JPS6241985B2 - - Google Patents

Info

Publication number
JPS6241985B2
JPS6241985B2 JP14346783A JP14346783A JPS6241985B2 JP S6241985 B2 JPS6241985 B2 JP S6241985B2 JP 14346783 A JP14346783 A JP 14346783A JP 14346783 A JP14346783 A JP 14346783A JP S6241985 B2 JPS6241985 B2 JP S6241985B2
Authority
JP
Japan
Prior art keywords
seawater
antifouling
amount
coating
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14346783A
Other languages
Japanese (ja)
Other versions
JPS6035065A (en
Inventor
Takaaki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP14346783A priority Critical patent/JPS6035065A/en
Publication of JPS6035065A publication Critical patent/JPS6035065A/en
Publication of JPS6241985B2 publication Critical patent/JPS6241985B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水に接触する構造物、たとえば、灯
浮標、ケイ留用ブイ、浮桟橋、浮防波提、冷却用
その他の用途の海水採取管ならびに排出管その他
の海水通路等に付着して汚染(フアウリング、
fouling)を生ずる付着性海棲生物、たとえば触
手動物、環形動物、節足動物、軟体動物、原索動
物などに属する付着性海棲生物による該構造物の
防汚方法に関する。 さらに詳しくは本発明は海水に接触する構造物
の少くとも該接触面に a バインダーとしてのケイ酸アルカリ b ヨウ素吸着量が30〜300mg・/g・MgOで
ある活性酸化マグネシウムを上記a)中の
SiO2量に基いて15〜400重量% c 亜硫酸カルシウムを上記b)との合計量b)
+c)に基づいて0〜15重量%未満 d 金属亜鉛および無機亜鉛化合物よりなる群か
ら選ばれた少くとも1種を上記合計量b)+
c)に基づいて0〜900重量%、 以上a),b),c),d)を含む被覆組成物を
塗布し、該塗布面に付着性海棲生物が付着するこ
とを防止することを特徴とする海水接触物の防汚
方法である。 近年、沿岸海域における海洋開発の進展に伴つ
て、種々の目的で大型の海洋構造物、その付属構
造物、その他類似の海水に接触する構造物の建
設、設置が増加している。 そして、このような海水に接触する構造物は、
海水による腐食の問題に加えて、該接触部または
その付近に汚染を生ずる付着性海棲生物が付着生
育する汚染のトラブルがあり、これを防止する効
果的な方法の開発が望まれている。 たとえば航路浮標、灯浮標、係留用ブイ、浮桟
橋、浮防波提、浮ドツク等の如き湾、港内施設構
造物、たとえば係留用船舶レストランやホテル、
係留浮フイツシング用構造物その他のレジヤー構
造物、たとえば養・蓄魚介用イケス構造物、魚業
用定置網その他類似の水産用施設構造等の海水接
触構造物は汚染を生ずる付着性海棲生物がこれら
構造物に付着生育することによつて、構造物基材
の腐食促進、重量増加に伴う不都合な沈下発生や
バランスの不安定化発生等の被害を受ける。また
沿岸における各種の施設や工場、発電所等で、冷
却用その他各種の利用目的で海水を利用する際
に、海水の採取管、排出管その他の水路や溝等の
沿岸構造物に、汚染を生ずる付着性海棲生物が付
着生育し、甚だしい場合には数十センチのオーダ
ーにも付着生育して、水路有効面積の減小、流れ
抵抗の増大、浮遊固形物除去用スクリーンの目詰
り、その他の被害を受ける。 このような海水接触構造物に対する汚染を生ず
る付着性海棲生物による被害を防止する目的で、
たとえば次亜塩素酸ナトリウムや塩素水等を注入
することが行われてきたが、環境汚染のトラブル
が伴うことが避けられないため、現在では防汚剤
を含む被覆組成物で被覆処理し、該組成物から有
効濃度の防汚剤の溶出を生じさせて、汚染を生ず
る付着性海棲生物を死滅または付着忌避させる方
法が一般的である。 たとえば防汚被覆組成物として利用される船底
塗料には、防汚剤(anti―fouling agent)として
亜酸化銅、テトラメチルチウラムサルフアイド、
ジンクメチルジチオカーバメート、トリフエニル
錫ハイドロオキサイド、トリフエニル錫アセテー
ト、トリフエニル錫クロライド等が利用されてい
る。しかしながら、このような防汚剤はその毒性
の点に問題があり、上記例示のごとき有機錫化合
物その他の防汚剤は、マウス経口投与24時間の
LD50がいずれも1000mg/Kg以下と可成り高い毒
性を示し、他の生物に対する悪影響が無視できず
安全性の点で疑問が残り、二次的な海洋汚染を引
き起すおそれを伴う。さらに汚染を生ずる付着性
海棲生物を死滅または付着忌避させるために十分
な有効濃度の防汚剤の溶出によつて汚染を防止す
るという防止機構から、当然のことながら上記二
次的な汚染のトラブルが回避し難い欠点に加え
て、該防止剤の溶出速度の調節が実際上困難であ
るという技術課題、溶出に伴つて防汚剤の含有量
が減少するため防汚効果の持続性にも本質的な欠
陥がある。 さらに、海水接触構造物に用いる汚染被覆組成
物であるため、波浪に対しておよび海水に対して
十分に耐えうる該構造物表面への密着強度および
耐海水性が要求される。 本発明者は、このように要求に満足し、かつ防
汚剤の溶出によつて汚染を防止するという防止機
