JPS6035065A - Antifouling method for material in contact with sea water - Google Patents

Antifouling method for material in contact with sea water

Info

Publication number
JPS6035065A
JPS6035065A JP14346783A JP14346783A JPS6035065A JP S6035065 A JPS6035065 A JP S6035065A JP 14346783 A JP14346783 A JP 14346783A JP 14346783 A JP14346783 A JP 14346783A JP S6035065 A JPS6035065 A JP S6035065A
Authority
JP
Japan
Prior art keywords
contact
seawater
antifouling
coating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14346783A
Other languages
Japanese (ja)
Other versions
JPS6241985B2 (en
Inventor
Takaaki Sakai
酒井 貴明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP14346783A priority Critical patent/JPS6035065A/en
Publication of JPS6035065A publication Critical patent/JPS6035065A/en
Publication of JPS6241985B2 publication Critical patent/JPS6241985B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To prevent effectively the deposition of marine organisms on a structure in contact with sea water, by applying a coating compsn. contg. an alkali metal silicate, activated magnesium oxide, calcium sulfite, and zinc (compd.) to said structure. CONSTITUTION:An alkali metal silicate (A) as a binder, 15-400wt% (based on the quantity of SiO2 in component A) activated magnesium oxide (B) having an iodine absorption of 30-300mg.I/g of MgO, 0-15wt% (based on the combined quantity of components B and C) calcium sulfite (C) and 0-900wt% (based on the combined quantity of components B and C) at least one member (D) selected from among metallic zinc and inorg. zinc compds. (e.g. zinc oxide) are mixed together to prepare a coating compsn. The coating compsn. is applied to the surface of a structure in contact with sea water to prevent the deposition of marine organisms thereon.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水に接触する構造物、たとえば、灯浮標、ケ
イ画用ブイ、浮桟橋、浮防波提。 冷却用その他の用途の海水採取管ならびに排゛出管その
他の海水通路等に付着して汚染(フォーリング、 fo
uling )を生ずる付着性海棲生物、たとえば触手
動物、環形動物、節足動物、軟体動物、原素動物などに
属する付着性海棲生物による該構造物の防汚方法に関す
る。 さらに詳しくは本発明は海水に接触する構造物の少くと
も該接触面に a)バインダーとしてのケイ酸アルカリb)ヨウ素吸収
量が30〜300mg・I/(+ ・11+0である活
性酸化マグネシウムを上記a)中のSL 02Mに基イ
テ15〜400ii1%C)亜硫酸カルシウムを上記b
)との合計量b) + c)に基づいて0〜15重量%
未d)金属1T11j(lおよびjll(機金属化合物
よりなる群から)パばれた少くとも1種を上記合i1吊
b) 十c)に1メづいて0〜900重量%、 以上a) b) C) d)を含む被覆組成物を塗布し
、該塗布面に付着性海棲生物が付着することを防止する
ことを特徴とJ−る海水接触物の防汚方法(゛ある。 近年、沿1’+曹1り域におLJる海洋開発の進展に伴
って、種々の[1的で大型の海洋構造物、そのイ]属+
M m物、ぞの他類似の海水に接触する構造物の建設、
設置が増加している。 そして、このような海水に接触する構造物は、海水にJ
、る腐食の問題に加えて、該接触部またはでの付近に汚
染を生ずる付着性海棲生物が付着生育する汚染のトラブ
ルがあり、これを防+1.iJる効果的な方法の開発が
望まれている。 たとえば航路浮標、灯浮標、係留用ブイ、浮桟橋、浮防
波堤、浮ドツク等の如き湾、港内施設構造物、たとえば
係留用船舶レストランやホテル、係留浮フィッシング用
構造物その他のレジャー構造物、たとえば養・蓄魚介用
イケス構造物、魚業用定置網その他類似の水産用施設構
造等の海水接触構造物は汚染を生ずる付着性海棲生物が
これら構造物に付着生育することによって、構造物基材
の腐食促進、重量増加に伴う不都合な沈下発生やバラン
スの不安定化発生等の被害を受ける。また沿岸における
各種の施設や工場、発電所等で、冷却用その他各種の利
用目的で海水を利用する際に、海水の採取管、排出管そ
の他の水路や渦等の沿岸構造物に、汚染を生ずる付着性
海棲生物が付着生育し、甚だしい場合には数1−センナ
のオーダーにも付着生育して、水路有効面積の減小、流
れ抵抗の増大、浮遊固形物除去用スクリーンの目詰り、
その他の被害を受ける。 このような海水接触構造物に対する汚染を3− /Lするft 猶性海棲生物による被害を防止する目的
で、たとえば次亜塩素酸ナトリウムや塩素水等を注入づ
゛ることが行われてぎたが、環境汚染のトラブルが伴う
ことが避けられないため、現在では防汚剤を含む被覆組
成物で被覆処理し、該組成物から有効濃度の防汚剤の溶
出をと1゛じさせて、汚染を生ずる付着性海棲生物を死
滅または付着忌避させる方法が一般的である。 たとλば防汚被覆組成物として利用される船底塗料には
、防汚剤(anローfoulingagent )とじ
て亜酸化銅、テトラメチルチウラムサルファイド、ジン
クメチルジチオカーバメ−1〜、トリフェニル錫ハイド
ロオキサイド、1〜リフエニル錫アセテート、トリフェ
ニル錫りロライト等が利用されている。しかしながら、
このような防汚剤はその毒性の点に問題があり、上記例
示のごとぎ有機錫化合物その他の防汚剤は、マウス経口
投与24時間のt−1−) soがいづれも1,000
 m (1/ko以下と可成4− り高い毒性を示し、伯の生物に対する悪影響が無視ぐき
ず安全性の点で疑問が残り、二次的な海洋汚染を引き起
すおそれを伴う。さらに汚染を生ずる付着性海棲生物を
死滅または付着忌避させるために十分な有効濃度の防汚
剤の溶出によって汚染を防止するという防止機構から、
当然のことながら−E記二次的な汚染のトラブルが回避
し難い欠点に加えて、該防止剤の溶出速度の調節が実際
上困難であるという技術課題、溶出に伴って防汚剤の含
有量が減少するため防汚効果の持続性にも本質的な欠陥
がある。 さらに、海水接触構造物に用いる汚染被覆組成物である
ため、波浪に対しておよび海水に対して十分に耐えつる
該構造物表面への密着強度および耐海水性が要求される
