ーセメント塗覆剤との割合は格別臨界的ではない
が、通常金属銅粉末100重量部当り塗覆基剤20〜
100重量部程度の比率で使用される。塗覆基剤の
割合が過少の場合には塗膜形成が不安定で海水中
で剥離現象を生じ、一方過大の場合には銅イオン
の流出が過少となるので十分な防汚効果が得られ
ない。
また最初のポリマーセメント塗覆剤、すなわち
プライマー塗膜を形成した後、金属銅粉末含有塗
膜の形成前に中間膜としてエポキシ系、アクリル
系等の合成樹脂塗膜剤の薄膜を形成させることに
より、セメント中のカルシウム系強アルカリ成分
の水中への減耗、ピンホールの生成等を防止する
ことができる。
さらに本発明の好ましい一実施態様において
は、金属銅粉末をポリマーセメント塗覆剤と混合
する際に少量の塩化カルシウムまたは塩化マグネ
シウムを水溶液の形で同時に配合することにより
金属銅の毒性を増強することができる。かかるア
ルカリ土金属塩化物の添加量は金属銅粉末含有ポ
リマーセメントパウダー部全量に対し0.1〜1%
程度である。
つぎに本発明を実施例によつて説明するが、勿
論本発明はこれらの実施例によつて限定されるも
のではない。実施例中、部は特に示さない限り重
量部である。
実施例 1
長さ60cm、幅20cm、厚み3.2mmの鉄板に下記の
ごとく調製したポリマーセメント塗覆剤を塗膜厚
4mmに塗布し、養生時間1週間後、アクリル樹脂
系エマルジヨン(商品名サンコートCN―78)を
100μ厚で塗布し乾燥硬化させたものをプライマ
ー塗布試験体(以下試験体という)とした。
ポリマーセメント塗覆剤はつぎのごとく調製し
た。
ポルトランドセメント30重量部と珪砂70重量部
との混合物をポリマーセメントのパウダー部とし
て用い、一方ポリマーセメント用水性ポリマーエ
マルジヨンとしては、石油樹脂300重量部に稀釈
剤としてエチレン熱分解副生油90重量部を添加、
加熱撹拌し、これにポリビニルアルコール10%水
溶液700容量部に非イオン界面活性剤12重量部を
添加撹拌した溶液を添加、撹拌した後、さらに
SBRラテツクス500容量部及びポリイソプチレン
エマルジヨン200重量部を添加撹拌することによ
つて得られるエマルジヨンを用いた。このパウダ
ー部85重量部とエマルジヨン12重量部にさらに水
5重量部を混合撹拌して前記ポリマーセメント塗
覆剤として使用した。
試験体Iのポリマーセメント塗覆剤の塗布面に
下記(a)〜(c)に示す種々の金属銅粉末含有塗覆剤を
塗布し、これらについて海水浸漬試験してその防
汚効果を観察した。試験結果は総括して後記第1
表に示す。
(a) 試験体Iに、金属銅粉末150部に対し前記プ
ライマー中に用いたと同じポリマーセメントの
パウダー部150部を混合した上で、同じ水性ポ
リマーエマルジヨン水(有効成分50%)90部及
び水50部を混合して得た塗覆剤を1〜1.2mm厚
に塗布し、乾燥硬化して被覆を形成させた。
(b) 金属銅粉末60部に対し、前記ポリマーセメン
トのパウダー部150部を混合した上に、前記水
性ポリマーエマルジヨン(有効成分50%)27部
及び水15部を混合して得た塗覆剤を試験体Iに
1〜1.2mm厚に塗布し、乾燥硬化して被覆を形
成させた。
(c) 金属銅粉末200部に対し、前記ポリマーセメ
ントのパウダー部100部を混合し、さらに前記
の水性ポリマーエマルジヨン(有効成分50%)
81部、シリコン系樹脂エマルジヨン(トーレシ
リコンSR2404)(有効成分40%)9部及び水50
部を混合して得た塗覆剤を1〜1.2mm厚に塗布
し、乾燥硬化して被覆を形成させた。
比較例
実施例1で用いたと同様の長さ60cm、幅20cm、
厚み3.2mmの鉄板に、さびを十分に除去してか
ら、市販の船底塗料プライマーAF(日本ペイン
ト製)を刷毛で3回下塗りし乾燥後ラバーコート
AC(日本ペイント製)を刷毛で3回上塗りし
た。
海水浸漬試験
前記実施例1(a)〜(c)及び比較例の各試験片を千
葉県五井海岸の棧橋の柱に固定し、海水中に浸漬
させて約12ケ月間保持し、観察した。その結果を
第1表に示す。
The present invention relates to an antifouling method for the surfaces of steel or concrete objects that come into contact with seawater, particularly for various types of ships such as engineering ships, pulp ships, and offshore oil storage vessels, offshore structures such as quays, offshore airports, coastal oil drilling towers, and underwater structures. The present invention relates to a surface antifouling method whose main purpose is to prevent corrosion and adhesion of marine organisms to the surfaces of various steel or concrete objects used in contact with seawater, such as pipes and seawater drainage pipes. Various ship bottom paints have been used for this purpose, but none of them can maintain an antifouling effect for a long period of more than one year, and the stains grow on the paint film at least once a year. After cleaning the surface by removing various marine organisms such as barnacles, oysters, scale insects, and seaweed (hereinafter referred to as underwater sessile organisms), the bottom paint must be applied again to form a new antifouling film surface. Must be. Conventionally, cuprous oxide or cuprous oxide mixed with a small amount of mercury oxide has been used as an active antifouling ingredient in ship bottom paints as a poisonous substance to prevent the attachment of aquatic organisms. They previously reported that while cupric sulfide is an effective toxic component, the copper sulfate produced when it is oxidized by oxygen in water comes into contact with the steel surface, precipitates metallic copper, and severely corrodes the steel. proposed an antifouling method for the surfaces of steel or concrete objects that come into contact with seawater by using polymer cement in a safe and long-term manner (Japanese Patent Application No. 54-29369). We have