構による従来組成物が本来的に有する前述のごと
き二次汚染のトラブルおよび持続性に乏しいトラ
ブルを克服できる新しいタイプの防汚剤を開発す
べく研究を進めてきた。 その結果、海洋二次汚染トラブルとなるような
汚染剤を全く含有せしめることなしに、満足すべ
き密着強度および耐海水性を示し。かつ顕著に優
れた防汚効果を発揮できる無機防汚性被覆組成物
の開発成功した。 本発明者の研究によればa)ケイ酸アルカリを
バインダーとしb)該a)中のSiO2量に基づい
て15〜500重量%の量の、ヨウ素吸着量が30〜300
mg・/g・MgOである活性酸化マグネシウム
を必須の構成成分とする無機質組成物が、所謂防
汚剤(anti―fouling agent)と呼ばれる成分を特
に含有しないに拘わらず、汚染を生ずる付着性海
棲生物に対して顕著に優れた防汚効果を示し、そ
の上、海水に接触しまたは接触する可能性のある
構造物への満足すべき密着強度および優れた耐海
水性を示すユニークな防汚性皮覆組成物となるこ
とが発見された。 この意外な作用効果を生ずる作用機構について
は不明であるが、後に多くの実施例および比較例
を挙げて実験的に示すとおり、本発明に使用され
る防汚性被覆組成物は優れた耐水性、耐海水性、
基材への密着性、コーテイング作業性等とともに
汚染を生ずる付着性海棲生物に対する優れた防汚
効果を兼備した新しいタイプの非環境汚染性の防
汚性被覆組成物であることが発見された。 本発明者は上記a)バインダーとしてのケイ酸
アルカリ、およびb)該a)中のSiO2量に基づ
いて15〜500重量%の量のヨウ素吸着量が30〜300
mg./g・MgOである活性酸化マグネシウム
とc)亜硫酸カルシウムよりなる硬化剤を含有す
る自己硬化性無機質組成物が、優れた作業性、耐
水性、耐候性、表面硬度、特に耐沸騰水性、耐熱
性等において優れた効果を発揮する組成となるこ
とを発見して特開昭57―56364号を提案した。し
かしながら、この提案においては、汚染を生ずる
付着性海棲生物に対する防汚効果については全く
言及されておらず、本発明者自らそのような意外
な効果については全く気付なかつた。したがつて
当然のことながら、本発明者の特開昭57―56364
号の提案にはそのような新しい用途を示唆し得る
いかなる開示も記載されていない。 今回、必須成分である前記(a)および(b)、任意成
分である前記(c)および/または前記(d)を含む組成
物が海水接触構造物に汚染を生じさせる付着性海
棲生物に対して、卓越した防汚効果を発揮し、し
かも二次汚染発生の原因となるような防汚剤を全
く含有しないにも拘らず顕著に優れた防汚効果を
持続性良く示し、かつ波浪に耐える満足すべき密
着強度が耐海水性を維持できることが発見され
た。 さらにまた、特に低温の冷海水域を除いて世界
の沿岸域に広く分布し、汚染の原因となるイガイ
科に属する付着性海棲生物、たとえばムラサキイ
ガイ等に対して特に優れた防汚効果を発揮するこ
とが判つた。 したがつて本発明の目的は海水に接触しまたは
海水に接触する可能性のある構造物を上記防汚性
組成物で被覆処理する防汚方法を提供することに
ある。 本発明に使用される防汚性被覆組成物は下記
a)およびb)を必須成分として含有する。 a バインダーとしてケイ酸アルカリ、 b ヨウ素吸着量が30〜300mg・/g・MgOで
ある活性酸化マグネシウムを上記a)中の
SiO2量に基づいて15〜400重量% 上記a)ケイ酸アルカリの例としてはケイ酸ナ
トリウム、ケイ酸カリウム、ケイ酸リチウム、四
級アンモニウムシリケート、これらの任意の2種
またはそれ以上の混合物を例示することができ
る。これらケイ酸アルカリの固形分は適宜選択で
きるが、たとえば約15〜50重量%の如き固形分含
量を例示することができる。上記b)活性酸化マ
グネシウムは市場で入手でき、本発明に利用でき
る。その製法も公知であり、たとえば塩基性炭酸
マグネシウム、炭酸マグネシウム、水酸化マグネ
シウム等を、たとえば粒径数100μ以下に粉砕
し、たとえばロータリーキルンその他の適当な焼
成装置で焼成し、焼成組成物をたとえばペブルミ
ルその他の適当な粉砕機で粉砕じ、所望により、
篩分け等の手段で粒度を調節して所望の活性酸化
マグネシウムを得ることができる。 本発明においては、上述の様にして得ることが
できる活性酸化マグネシウムの中でヨウ素吸着量
が30〜300mg・/g・MgOの活性酸化マグネシ
ウムを選択して使用する。ヨウ素吸着量が上記範
囲を離れて小さすぎるとa)成分に対する硬化作
用が不十分になる傾向があり、さらに耐海水性の
点でも悪化する。逆にヨウ素吸着量が上記範囲を
離れて大きすぎるとa)成分に対する硬化作用、
特に硬化速度が過大となつて混合時にきわめて短
時間でゲル化を起し、被覆処理における作業性が
著しく悪くなる。したがつて上記ヨウ素吸着量範
囲において適宜に選択利用される。 該b)活性酸化マグネシウムの量は、該a)の
バインダーとしてケイ酸アルカリ中のSiO2量に
基づいて15〜400重量%好ましくは30〜300重量%
である。この量範囲を逸脱して、b)酸化マグネ
シウムの量が多すぎると被覆処理に際して作業性
が悪くなり、さらに耐海水性の悪化原因となるの
で、上記範囲量において選択使用される。 本発明に使用される防汚性被覆組成物はc)亜
硫酸カルシウムをさらに含有することができる。
その使用量は上記b)との合計量b)+c)に基
づいて15重量%未満、すなわち該合計量に基づい
てb)活性酸化マグネシウムが85重量%を越える
主成分量を占めるような量で使用できる。c)亜
硫酸カルシウム使用量が上記合計量b)+c)に
基づいて0〜15重量%未満の範囲を逸脱して多量
になると、たとえば長期に海水と接触した際に、
塗膜にチヨーキングが発生するトラブルがあり、
さらに汚染を生ずる付着性海棲生物に対する防汚
効果の持続性が失われるのでc)成分を利用する
場合には合計量b)+c)を基準として15重量%
未満の量で利用される。c)亜硫酸カルシウムの
併用は基材との密着性の一層の向上に役立つ。好