。 本発明者は、このように要求に満足し、かつ防汚剤の溶
出によって汚染を防止するという防止機構による従来組
成物が本来的に有する前述のごとき二次汚染のI〜シラ
ブルよび持続↑1に乏()いトラブルを克服できる新し
いタイプの防)り剤を開発ずべく研究を進めてきた。 その結果、海洋二次汚染1ヘラプルとなるような)り除
剤を全く含有せしめることなしに、満足づべぎ密着強度
および耐海水性を示し。 かつ61flHに滑れた防汚効果を発揮できる無機防汚
性被覆組成物の開発成功した。 本発明者の研究によればa)ケイ酸アルカリをバインダ
ーとしh)該a)中の5L()iffiに基づいて15
〜500重量%の量の、ヨウ素吸着間が30−300 
mO−1/Q ” flil 0である活性酸化マグネ
シウムを必須の構成成分とする無機質組成物が、所謂防
汚剤(anti −foulir+gagent )ど
呼ばれる成分を特に含有しないに拘わらず、汚染を生ず
る付着性海棲生物に対して顕著にtυれた防汚効果を示
し、その上、海水に接触しまたは接触する可能性のある
構造物への満足すべき密着強度および優れた耐海水f1
を示’l:l二−りな防汚性被覆組成物となることが発
見された。 この意外な作用効果を生ずる作用機構については不明で
あるが、後に多くの実施例および比較例を挙げて実験的
に示すとおり、本発明に使用される防汚性被覆組成物は
優れた耐水性、耐海水性、基材への密着性、]−ティン
グ作業性等とともに汚染を生ずる付着性海棲生物に対す
る優れた防汚効果を兼備した新しいタイプの非環境汚染
性の防汚性被覆組成物であることが発見された。 本発明者は上記a)バインダーとしてのケイ酸アルカリ
、およびb)該a)中の& 02 mに基づいて15〜
500重量%の量のヨウ素吸着量が30〜300J)−
I/(1−1190である活性酸化マグネシウムとC)
亜硫酸カルシウムよりなる硬化剤を含有する自己硬化性
無機質組成物が、優れた作業性、耐水性、耐候性、表面
硬度、特に耐沸騰水性、耐熱性等において優れた効果を
発揮する組成となることを発見して特開昭57−563
64号を提案した。しかしながら、この提案においては
、汚染を生7− するイ」@竹穐棲生物に対する防汚効果については全く
言及されておらず、本発明者自らそのJ:うな意外な効
果については全く気付なかった。したがって当然のこと
ながら、本発明者の特開1g(b 7 56364号の
提案にはそのような新しい用途を示唆し得るいかなる開
示も記載されていない。 今回、必須成分である前記(a )および(b)、任意
成分である前記<C,)および/または前記(d >を
含む組成物が海水接触構造物に汚染を生じさせφ付着性
海棲生物に対しで、申越した防汚効果を発揮し、しかも
二次汚染光g4の原因となるような防汚剤を全く含有し
ないにも拘らず顕著に優れた防汚効果を持続性9く示し
、かつ波浪に耐える満足すべき密着強電が耐海水性を維
持できることが発見された。 さらにまた、特に低温の冷海水域を除いて世界の沿岸域
に広く分布し、汚染の原因となるイガイ利に属する付着
性海棲生物、たとえ8− ばムラ1Jキイガイ等に対して特に優れた防汚効果を発
揮することが判った。 したがって本発明の目的は海水に接触しまたは海水に接
触する可能性のある構造物を上記防汚性組成物で被覆処
理する防汚方法を提供することにある。 本発明に使用される防汚性被覆組成物は下記a)および
b)を必須成分として含有する。 a)バインダーとしてケイ酸アルカリ、b) ヨウ素吸
着量が30〜300m9・17g・I′190である活
性酸化マグネシウムを上記a〉中のSL02Mに基づい
て15〜40帽1%、 上記a)ケイ酸アルカリの例としてはケイ酸す]・リウ
ム、ケイ酸カリウム、ケイ酸リチウム、四級アンモニウ
ムシリケート、これらの任意の2種またはそれ以上の混
合物を例示することができる。これらケイ酸アルカリの
固形分は適宜選択できるが、たとえば約15〜50重量
%の如き固形分含量を例示することができる。上記1)
)活V[酸化マグネシウムは市場で入手でき、本発明に
利用できる。その製法も公知であり、たとえば塩基性炭
酸マグネシウム、炭酸マグネシウム、水酸化マグネシウ
ム等を、lことえば粒径数100μ以下に粉砕し、たと
えばI]−タリーキルンその他の適当な焼成装置で焼成
し、焼成組成物をたとえばペブルミルその他の適当な粉
砕機で粉砕し、所望により、篩分番ノ等の手段で粒度を
調節して所望の活性酸化ングネシウムを得ることができ
る。 本発明においては、上述の様にして得ることのでさる活
性酸化マグネシウムの中でヨウ素吸老IBが30へ−3
0011(+・I/g・−0の活性酸化マグネシウムを
選択して使用する。ヨウ素吸着量が上記範囲を離れて小
さすぎるとa)成分に対する硬化作用が不十分になる傾
向があり、さらに耐海水付の点でも悪化する。逆にヨウ
素吸着間が上記範囲を離れて大きすぎるとa)成分に対
する硬化作用、特に硬化速度が過大となって混合時にき
わめて短時間でゲル化を起1ノ、被覆処理における作業
性が著しく悪くなる。したがって上記ヨウ素吸着量範囲
において適宜に選択利用される。 該b)活性酸化マグネシウムの最は、該a)のバインタ
ーとしてのケイ酸アルカリ中の5L02量に基づいて1
5〜400重石%好ましくは30〜300重量%である
。この量範囲を逸脱して、b)酸化マグネシウムの量が
多すぎると被覆処理に際して作業性が悪くなり、さらに
耐海水性の悪化原因となるので、上記範囲量において選
択使用される。 本発明に使用される防汚性被覆組成物はC)亜硫酸カル
シウムをさらに含有することができる。その使用部は上
記b)との合!Fflb)+ C)に基づいて15重量
%未満、すなわち該合計量に基づいてb)活性酸化マグ
ネシウムが85市量%を越える主成分量を占めるような
量で使用できる。C)亜硫酸カルシウム使用量が上記合
計量b) + O)に基づいてO〜1511− 重量%未満の範囲を逸脱して多量になると、たとえば長
期に海水と接触した際に、塗膜にブヨ−キングが発生す
るトラブルがあり、さらに汚染を生ずる何着性海棲生物
に対する防汚効果の持続性が失われるのでC)成分を利
用する場合には合計量b) 十c)を基準として15f
flti%未満の吊で利用される。C)亜硫酸カルシウ
ムの併用は基材との密着性の一層の向上に役立つ。好ま
しくは該合計量b) +C)に基づいて5〜15重量未
満の量で利用できる。 本発明に使用される防汚性組成物d)金属亜鉛おJ:び
無機亜鉛化合物よりなる群から選ばれた少くとも1種を
含有することができる。 その使用部は」−配合計量b)十c)に基づいて0へ−
90(1重間%、好ましくは0〜300重量%である。 該d)成分は湿潤したコンクリート向のごとき湿った基
材との密着性の向上に役立つ。しかしながら該合計量b
) + c)に基づいて約900重量%を越えて多すぎ
ると防12− 力性組成物の耐海水性を降下させる傾向があるので合計
1 b) 十c)に基づいて900ffi ffi%を
越えぬ量で利用される。このようなd)成分中、無機亜
鉛化合物の例としては、酸化亜鉛、炭酸亜鉛、硫酸亜鉛
の如き亜鉛化合物を例示することができる。 本発明に使用される海水に接触するかまたは接触する可
能性のある構造物を被覆する防汚性組成物は、以上述べ
た必須成分a)とb)、さらには任意成分C)および/
またはd)のほかに、他の補助添加剤を含有することが
できる。 このような添加剤としては、充填剤、分散剤、着色剤、
増結剤、消泡剤、沈降防止剤等を挙げるこができる。そ
れらの具体例としては、たとえばタルク、カオリン、炭
酸カルシウム、アスベスト、パルプ等のごとき無機また
は有機の粉末状ないし繊維状充填剤、たとえば酸化チタ
ン、酸化クロム、酸化コバルト、鉛白、リサージ、ベン
ガラ、群青、モリブデン赤等の無機「
The present invention applies to structures that come into contact with seawater, such as light buoys, buoys, floating piers, and floating breakwaters. Contamination (falling, fo.