recently developed a more effective antifouling method that uses metallic copper powder as an effective toxic ingredient. It has been known for a long time that if the surface of a structure attached to the sea, such as the bottom of a real ship, is coated with a copper plate, underwater sessile organisms cannot inhabit this area, and this state can be maintained for a long period of time. It is being However, when a steel surface comes in contact with not only a copper plate but also copper powder or fine particles of metallic copper, a local battery is formed, and the steel in the area where the metallic copper comes into contact is severely corroded. Therefore, it has been considered completely impossible to use metallic copper as an antifouling agent for conventional ship bottom paints. The present invention effectively prevents corrosion of steel by metallic copper by using the polymer cement coating agent described in detail below as an adhesive concrete coating on the steel surface, and furthermore, the metallic copper powder itself is also separately coated with polymer cement. By incorporating it into a coating agent and applying it to the surface of a polymer cement protective coating, a long-lasting antifouling effect can be achieved. Therefore, the present invention provides a polymer cement coating agent for the surface of a steel or concrete object that comes into contact with seawater, which is prepared by blending a water-based polymer emulsion with Portland cement or blast furnace cement alone or in a mixture with fine aggregate of the cement. To provide an antifouling method for the surface of a steel or concrete object that comes into contact with seawater, which comprises applying and curing a mixture of metallic copper powder and the polymer cement coating agent to the coated surface. It is something. The essential feature of the present invention is that metallic copper powder is used as a toxic component for preventing the adhesion of aquatic spores, and its severe corrosivity to steel is effectively inhibited in combination with a polymer cement coating agent. That is, according to the present invention, by first applying a polymer cement coating agent as a primer to the steel surface to an appropriate thickness, for example, 3 to 10 mm, the strong alkalinity of cement with a pH of 11 or higher is maintained and the corrosion protection of the steel is achieved. A highly effective tough film is formed and then a mixture of metallic copper powder and polymer cement coating is further applied. The use of such a primer in the present invention not only has the physical effect of blocking the metallic copper powder-containing film from coming into direct contact with the steel surface, but also has the effect that the metallic copper is oxidized by underwater oxygen and Copper ions produced by the action of salt are captured by alkaline calcium to form a double salt, which has the chemical effect of protecting the steel surface from electrolytic corrosion. The powder part of the polymer cement coating agent used in the present invention (hereinafter referred to as the polymer cement powder part) may be composed of Portland cement or blast furnace cement alone, but more generally it is composed of a cement mortar base, that is, cement and silica sand. ,