ましくは該合計量b)+c)に基づいて5〜15重
量未満の量で利用できる。 本発明に使用される防汚性組成物d)金属亜鉛
および無機亜鉛化合物よりなる群から選ばれた少
くとも1種を含有することができる。その使用量
は上記合計量b)+c)に基づいて0〜900重量
%、好ましくは0〜300重量%である。該d)成
分は湿潤したコンクリート面のごとき湿つた基材
との密着性の向上に役立つ。しかしながら該合計
量b)+c)に基づいて約900重量%を越えて多す
ぎると防汚性組成物の耐海水性を降下させる傾向
があるので合計量b)+c)に基づいて900重量%
を越えぬ量で利用される。このようなd)成分
中、無機亜鉛化合物の例としては、酸化亜鉛、炭
酸亜鉛、硫酸亜鉛の如き亜鉛化合物を例示するこ
とができる。 本発明に使用される海水に接触するかまたは接
触する可能性のある構造物を被覆する防汚性組成
物は、以上述べた必須成分a)とb)、さらには
任意成分c)および/またはd)のほかに、他の
補助添加剤を含有することができる。 このような添加剤としては、充填剤、分散剤、
着色剤、増粘剤、消泡剤、沈降防止剤等を挙げる
ことができる。それらの具体例としては、たとえ
ばタルク、カオリン、炭酸カルシウム、アスベス
ト、パルプ等のごとき無機または有機の粉末状な
いし繊維状充填剤、たとえば酸化チタン、酸化ク
ロム、酸化コバルト、鉛白、リサージ、ベンガ
ラ、群青、モリブデン赤等の無機顔料および水分
散性有機顔料のごとき着色剤たとえばヘキサメタ
リン酸ナトリウム、ポリオキシエチレンアルキル
フエニルエーテル、ナフタレンスルホン酸縮合
物、ポリアクリル酸ナトリウム、ポリアクリル酸
アンモニウム、ヒドロキシエチルセルロース等の
増粘剤、たとえばポリメチルシロキサン、ソルビ
ツト誘導体等のごとき消泡剤、たとえばベントナ
イト、マイカ、シリカゲル等のごとき沈降防止剤
等を例示することができる。 これらの添加剤の使用量は適宜に選択できる
が、防汚性被覆組成物の重量に基づいて約85重量
%以下の使用量を例示できる。 本発明に使用される組成物は以上に説明した必
須成分a)とb)、さらには任意成分c)およ
び/またはd)および/または添加剤を混合する
ことにより形成できる。その混合手段に特別な制
約はないが、たとえば液状物質は高速回転撹拌機
を用いるのが最も容易であり、粉体物質はスタテ
イクミキサー、リボンブレンダー、等のごとき適
当な混合機を利用して混合することができる。 このような防汚性組成物を用いて海水に接触し
または接触の可能性のある構造物の防汚方法を提
供することができる。 上記構造物としては、すでに例示したような
湾、港内施設構造物、レジヤー用構造物、水産用
施設構造物、沿岸構造物を例示できる。このよう
な海水に接触する構造物の上記接触部分を構成す
る基材の例としては、たとえばコンクリート、石
材、各種スレート、ケイ酸カルシウム等の板、柱
や管等のごとき無機材料基材、アルミニウム、
鉄、ステンレス等の金属板、柱、管等のごとき金
属無機基材等を例示することができる。 上記被覆処理は、上記構造物に本発明に使用さ
れる組成物を被覆できる任意の方法を利用して行
うことができる。たとえば、スプレーコーテイン
グ、ローラーコーテイング刷毛塗りコーテイング
その他任意の公知の被覆処理方法を利用すること
ができる。本発明に使用される防汚性組成物は室
温において自己硬化性であるので、組成物の形に
形成した後、長時間貯蔵することはできない。し
たがつて少くとも必須成分a)とb)、さらには
c)および/又はd)は被覆処理する現場もしく
はその付近で施用に先立つて混合して利用するの
がよい。被覆処理後、自己硬化するのを待てばよ
いが、所望により硬化後期または硬化後に熱風、
赤外線その他適当な加熱手段で加熱して、物性の
一層の良化や養生期間の短縮をすることもでき
る。 コーテイング厚みは、所望により適宜選択でき
るが、たとえば約20μm〜約1mmのごときコーテ
イング厚みを例示することができる。 本発明方法は汚染を生ずる付着性海棲生物の付
着防止に優れた防止効果を示す。特にイガイ科に
属する付着性海棲生物たとえばムラサキイガイ等
の防除に顕著に優れた効果を発揮することができ
る。 本発明に使用される防汚性被覆組成物は、いわ
ゆる防汚剤に該当する成分を含有しないにもかか
わらず、汚染を生ずる付着性海棲生物に対する優
れた防汚効果を示し、さらに有機塗膜形成成分か
らなる溶出性の防汚剤を含有する有機質防汚塗料
組成物とは異なつて、実質的に無機質の被覆組成
物であつて多くの優れた利点を有する。たとえば 防汚剤による二次汚染のトラブルなしに優れ
た防汚効果を示しかつ該効果の優れた持続性を
示す。 実質的に無機質でかつ施工硬化前には水溶性
かつ無臭の組成物であつて、たとえば希釈、塗
装用具の洗滌、等は水を使用して行うことがで
きる利点があり、さらにたとえば密閉条件下で
の塗装においても不快臭、引火性乃至可燃性ガ
ス発生等のおそれがなく、取扱いおよび施工に
際して優れた作業安全性および衛性安全性を有
する。 コンクリート壁をはじめとするセメント系基
材と非常に強い密着性を有し、湿潤面にも塗装
に支障なく密着強度が十分に保たれる。一般の
有機質塗料では被塗装面を十分に乾燥させる必
要があり、塗装前の下地処理に相当の労力を必
要とするが本発明に使用される塗料ではそのよ
うな下地処理を要しない。 このようにして、被塗装面の乾燥操作が省略
でき、さらにプライマー施工も不要となつて塗
装操作および回数が低減でき、施工が著しく容
易でかつ工期の短縮が可能である。 室温で自己硬化性の組成物であつて、特に加
熱処理を必要とせずに、施工現場で容易に被覆
処理してそのまま硬化塗膜を形成せしめること
が可能であつて、硬化のための加熱処理を省略
できる。 以下比較例をまじえて、実施例により本発明の
数態様についてさらに詳しく説明する。 なお以下の例において試験方法および評価は以
下のとおりである。 (1) 耐水性:― 供試被覆組成物をガラス強化セメント板(5
×75×150mm)に、厚み約200μmに塗装し20