The present invention relates to a method for preventing fouling of structures by sessile marine organisms such as tentacles, annelids, arthropods, molluscs, protozoa, etc., which cause uling. More specifically, the present invention includes a) an alkali silicate as a binder, b) an activated magnesium oxide having an iodine absorption amount of 30 to 300 mg·I/(+·11+0) on at least the contact surface of a structure that comes into contact with seawater. a) Based on SL 02M in 15-400ii1% C) Add calcium sulfite to the above b
) 0-15% by weight based on the total amount b) + c)
d) At least one type of metal 1T11j (l and jll (from the group consisting of mechanical metal compounds)) is added to the above combination of 0 to 900% by weight per 1 metal, or more a) b) ) C) A method for preventing fouling of objects in contact with seawater, characterized by applying a coating composition containing d) and preventing adherent marine organisms from adhering to the coated surface. With the progress of marine development in the LJ area, various types of [1, large marine structures, Part 1] +
Construction of Mm objects and other similar structures in contact with seawater;
Installations are increasing. Structures that come into contact with seawater like this are exposed to seawater.
In addition to the problem of corrosion, there is also the problem of contamination caused by the growth of adherent marine organisms that cause contamination at or near the contact area. It is desired to develop an effective method for controlling iJ. Bays, harbor facilities structures such as channel buoys, light buoys, mooring buoys, floating piers, floating breakwaters, floating docks, etc., such as moored ships restaurants and hotels, moored floating fishing structures and other leisure structures, e.g. Structures that come into contact with seawater, such as ike structures for fish and shellfish farming, fixed nets for the fish industry, and similar structures for fisheries facilities, are exposed to the structure base material due to the growth of adherent marine organisms that cause contamination on these structures. Acceleration of corrosion, undesirable subsidence due to increased weight, and unstable balance occur. In addition, when seawater is used for cooling and other purposes in various facilities, factories, power plants, etc. on the coast, contamination occurs in coastal structures such as seawater collection pipes, discharge pipes, waterways, eddies, etc. The resulting adherent marine organisms grow adherently, and in extreme cases, adherently grow on the order of several senna, reducing the effective area of the waterway, increasing flow resistance, and clogging screens for removing suspended solids.
suffer other damage. In order to prevent contamination of such structures that come into contact with seawater by 3-L/ft, it has been common practice to inject sodium hypochlorite or chlorinated water, etc. However, since it is unavoidable that problems with environmental pollution are involved, at present, a coating composition containing an antifouling agent is used to prevent the elution of an effective concentration of the antifouling agent from the composition. A common method is to kill or avoid adhering to marine organisms that cause contamination. For example, ship bottom paints used as antifouling coating compositions contain antifouling agents such as cuprous oxide, tetramethylthiuram sulfide, zinc methyldithiocarbame-1, and triphenyltin hydroxide. , 1 to rifhenyltin acetate, triphenyltin lorite, etc. are used. however,
Such antifouling agents have a problem with their toxicity, and the organotin compounds and other antifouling agents exemplified above have a t-1-so of 1,000 after 24 hours of oral administration to mice.