A mixture containing fine aggregate such as river sand is used. The particle size of the aggregate is preferably fine, about 1 mm or less. The blending ratio of aggregate may be one commonly used for cement mortar bases and is not particularly limited. Usually, a mixing ratio of 20 to 50 parts by weight of cement and 80 to 50 parts by weight of fine aggregate is used. The aqueous polymer emulsion for the polymer cement coating may be aqueous emulsion based on various synthetic resins, including acrylic, vinyl acetate, epoxy, etc., natural or synthetic rubber latex, or mixtures thereof. In particular, for the purpose of the present invention, impact resistance, bending workability, abrasion resistance, weather resistance, water resistance, seawater resistance, heat resistance, etc. are important, and long-term durability is required for these. Of course, appropriate additives may be added depending on the individual case. As such additives, polyvinyl alcohol aqueous solutions, petroleum resins derived from by-products during naphtha decomposition, polyisobutylene emulsions, and the like have been found to be particularly effective. Therefore, an example of a formulation of a polymer cement coating particularly suitable for use in the present invention is 20 to 50 parts by weight of Portland cement, 70 to 95 parts of polymer cement powder consisting of 80 to 50 parts by weight of silica sand, and an aqueous polymer emulsion. 30-5 parts by weight and 0-15 parts of fresh water
A particularly preferred example of the aqueous polymer emulsion is a polyvinyl alcohol aqueous solution (concentration 10% or less), petroleum resin or its diluted product in the presence of a nonionic or cationic surfactant. An example is an aqueous emulsion obtained by mixing the mixture at the bottom, adding SBR latex to this, and stirring. As mentioned above, it is important to use a polymer cement coating agent as the coating base for the coating agent containing metallic copper powder.
It is possible to obtain an antifouling coating film that can exhibit a desired antifouling effect over a long period of time against adhesion of aquatic sessile organisms without fear of adhesion and falling off. Furthermore, as mentioned above, the copper ion trapping effect due to the formation of double salts is also noteworthy. Even if a conventional paint-type vehicle is used for this purpose, such an effect cannot be expected.Due to the strong alkalinity of the polymer cement coating applied as a primer, it swells, peels off, and falls off while immersed in seawater for a long period of time. the desired effect is not achieved. As the metallic copper powder, any powdered copper including scale-like, dendritic, crushed-like, etc. forms can be used, and commercially available powders can be used without particular limitations on the form, particle size, etc. For example, commercially available particles with a particle size of 100 mesh or less, for example, as a particle size distribution.
325 meters or less 20-90%, 200-325 meters 40
-20%, 100-200 meshes and 50-1%. One feature of the present invention is that a large amount of metallic copper powder can be incorporated into the polymer cement coating, and generally a ratio of metallic copper powder to polymer cement powder portion in the range of 70:30 to 20:80 can be used. By appropriately selecting this ratio, the copper ion concentration in the coating film, that is, the degree of toxicity, can be adjusted; of course, the higher the proportion of metallic copper powder, the greater the toxicity. The ratio of the metallic copper powder to the polymer cement coating agent in the coating agent containing metallic copper powder is not particularly critical, but it is usually 20 to 20 parts by weight of the coating base per 100 parts by weight of the metallic copper powder.