℃、60%RH(相対湿度)の条件下で24時間養
生した試料を試験する。同試料を水中に720時
間浸清した後、取り出して塗膜の表面状態を肉
眼で観察し、日本塗料検査協会の塗膜の評価基
準(1970)により、下記評価に従つて白亜化、
ふくれ及びはがれを評価する。 1 白亜化 JISK5516の5,17,4に規程した白亜化
試験器を用いて印画紙を塗面に付着した離脱
粉末の程度を標準判定写真と比べて点数で示
す。白亜化がないときを10点とする。数値の
大きいほど耐チヨーキング性が優れているこ
とを示す。 2 ふくれ ふくれのないものを10点とし、ふくれた部
分の総合面積とふくれの大きさ(平均径)の
組合せにより下表にしたがつて等級判定す
る。
The present invention is designed to prevent contamination by adhesion to structures that come into contact with seawater, such as light buoys, buoys for retaining water, floating piers, floating breakwaters, seawater collection pipes for cooling and other uses, discharge pipes, and other seawater passages. Furling,
The present invention relates to a method for preventing fouling of structures by sessile marine organisms that cause fouling, such as sessile marine organisms belonging to tentacles, annelids, arthropods, molluscs, and protochordates. More specifically, the present invention includes a) alkali silicate as a binder, b) activated magnesium oxide having an iodine adsorption amount of 30 to 300 mg/g/MgO on at least the contact surface of a structure that comes into contact with seawater.
15 to 400% by weight based on the amount of SiO 2 c Total amount of calcium sulfite with b) above b)
+0 to less than 15% by weight based on c) d at least one selected from the group consisting of metallic zinc and inorganic zinc compounds in the above total amount b) +
Applying a coating composition containing 0 to 900% by weight or more of a), b), c), and d) based on c) to prevent adherent marine organisms from adhering to the coated surface. This is a method for preventing fouling of objects that come into contact with seawater. In recent years, with the progress of marine development in coastal waters, the construction and installation of large marine structures, their auxiliary structures, and other similar structures that come into contact with seawater have increased for various purposes. Structures that come into contact with seawater are
In addition to the problem of corrosion caused by seawater, there is also the problem of contamination caused by the growth of adherent marine organisms that cause contamination at or near the contact area, and it is desired to develop an effective method for preventing this problem. For example, navigational buoys, light buoys, mooring buoys, floating piers, floating breakwaters, floating docks, etc., bay and port facility structures, such as mooring ships restaurants and hotels,