m (less than 1/ko), which exhibits relatively high toxicity, and its negative effects on living organisms cannot be ignored, leaving questions about safety, and there is a risk of secondary marine pollution. Based on the prevention mechanism that prevents contamination by elution of an effective concentration of antifouling agent sufficient to kill or repel adherent marine organisms that cause
Of course, - In addition to the drawback that it is difficult to avoid the trouble of secondary contamination mentioned in E, there is the technical problem that it is practically difficult to control the elution rate of the inhibitor, and the inclusion of the antifouling agent as it elutes. Since the amount decreases, there is also an essential defect in the sustainability of the antifouling effect. Furthermore, since this is a contaminated coating composition used for a structure in contact with seawater, it is required to have sufficient adhesion strength to the surface of the structure and seawater resistance to withstand waves and seawater. The inventors of the present invention have satisfied these requirements and solved the above-mentioned secondary contamination I~syllable and persistence ↑1 which is inherent in conventional compositions due to the prevention mechanism of preventing contamination by elution of the antifouling agent. We have been conducting research in order to develop a new type of preventive agent that can overcome the problems of lack of protection. As a result, it exhibited satisfactory adhesion strength and seawater resistance without containing any removal agents that would cause secondary marine pollution. We have also succeeded in developing an inorganic antifouling coating composition that can exhibit an antifouling effect of 61 flH. According to the research of the present inventor, a) using an alkali silicate as a binder, h) based on 5L()iffi in a), 15
In amounts of ~500% by weight, iodine adsorption between 30-300
Even though an inorganic composition containing activated magnesium oxide with mO-1/Q flil 0 as an essential component does not particularly contain a component called a so-called anti-fouler+gagent, it has an adhesive property that causes staining. It exhibits a remarkable antifouling effect on marine organisms, and also has satisfactory adhesion strength to structures that come into contact with seawater or may come into contact with it, and excellent seawater resistance f1.
It has been discovered that the composition of the present invention results in a neutral antifouling coating composition. Although the mechanism of action that produces this unexpected effect is unknown, as will be shown experimentally later with many examples and comparative examples, the antifouling coating composition used in the present invention has excellent water resistance. A new type of non-environmentally polluting, antifouling coating composition that has excellent antifouling effects against adherent marine organisms that cause contamination, as well as seawater resistance, adhesion to substrates, and workability. It was discovered that. The present inventor has developed the above a) alkali silicate as a binder, and b) based on &02 m in a).
The amount of iodine adsorbed in an amount of 500% by weight is 30-300J)-
I/(1-1190 active magnesium oxide and C)
A self-curing inorganic composition containing a hardening agent made of calcium sulfite has a composition that exhibits excellent workability, water resistance, weather resistance, surface hardness, especially boiling water resistance, heat resistance, etc. Discovered and published Japanese Patent Publication No. 57-563
No. 64 was proposed. However, in this proposal, there is no mention of the antifouling effect on organisms that cause pollution, and the inventor himself did not notice the unexpected effect at all. . Therefore, as a matter of course, the present inventor's proposal in JP-A-1G (b756364) does not include any disclosure that could suggest such new uses. (b) The composition containing the optional components <C,) and/or (d> above causes contamination of seawater contact structures and has an antifouling effect against φ-adhesive marine organisms. Furthermore, despite not containing any antifouling agents that can cause secondary pollution light G4, it exhibits an outstandingly excellent antifouling effect for a long time and has a satisfactory adhesion strength that can withstand waves. Furthermore, it has been discovered that sessile marine organisms belonging to the mussels, which are widely distributed in coastal areas of the world except in particularly cold sea waters and cause pollution, can maintain seawater resistance. - It has been found that it exhibits particularly excellent antifouling effects against Bamura 1J mussels, etc. Therefore, the object of the present invention is to treat structures that come into contact with seawater or have the possibility of coming into contact with seawater by using the above-mentioned antifouling composition. An object of the present invention is to provide an antifouling method for coating with a substance.The antifouling coating composition used in the present invention contains the following a) and b) as essential components. a) alkali silicate as a binder, b) active magnesium oxide with an iodine adsorption amount of 30 to 300 m9.17 g.I'190, 1% to 1% based on SL02M in a) above, a) silicic acid Examples of the alkali include silium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, and mixtures of any two or more of these. The solid content of these alkali silicates can be selected as appropriate, and may be, for example, about 15 to 50% by weight. 1) above
) Active V[magnesium oxide is commercially available and can be used in the present invention. The manufacturing method is also known, for example, by pulverizing basic magnesium carbonate, magnesium carbonate, magnesium hydroxide, etc. into particles with a particle size of several hundred microns or less, and firing them in, for example, a tarry kiln or other suitable firing equipment. The composition can be ground, for example, in a pebble mill or other suitable grinder, and if desired, the particle size can be adjusted by means such as sieving to obtain the desired active magnesium oxide. In the present invention, the active magnesium oxide obtained as described above has an iodine absorption IB of 30-3.
0011 (+・I/g・−0) active magnesium oxide is selected and used. If the iodine adsorption amount is too small outside the above range, the curing effect on component a) tends to be insufficient, and the resistance also increases. It also gets worse when it comes to seawater. On the other hand, if the iodine adsorption ratio is too large outside the above range, the curing effect on component a), especially the curing speed, will be excessive, causing gelation in a very short time during mixing, resulting in extremely poor workability in coating processing. Become. Therefore, it is appropriately selected and utilized within the above-mentioned iodine adsorption amount range. b) The amount of active magnesium oxide is 1 based on the amount of 5L02 in the alkali silicate as binder in a).