It is used at a ratio of about 100 parts by weight. If the proportion of the coating base is too low, the coating film formation will be unstable and peeling will occur in seawater, while if it is too large, the outflow of copper ions will be too low, making it impossible to obtain sufficient antifouling effects. do not have. In addition, after forming the first polymer cement coating, that is, the primer coating, and before forming the coating containing metallic copper powder, a thin film of synthetic resin coating such as epoxy or acrylic is formed as an intermediate film. , it is possible to prevent the calcium-based strong alkaline component in cement from being lost to water, the formation of pinholes, etc. Furthermore, in a preferred embodiment of the present invention, when mixing the metallic copper powder with the polymer cement coating agent, the toxicity of the metallic copper is enhanced by simultaneously incorporating a small amount of calcium chloride or magnesium chloride in the form of an aqueous solution. I can do it. The amount of alkaline earth metal chloride added is 0.1 to 1% based on the total amount of polymer cement powder containing metallic copper powder.
That's about it. Next, the present invention will be explained with reference to Examples, but of course the present invention is not limited to these Examples. In the examples, parts are by weight unless otherwise specified. Example 1 A polymer cement coating agent prepared as below was applied to a steel plate measuring 60 cm in length, 20 cm in width, and 3.2 mm in thickness to a film thickness of 4 mm, and after curing for 1 week, an acrylic resin emulsion (trade name: Suncoat) was applied. CN-78)
A primer-coated test piece (hereinafter referred to as a test piece) was prepared by applying the primer to a thickness of 100 μm and drying and curing it. A polymer cement coating was prepared as follows. A mixture of 30 parts by weight of Portland cement and 70 parts by weight of silica sand was used as the powder part of the polymer cement, while an aqueous polymer emulsion for polymer cement was prepared by adding 300 parts by weight of petroleum resin and 90 parts by weight of ethylene pyrolysis by-product oil as a diluent. Add part,
After heating and stirring, add a stirred solution of 12 parts by weight of a nonionic surfactant to 700 parts by volume of a 10% polyvinyl alcohol aqueous solution.
An emulsion obtained by adding and stirring 500 parts by volume of SBR latex and 200 parts by weight of polyisoptylene emulsion was used. 85 parts by weight of this powder, 12 parts by weight of emulsion, and 5 parts by weight of water were further mixed and stirred and used as the polymer cement coating agent. Various coating agents containing metallic copper powder shown in (a) to (c) below were applied to the coated surface of the polymer cement coating agent of Test Specimen I, and the antifouling effects were observed by conducting a seawater immersion test on these coating agents. . The test results are summarized in Section 1 below.
Shown in the table. (a) Test Specimen I was mixed with 150 parts of metallic copper powder and 150 parts of powder of the same polymer cement used in the primer, and then mixed with 90 parts of the same aqueous polymer emulsion water (50% active ingredient) and A coating agent prepared by mixing 50 parts of water was applied to a thickness of 1 to 1.2 mm, and dried and cured to form a coating. (b) A coating obtained by mixing 60 parts of metallic copper powder with 150 parts of the powder part of the polymer cement, and then 27 parts of the water-based polymer emulsion (active ingredient 50%) and 15 parts of water. The agent was applied to specimen I to a thickness of 1 to 1.2 mm and dried and cured to form a coating. (c) 200 parts of metallic copper powder is mixed with 100 parts of the powder part of the polymer cement, and then the water-based polymer emulsion (50% active ingredient) is added.
81 parts, silicone resin emulsion (Toray Silicone SR2404) (active ingredient 40%) 9 parts and water 50 parts
The coating agent obtained by mixing the parts was applied to a thickness of 1 to 1.2 mm, and dried and cured to form a coating. Comparative example Length 60 cm, width 20 cm, same as used in Example 1,
After thoroughly removing the rust on a 3.2mm thick iron plate, apply commercially available ship bottom paint Primer AF (manufactured by Nippon Paint) three times with a brush, and after drying, apply a rubber coat.
I applied three coats of AC (manufactured by Nippon Paint) with a brush. Seawater Immersion Test Each of the test pieces of Examples 1 (a) to (c) and Comparative Example was fixed to a pillar of a bridge on the Goi coast in Chiba Prefecture, immersed in seawater, kept for about 12 months, and observed. The results are shown in Table 1.