Structures that come in contact with seawater, such as moored floating fishing structures and other ledger structures, such as ike structures for fish farming, fixed fishing nets, and similar aquaculture facility structures, are protected against the presence of sessile marine organisms that can cause contamination. By growing attached to structures, they cause damage such as acceleration of corrosion of the structure's base material, inconvenient sinking due to increased weight, and destabilization of balance. In addition, when seawater is used for cooling and other purposes at various facilities, factories, power plants, etc. on the coast, contamination occurs in coastal structures such as seawater collection pipes, discharge pipes, and other waterways and ditches. The resulting adherent marine organisms grow adherently, and in extreme cases, adherently grow on the order of tens of centimeters, reducing the effective area of waterways, increasing flow resistance, clogging screens for removing suspended solids, etc. suffer damage. In order to prevent damage caused by adherent marine organisms that cause contamination to structures that come into contact with seawater,
For example, injection of sodium hypochlorite or chlorinated water, etc. has been carried out, but this inevitably causes troubles of environmental contamination.Currently, coating treatment is carried out with a coating composition containing an antifouling agent. A common method is to cause the elution of an effective concentration of an antifouling agent from a composition to kill or repel adherent marine organisms that cause contamination. For example, ship bottom paints used as antifouling coating compositions include cuprous oxide, tetramethylthiuram sulfide,
Zinc methyl dithiocarbamate, triphenyltin hydroxide, triphenyltin acetate, triphenyltin chloride, etc. are used. However, such antifouling agents have a problem with their toxicity, and organotin compounds and other antifouling agents such as those exemplified above have a negative effect on mice after 24 hours of oral administration.
All of them exhibit fairly high toxicity with an LD 50 of 1000 mg/Kg or less, and their negative effects on other living organisms cannot be ignored, leaving questions about safety and the risk of causing secondary marine pollution. Furthermore, due to the prevention mechanism that prevents contamination by elution of an effective concentration of antifouling agent sufficient to kill or repel adherent marine organisms that cause contamination, it is natural that the secondary contamination mentioned above is prevented. In addition to the disadvantage that troubles are difficult to avoid, there are technical issues such as the fact that it is practically difficult to control the elution rate of the inhibitor, and