The amount is 5 to 400% by weight, preferably 30 to 300% by weight. If the amount of magnesium oxide (b) is too large outside this amount range, the workability during coating treatment will be poor and it will also cause deterioration of seawater resistance, so the amount is selected within the above range. The antifouling coating composition used in the present invention can further contain C) calcium sulfite. Its used part is the same as b) above! It can be used in amounts such that less than 15% by weight based on Fflb) + C), ie based on the total amount b) active magnesium oxide accounts for more than 85% by weight of the main component. C) If the amount of calcium sulfite used exceeds the range of less than 0 to 1511% by weight based on the above total amount b) + O), for example, when in contact with seawater for a long period of time, gnats may form on the paint film. There is a problem of the occurrence of kings, and the sustainability of the antifouling effect against marine organisms that cause contamination is lost, so when using C) ingredients, the total amount b) 15f based on 10 c)
It is used with less than flti%. C) The combined use of calcium sulfite helps to further improve the adhesion to the base material. Preferably it is available in an amount of 5 to less than 15 weight based on the total amount b) + C). The antifouling composition used in the present invention can contain at least one selected from the group consisting of d) metallic zinc and inorganic zinc compounds. Its usage is ”-to 0 based on the total amount b) ten c)-
90 (1% by weight, preferably 0 to 300% by weight). Component d) is useful for improving adhesion to wet substrates such as wet concrete. However, the total amount b
)+c) If the amount exceeds about 900% by weight based on c), it tends to reduce the seawater resistance of the strength composition, so the total amount should exceed 1b)+900ffi% based on c). used in large quantities. Examples of inorganic zinc compounds in component d) include zinc oxide, zinc carbonate, and zinc sulfate. The antifouling composition used in the present invention for coating structures that come into contact with seawater or may come into contact with seawater includes the above-mentioned essential components a) and b), as well as optional components C) and/or
or d) can contain other auxiliary additives. Such additives include fillers, dispersants, colorants,
Examples include thickening agents, antifoaming agents, and antisettling agents. Specific examples thereof include inorganic or organic powdery or fibrous fillers such as talc, kaolin, calcium carbonate, asbestos, pulp, etc., titanium oxide, chromium oxide, cobalt oxide, white lead, litharge, red iron, Inorganic materials such as ultramarine and molybdenum red

【1判および水分
散性有機顔料のごとき着色剤l、二どえばヘキサメタリ
ン酸ナトリウム、ポリA−キシJチレンアルキルフェニ
ルエーテル、ナフタレンスルホン酸縮合物、ポリアクリ
ル酸ナトリウム、ポリアクリル酸アンモニウムヒドロキ
シエチルセルロース等の増粘剤、たとえばポリメヂルシ
ロキサン、ツルピッ]・誘導体等のごとき消泡剤、たと
えばペントフィト、マイカ、シリカゲル等のごとき沈降
防庄剤等を例示することができる。 これらの添加剤の使用量は適宜に選択できるが、防汚性
被覆組成物の重量に基づいて約85重品%以下の使用量
を例示できる。 本発明に使用される組成物は以上に説明した必須成分a
)とb)、さらには任意成分C)および/またはd)お
よび/または添加剤を混合することにより形成できる。 その混合手段に特別な制約はないが、たとえば液状物質
は高速回転撹拌機を用いるのが最も容易であり、粉体物
質はスタティクミキサー、リボンブレンダー、等のごと
き適当な混合機を利用して混合することができる。 このような防汚性組成物を用いて海水に接触しまたは接
触の可能性のある構造物の防汚方法を提供することがで
きる。 上記構造物としては、すでに例示したような湾、港内施
設構造物、レジャー用構造物、水産用施設構造物、沿岸
構造物を例示できる。 このような海水に接触する構造物の上記接触部分を構成
する基材の例としては、たとえばコンクリート、石材、
各種スレート、ケイ酸カルシウム等の板、柱や管等のご
とき無機材l′1mu、アルミニウム、鉄、ステンレス
等の金属板、柱、管等のごとき金属無機基材等を例示す
ることができる。 上記被覆処理は、上記構造物に本発明に使用される組成
物を被覆できる任意の方法を利用して行うことができる
。たどえば、スプレーコーティング、ローラーコーティ
ング刷毛塗りコーティングその他任意の公知の被覆処1
5− ]!r! 方法を利用することができる。本発明に使用
される防汚性組成物は室温において自己硬化11でル)
るのぐ、組成物の形に形成した後、長時間貯蔵】ること
はできない。したがって少くとb必須成分a)とb)、
さらにはC)おJ:び/又はd)は被覆処理する現場も
しくはその付近e施用に先立って混合して利用するのが
J:い。被覆処理後、自己硬化するのを持てばよいが、
所望により硬化後期または硬化後に熱風、赤外線その他
適当な加熱手段で加熱して、物性の一層の良化や養□性
期間の短縮をすることもできる。 コーティング厚みは、所望により適宜選択できるが、た
とえば約20μ−〜約1籠のごときコーティング厚みを
例示することができる。 本発明方法は汚染を生ずる付着性海棲生物の付着防止に
優れた防止効果を示す。特にイガイ科に属する付着性海
棲生物たとえばムラナキイガイ等の防除に顕著に優れた
効果を発揮することができる。 16一 本発明に使用される防汚性被覆組成物は、いわゆる防汚
剤に該当する成分を含有しないにもかかわらず、汚染を
生ずる付着性海棲生物に対する優れた防汚効果を示し、
さらに有機塗膜形成成分からなる溶出性の防汚剤を含有
する有機質防汚塗料組成物とは異なって、実質的に無機
質の被覆組成物であって多くの □優れた利点を有する
。たとえば 1)防汚剤による二次汚染のトラブルなしに優れた防汚
効果を示しかつ該効果の優れた持続性を示す。 11)実質的に無機質でかつ施工硬化前には水溶性かつ
無臭の組成物であって、たとえば希釈、塗装用具の洗滌
、等は水を使用して行うことができる利点があり、ざら
にだとえば密閉条件下での塗装においても不快臭、引火
性乃至可燃性ガス発生等のおそれがなく、取扱いおよび
施工に際して優れた作業安全性および衛生安全性を有す
る。 謝)コンクリート壁をはじめとするセメント系基材と非
常に強い密着性を有し、湿潤面にし塗装に支障なく密着
強電が十分に保たれる。一般の右機質塗料では被塗装面
を十分に乾燥させる必要があり、塗装前の下地処理に相
当の労力を必要とするが本発明に使用される塗F1では
そのような下地処理を曹しない。 このJ、うにしで、被塗装面の乾燥操作が省略でさ“、
さらにプライマー施工も不要となって塗装操作および回
数が低減でき、施工が著しく容易でかつ工期の短縮が可
能である。 iV )室)品で自己硬化す(1の組成物であって、特
に加熱処理を必要とせずに、施工現場で容易に被覆処理
してぞのまま硬化塗膜を形成せしめることが可能であっ
て、硬化のための加熱処]j[jを省略できる。 以下比較例をJ:じえて、実施例により本発明の故態様
についてさらに詳しく説明する。 なお以下の例において試験方法および評価は以下のとお
りである。 (1)耐水性ニー 供試被覆組成物をガラス強化セメント板(5X 75x
 1501m )に、厚み約200 μmに塗装し20
℃、60%R1−1(相対湿態)の条件下で24時間養
生した試料を試験する。同試料を水中に720時間浸漬
した後、取り出して塗膜の表面状態を肉眼で観察し、日
本塗料検査協会の塗膜の評価基準(1970)により、
下記評価に従って白亜化、ふくれ及びはがれを評価する
。 1、白亜化 JISK5516の5.17.4に規程した白亜化試験
器を用いて印画紙を塗面に付着した離脱粉末の程度を標
準判定写真と比べて点数で示す。白亜化がないときを1
0点とする。4数値の大きいほど耐チヨーキング性が優
れていることを示す。 2、ふくれ ふくれのないものを10点とし、ふくれた=19一 部分の総合面積とふくれの大きさく平均径)の組合1!