【表】
* 試験後、試験片の塗膜部をタガネで除却
して発錆状態を観察した。
[Table] * After the test, the paint film on the test piece was removed with a chisel and the state of rust was observed.
Claims (1)
する面に、ポルトランドセメントまたは高炉セメ
ント単独あるいは該セメント細骨材との混合物に
水性ポリマーエマルジヨンを配合してなるポリマ
ーセメント塗覆剤を塗布、硬化させた後、その塗
布面に金属銅粉末と前記ポリマーセメント塗覆剤
との混合物を塗布することを特徴とする海水と接
触する鉄鋼またはコンクリート製物体表面の防汚
方法。1. A polymer cement coating consisting of a water-based polymer emulsion mixed with Portland cement or blast furnace cement alone or a mixture of the cement and fine aggregate was applied to the surface of a steel or concrete object that would come into contact with seawater, and the coating was cured. A method for preventing stains on the surface of an object made of steel or concrete that comes into contact with seawater, the method comprising: thereafter applying a mixture of metallic copper powder and the polymer cement coating agent to the applied surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16929179A JPS5691869A (en) | 1979-12-27 | 1979-12-27 | Preventation of surface of steel or concrete article in contact with sea water from fouling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16929179A JPS5691869A (en) | 1979-12-27 | 1979-12-27 | Preventation of surface of steel or concrete article in contact with sea water from fouling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5691869A JPS5691869A (en) | 1981-07-25 |
JPS6145513B2 true JPS6145513B2 (en) | 1986-10-08 |
Family
ID=15883786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16929179A Granted JPS5691869A (en) | 1979-12-27 | 1979-12-27 | Preventation of surface of steel or concrete article in contact with sea water from fouling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5691869A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024872A (en) * | 1988-06-22 | 1990-01-09 | Sanyuu Bussan Kk | Sterilizing, stain proofing and deodorizing method by fixing copper fine powder |
-
1979
- 1979-12-27 JP JP16929179A patent/JPS5691869A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5691869A (en) | 1981-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5925843A (en) | Seawater-resistant antifouling coating composition | |
JP4687231B2 (en) | Structural steel and surface treatment agent with excellent beach weather resistance | |
US4552813A (en) | Method of inhibiting the growth of marine life on surfaces in contact with seawater | |
JP2006315238A (en) | Weatherable structural steel material excellent in long-period durability in high flying chloride environment | |
KR100722219B1 (en) | Coating matter to protect under water erosion, method for coating under water structure using the same | |
JPS626863B2 (en) | ||
JPS6145513B2 (en) | ||
JPS6035065A (en) | Antifouling method for material in contact with sea water | |
US4678512A (en) | Marine coating compositions and method | |
JP2001234369A (en) | Coated steel having atmospheric corrosion resistance | |
JPH0133552B2 (en) | ||
JP2007224344A (en) | Corrosion resistant marine steel material | |
JP5735351B2 (en) | Surface treated steel | |
JPS6241632B2 (en) | ||
JPH09255897A (en) | Prevent ion of adhesion of aquatic organism and coating material for preventing adhesion of aquatic organism | |
WO1994000521A1 (en) | Soft coating compositions for metals | |
EP0644243A2 (en) | Anti-fouling compositions or fouling control of harmful aquatic oranisms | |
JP7447991B2 (en) | paint | |
JP2001040280A (en) | Coating composition for weather-resistant steel, and formation of stable rust by using the same | |
JPH01148372A (en) | Process for forming stainproof coating film | |
JPH04279674A (en) | Composition for coating concrete structure | |
JPS6357503A (en) | Antifouling agent for aquatic life | |
NO303457B1 (en) | Procedure for inhibiting corrosion and composition for deicing of reinforced concrete | |
Suleiman et al. | Ships Hull Corosion prevntion using Iccp System | |
JP2543794B2 (en) | Antifouling coating method |