the sustainability of the antifouling effect because the content of the antifouling agent decreases as it elutes. There is an inherent flaw. Furthermore, since this is a contaminated coating composition used for a structure in contact with seawater, it is required to have adhesion strength to the surface of the structure and seawater resistance that can sufficiently withstand waves and seawater. The present inventor has developed a method that satisfies these requirements and solves the above-mentioned problems and persistence of secondary contamination inherent in conventional compositions with a prevention mechanism that prevents contamination by elution of an antifouling agent. We have been conducting research to develop a new type of antifouling agent that can overcome the problems of poor quality. As a result, it exhibited satisfactory adhesion strength and seawater resistance without containing any contaminants that would cause secondary marine pollution problems. We have also succeeded in developing an inorganic antifouling coating composition that can exhibit significantly superior antifouling effects. According to the research of the present inventor, a) using alkali silicate as a binder and b) adsorbing iodine in an amount of 15 to 500% by weight based on the amount of SiO2 in a) is 30 to 300%.
Even though the inorganic composition containing active magnesium oxide (mg/g/MgO) as an essential component does not contain any so-called anti-fouling agent, it is still a sticky material that causes pollution. A unique antifouling product that exhibits outstanding antifouling effects against living organisms, as well as satisfactory adhesion strength and excellent seawater resistance to structures that come into contact with or may come into contact with seawater. It has been discovered that the present invention provides a skin covering composition. Although the mechanism of action that produces this unexpected effect is unknown, as will be shown experimentally later with many examples and comparative examples, the antifouling coating composition used in the present invention has excellent water resistance. , seawater resistance,
It has been discovered that this is a new type of non-environmentally polluting antifouling coating composition that has excellent antifouling effects against adherent marine organisms that cause contamination as well as adhesion to substrates and coating workability. . The present inventor has discovered that a) an alkali silicate as a binder, and b) an amount of iodine adsorbed in an amount of 15 to 500% by weight based on the amount of SiO 2 in a) is 30 to 300%.