にJ:り下表にしたがって等級判定する。 3、はがれ はがれのないしのを10点とし、はがれた部分の総合面
積により等級判定する。 (2)耐海水t!1. : − 一[記(1) m4水性に記載したと同様にして調整し
た試別について試験する。試料をJISK2510に定
める人工海水中に720時間浸漬した後、取り出して塗
膜の表面状態を20− 肉眼で観察し、上記(1)と同じ日本塗料検査協会の塗
膜の′f1′価填単にしたがって評価する。 (3)密着性ニー 供試被覆組成物を、含水率5%および含水率80%のコ
ンクリート板25X 75X 751■の夫々に、厚み
約200μmに塗装し、20℃、60%R]−1の条件
で24時間養生した試料について試、験する。試料を上
記(2)と同様な人工海水中に240時間浸漬した後、
取り出して、J I SA 6..909に定める平面
引張り試験法に従って、付着強度(IM/alt)を測
定し、その数値で示す。数値の大きいほど密着性が大で
あることを示す。 (4)可使時間(コーティング作業性)ニー被覆組成物
を形成するための成分を、20℃の恒温室内で混合した
後、30分毎にJ4 SK 54.02の塗料用フォー
ドカップによる流出時間の測定を行う。カップに、cL
り流出しなくなるまでの時間を可使時間(hrs)とす
る。 (Tの11.1間がり、(1かJぎるどコーティング作
業が不満足−C゛あろ1.望ま1)い可使時間は約1時
間以−1−である。 (5))防νi 14. (61rt llJ向棲生棲
生物する付着防止能力)ニー 供試被覆組成物を、ガラス強化セメン1〜板(5x 1
,000x 1.ooolm )に、厚み約20071
1ftに塗装し、2()て;、60%Rl−1の条件下
で2 ’I t+M間給生した試1′+1について試験
する。付ン1↑IロN棲イ1−物(主どしてイガイ類に
属する付着性海棲1−物たとえばムラサキイガイなど)
の牛zt する天然海水域の海面下的1111に上記試
わ1を2年間浸漬しイガイ類に属する付着性海棲生物の
中位面積当りの付着重量を測定し、ご3カ所の測定値の
算術平均値((1/TI’、)で表わ1゜ 以下の実施例および比較例の試験は大阪湾、松111沖
、自敷沖の3カ所における試験で示しlこ。 実施例1〜6および比較例、対照例 第1表に示した各被覆組成物を調整した。 これら被覆組成物について、上述した各種の試験を行っ
た結果を第1表に示した。 第1表中、使用した一〇にカッコr (sl記した数値
はヨウ索吸着部の伯を示す数値である。 また使用したケイ酸ソーダは5L0230重量%、Na
2[]110重量%固形分40重量%であり、ケイ酸カ
リは3LQ227重量%、K2Oは13重間%、固形分
40重量%である。 さらに第1表中、安全性を示す数値は、マウスの経口投
与急性毒性試験のL D 50値である。 または第1表中、(b)”’および(b)”’はケイ酸
アルカリの硬化剤として公知の他の硬化剤Ha2Str
6およびA2B PS 011 Tアル。
[Coloring agents such as 1 size and water-dispersible organic pigments, sodium hexametaphosphate, polyA-xyJ tyrene alkylphenyl ether, naphthalene sulfonic acid condensate, sodium polyacrylate, ammonium polyacrylate hydroxyethyl cellulose, etc. For example, thickeners such as polymethylsiloxane, antifoaming agents such as polymethyl siloxane and derivatives of polymethylsiloxane, and antisedimentation agents such as pentophyte, mica, silica gel, etc. can be used. The amount of these additives to be used can be selected as appropriate, but an example is an amount of about 85% by weight or less based on the weight of the antifouling coating composition. The composition used in the present invention has the above-described essential component a.
) and b), optional components C) and/or d), and/or additives. There are no particular restrictions on the mixing means, but for example, it is easiest to use a high-speed rotating stirrer for liquid substances, and for powder substances, it is easiest to use a suitable mixer such as a static mixer, ribbon blender, etc. Can be mixed. Using such an antifouling composition, it is possible to provide a method for antifouling a structure that comes into contact with seawater or has the possibility of coming into contact with seawater. Examples of the above-mentioned structures include bays, port facility structures, leisure structures, fishery facility structures, and coastal structures as already exemplified. Examples of base materials constituting the contact portion of structures that come into contact with seawater include concrete, stone,
Examples include various slates, inorganic materials such as plates such as calcium silicate plates, columns and pipes, and metal inorganic substrates such as metal plates, columns and tubes made of aluminum, iron, stainless steel and the like. The above-mentioned coating treatment can be performed using any method capable of coating the above-mentioned structure with the composition used in the present invention. For example, spray coating, roller coating, brush coating or any other known coating process.
5-]! r! method can be used. The antifouling composition used in the present invention is self-curing at room temperature (11).
After being formed into a composition, it cannot be stored for a long time. Therefore, at least b essential components a) and b),
Furthermore, it is recommended that C) and/or d) be mixed and used prior to application at or near the site to be coated. It is good to have a self-hardening material after coating, but
If desired, the material can be heated in the late stage of curing or after curing with hot air, infrared rays, or other suitable heating means to further improve the physical properties and shorten the curing period. The coating thickness can be appropriately selected as desired, and for example, a coating thickness of about 20 μm to about 1 cage can be exemplified. The method of the present invention exhibits an excellent prevention effect in preventing the adhesion of adherent marine organisms that cause pollution. In particular, it can exhibit a remarkable effect in controlling sessile marine organisms belonging to the family Mussel, such as the mussel. 161 The antifouling coating composition used in the present invention exhibits an excellent antifouling effect against adherent marine organisms that cause contamination, although it does not contain any components that correspond to so-called antifouling agents.
Furthermore, unlike organic antifouling paint compositions containing leachable antifouling agents consisting of organic film-forming components, the present invention is a substantially inorganic coating composition and has many excellent advantages. For example, 1) it exhibits an excellent antifouling effect without the trouble of secondary contamination caused by antifouling agents, and exhibits excellent sustainability of the effect; 11) It is a substantially inorganic composition that is water-soluble and odorless before application and hardening, and has the advantage that, for example, dilution, cleaning of painting tools, etc. can be carried out using water. For example, even when painting under sealed conditions, there is no risk of unpleasant odors, flammable or combustible gas generation, etc., and it has excellent work safety and sanitary safety during handling and construction. (Thank you) It has extremely strong adhesion to cement-based substrates such as concrete walls, and maintains sufficient adhesion and strong electricity without any problems when painting on wet surfaces. With general high quality paints, it is necessary to dry the surface to be coated sufficiently, and considerable effort is required to prepare the base before painting, but Coating F1 used in the present invention does not require such base treatment. . With this J, sea urchin, the drying operation of the surface to be painted is omitted.
Further, since primer application is not required, the number of painting operations and number of times can be reduced, and construction is extremely easy and the construction period can be shortened. iV) The composition of item 1 is self-curing and can be easily coated at the construction site to form a cured coating film without the need for particular heat treatment. [Heat treatment for curing] [j] can be omitted. Comparative examples are shown below, and the embodiments of the present invention will be explained in more detail with reference to Examples. In addition, in the following examples, test methods and evaluations are as follows. (1) The water-resistant knee test coating composition was coated on a glass-reinforced cement board (5x 75x
1501m), painted to a thickness of approximately 200 μm.
Samples aged for 24 hours at 60% R1-1 (relative humidity) are tested. After immersing the same sample in water for 720 hours, it was taken out and the surface condition of the paint film was observed with the naked eye, and it was determined according to the paint film evaluation standards (1970) of the Japan Paint Inspection Association.
Evaluate chalking, blistering, and peeling according to the evaluation below. 1. Chalking Using a chalking tester specified in 5.17.4 of JIS K5516, the degree of detached powder adhering to the coated surface of photographic paper is expressed as a score by comparing it with a standard judgment photograph. When there is no chalking 1
Score 0 points. 4 The larger the numerical value, the better the stiffening resistance. 2. No bulges are given 10 points, and bulges = 19 The combination of the total area of the part and the size of the bulges (average diameter) 1!
J: Grade according to the table below. 3. 10 points are given for peeling and no peeling, and the grade is determined based on the total area of the peeled parts. (2) Seawater resistant! 1. : - 1 [Description (1) Test the sample prepared in the same manner as described in m4 aqueous. After immersing the sample in artificial seawater specified in JISK 2510 for 720 hours, the surface condition of the coating film was observed with the naked eye for 20 hours, and the 'f1' value of the coating film was determined by the same Japanese Paint Inspection Association as in (1) above. Therefore evaluate. (3) The adhesion knee test coating composition was applied to a thickness of about 200 μm on concrete plates 25×75×751× with a moisture content of 5% and 80%, respectively, at 20°C and 60%R]-1. Samples cured for 24 hours under these conditions are tested. After immersing the sample in the same artificial seawater as in (2) above for 240 hours,
Take it out and J I SA 6. .. The adhesion strength (IM/alt) was measured according to the plane tensile test method defined in 909, and is expressed as a numerical value. The larger the value, the greater the adhesion. (4) Pot life (coating workability) After the components for forming the knee coating composition are mixed in a constant temperature room at 20°C, the run-off time is measured every 30 minutes using a J4 SK 54.02 paint Ford cup. Perform measurements. In the cup, cL
The time it takes for the product to stop flowing out is defined as the pot life (hrs). (11.1 interval of T, coating work is unsatisfactory at about 1 or J).Pot life is about 1 hour or more. (5)) Prevention νi 14. (61rt llJ Ability to prevent adhesion of probiotic organisms) The knee test coating composition was applied to glass-reinforced cement 1 to plate (5x 1
,000x 1. ooolm), thickness approximately 20071
Test 1'+1 was performed by painting 1 ft and supplying it for 2'It+M under the condition of 60% Rl-1. Attachment 1↑IroN Living things (sessile marine things that mainly belong to the mussels, such as mussels)
The above test sample 1 was immersed for 2 years in natural seawater below sea level 1111, and the weight of adherent marine organisms belonging to mussels per medium area was measured. Tests of Examples and Comparative Examples with an arithmetic mean value (expressed as (1/TI') of 1° or less were conducted at three locations: Osaka Bay, off Matsu 111, and off Jashiki. Examples 1 to 6 and Comparative Examples and Control Examples Each coating composition shown in Table 1 was prepared.The various tests described above were conducted on these coating compositions, and the results are shown in Table 1.In Table 1, the coating compositions used were 10 in parentheses r
2[]110% by weight solid content 40% by weight, potassium silicate 3LQ227% by weight, K2O 13% by weight, solid content 40% by weight. Further, in Table 1, the numerical value indicating safety is the LD50 value of the oral acute toxicity test in mice. In Table 1, (b)"' and (b)"' are other hardening agents Ha2Str known as hardening agents for alkali silicate.
6 and A2B PS 011 T al.

Claims (1)

【特許請求の範囲】 海水に接触する構造物の少くとも該接触表面に a)バインダーとしてのケイ酸アルカリb) Eつ素吸
着量が30〜300m(l I/(1−−0である活性
酸化マグネシウムを上記a)中の5LO2最に基づいて
15〜400重量% C)亜硫酸カルシウムを上記b)との合剤量b) +c
)に基づいて0〜15重量%未満 d)金属亜鉛および無機亜鉛化合物よりなる群から選ば
れた少くとも1種を上記合計量b)+c)に基づいて0
〜900重量% 以上a)、b)、C)、d)を含む被覆組成物を塗布し
、該塗布面に付着性海棲生物が付着することを防止する
ことを特徴とする海水接触物の防汚方法。
[Scope of Claims] At least the contact surface of the structure that comes into contact with seawater contains a) an alkali silicate as a binder b) an active compound having an adsorption amount of 30 to 300 m (l I/(1--0) 15 to 400% by weight of magnesium oxide based on 5LO2 in a) above C) Amount of calcium sulfite mixed with b) above b) +c
d) at least one selected from the group consisting of metallic zinc and inorganic zinc compounds based on the above total amount b) + c)
A seawater-contact article characterized in that a coating composition containing at least 900% by weight of a), b), C), and d) is applied to prevent adherent marine organisms from adhering to the coated surface. Antifouling method.
JP14346783A 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water Granted JPS6035065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14346783A JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14346783A JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Publications (2)

Publication Number Publication Date
JPS6035065A true JPS6035065A (en) 1985-02-22
JPS6241985B2 JPS6241985B2 (en) 1987-09-05

Family

ID=15339379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14346783A Granted JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Country Status (1)

Country Link
JP (1) JPS6035065A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023528A1 (en) * 1998-10-19 2000-04-27 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus therefor
CN1060197C (en) * 1997-11-28 2001-01-03 化学工业部海洋化工研究院 Non-toxic silicate antifoulant and its preparing method
EP1247576A1 (en) * 2001-04-04 2002-10-09 MITSUI ENGINEERING &amp; SHIPBUILDING CO., LTD Photocatalyst module, process for producing the same, and photocatalyst reaction apparatus
CN1101841C (en) * 1998-09-23 2003-02-19 化学工业部海洋化工研究院 Silicate compound anti-fouling paint
JP2012167360A (en) * 2011-01-26 2012-09-06 Kobe Steel Ltd Surface-treated metal material, method for manufacturing surface-treated metal material, heat exchanger, heat exchanging method, and marine structure
CN104535743A (en) * 2015-01-21 2015-04-22 中国海洋石油总公司 Evaluation device for dynamic scale-inhibitor adsorption of stratum minerals
WO2015156303A1 (en) * 2014-04-11 2015-10-15 新日鐵住金株式会社 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1306205C (en) * 1989-02-02 1992-08-11 Norman S. Martucci Coated braided hose method and assembly
JPH0680978U (en) * 1993-04-27 1994-11-15 ニチアス株式会社 Insulation hose for fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060197C (en) * 1997-11-28 2001-01-03 化学工业部海洋化工研究院 Non-toxic silicate antifoulant and its preparing method
CN1101841C (en) * 1998-09-23 2003-02-19 化学工业部海洋化工研究院 Silicate compound anti-fouling paint
WO2000023528A1 (en) * 1998-10-19 2000-04-27 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus therefor
US6673433B1 (en) 1998-10-19 2004-01-06 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
EP1247576A1 (en) * 2001-04-04 2002-10-09 MITSUI ENGINEERING &amp; SHIPBUILDING CO., LTD Photocatalyst module, process for producing the same, and photocatalyst reaction apparatus
US6849177B2 (en) 2001-04-04 2005-02-01 Mitsui Engineering & Shipbuilding Co., Ltd Photocatalyst reaction apparatus
JP2012167360A (en) * 2011-01-26 2012-09-06 Kobe Steel Ltd Surface-treated metal material, method for manufacturing surface-treated metal material, heat exchanger, heat exchanging method, and marine structure
WO2015156303A1 (en) * 2014-04-11 2015-10-15 新日鐵住金株式会社 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank
JP5916968B2 (en) * 2014-04-11 2016-05-11 新日鐵住金株式会社 Anticorrosion steel material and its manufacturing method, steel material anticorrosion method and ballast tank
CN104535743A (en) * 2015-01-21 2015-04-22 中国海洋石油总公司 Evaluation device for dynamic scale-inhibitor adsorption of stratum minerals

Also Published As

Publication number Publication date
JPS6241985B2 (en) 1987-09-05

Similar Documents

Publication Publication Date Title
US4513029A (en) Sea water antifouling method
US5919689A (en) Marine antifouling methods and compositions
US6342386B1 (en) Methods for removing undesired growth from a surface
JP6909894B2 (en) Antifouling paint composition, antifouling coating film, antifouling base material and its manufacturing method
GB1586395A (en) Biocidal glass additive for marine paints
US6001157A (en) Additive for antifouling paint
JPS6035065A (en) Antifouling method for material in contact with sea water
JPWO2020022431A1 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film, its manufacturing method, and repair method
Frydenberg et al. Silica aerogel-encapsulated biocide crystals for low-loading antifouling coatings: rheology, water absorption, hardness, and biofouling protection
JP2006291085A (en) Additive for anti-fouling coating
JPH08277372A (en) Coating composition
CN106186973B (en) A kind of antibacterial anticorrosive paint of photocatalysis and its coating processes
JPS626863B2 (en)
KR20210113060A (en) Paint system with anti-fouling character
JPH0567601B2 (en)
CN1772828A (en) Antifouling Coating for marine nesh cage cover
KR20010038856A (en) Paint additive to prevent water pollution
US2216514A (en) Corrosion-resisting composition
US7048788B2 (en) Ship bottom paint using coal ash and diatomaceous earth
JPH04279674A (en) Composition for coating concrete structure
JPS6357503A (en) Antifouling agent for aquatic life
JP2000239573A (en) Underwater antifouling coating material composition and underwater antifouling film comprising the same composition
JPS6241632B2 (en)
Del Amo et al. High-build soluble matrix antifouling paints based on vinyl resin
US3551369A (en) Antifouling compositions comprising a dispersion of a mixed powder in a carrier