mg. The self-curing inorganic composition containing activated magnesium oxide, which is /g. He discovered that it has a composition that exhibits excellent effects in such applications, and proposed Japanese Patent Application Laid-Open No. 57-56364. However, this proposal does not mention at all the antifouling effect against adherent marine organisms that cause contamination, and the inventor himself was completely unaware of such a surprising effect. Therefore, as a matter of course, the present inventor's Japanese Patent Application Laid-Open No. 57-56364
The proposed issue does not contain any disclosures that could suggest such new uses. This time, we have discovered that a composition containing the essential components (a) and (b) and the optional components (c) and/or (d) is effective against adherent marine organisms that contaminate seawater contact structures. On the other hand, it exhibits an outstanding antifouling effect, and even though it does not contain any antifouling agents that can cause secondary pollution, it shows a remarkable and long-lasting antifouling effect and is resistant to waves. It has been discovered that satisfactory adhesion strength withstands seawater resistance. Furthermore, it exhibits particularly excellent antifouling effects against adherent marine organisms belonging to the Mussel family, which are widely distributed in coastal areas around the world and cause pollution, except for particularly low-temperature seawater areas, such as the mussel. It turned out that it would. Accordingly, an object of the present invention is to provide an antifouling method for coating structures that come into contact with seawater or are likely to come into contact with seawater with the above-mentioned antifouling composition. The antifouling coating composition used in the present invention contains the following a) and b) as essential components. a) an alkali silicate as a binder, b) active magnesium oxide with an iodine adsorption amount of 30 to 300 mg/g/MgO in the above a).
15 to 400% by weight based on the amount of SiO2 Examples of the a) alkali silicate include sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, and mixtures of any two or more of these. I can give an example. The solid content of these alkali silicates can be selected as appropriate, and may be, for example, about 15 to 50% by weight. The above b) activated magnesium oxide is commercially available and can be used in the present invention. The manufacturing method is also known, for example, by pulverizing basic magnesium carbonate, magnesium carbonate, magnesium hydroxide, etc. into particles with a particle size of several 100 microns or less, firing them in a rotary kiln or other suitable firing equipment, and turning the fired composition into a pebble mill, for example. Grind with other suitable grinder, if desired.
The desired active magnesium oxide can be obtained by controlling the particle size by means such as sieving. In the present invention, activated magnesium oxide having an iodine adsorption amount of 30 to 300 mg./g.MgO is selected from among the activated magnesium oxides that can be obtained as described above. If the amount of iodine adsorption is too small outside the above range, the curing effect on component a) tends to be insufficient, and seawater resistance also deteriorates. On the other hand, if the amount of iodine adsorbed is too large outside the above range, a) hardening effect on the component;
In particular, if the curing speed becomes too high, gelation occurs in a very short period of time during mixing, and workability in coating processing becomes extremely poor. Therefore, it is appropriately selected and used within the above range of iodine adsorption amount. b) The amount of active magnesium oxide is from 15 to 400% by weight, preferably from 30 to 300% by weight, based on the amount of SiO2 in the alkali silicate as binder in a).
It is. If the amount of magnesium oxide (b) is too large outside this amount range, the workability during coating treatment will be poor and it will also cause deterioration of seawater resistance, so the amount is selected within the above range. The antifouling coating composition used in the present invention can further contain c) calcium sulfite.
The amount used is less than 15% by weight based on the total amount b) + c) of b) above, that is, the amount such that b) active magnesium oxide accounts for more than 85% by weight of the main component based on the total amount. Can be used. c) If the amount of calcium sulfite used exceeds the range of 0 to less than 15% by weight based on the above total amount b) + c), for example, when in contact with seawater for a long period of time,
There is a problem with the paint film being chocked.
Furthermore, since the sustainability of the antifouling effect against adherent marine organisms that cause contamination is lost, when using component c), the total amount b) + c) should be 15% by weight.
used in quantities less than c) The combined use of calcium sulfite helps to further improve the adhesion to the base material. Preferably it is available in an amount of 5 to less than 15 weight based on the total amount b)+c). The antifouling composition used in the present invention d) can contain at least one selected from the group consisting of metallic zinc and inorganic zinc compounds. The amount used is from 0 to 900% by weight, preferably from 0 to 300% by weight, based on the above total amount b)+c). Component d) helps improve adhesion to wet substrates such as wet concrete surfaces. However, if the amount exceeds about 900% by weight based on the total amount b) + c), it tends to reduce the seawater resistance of the antifouling composition.
It is used in an amount not exceeding . Examples of inorganic zinc compounds in component d) include zinc oxide, zinc carbonate, and zinc sulfate. The antifouling composition used in the present invention for coating structures that come into contact with seawater or may come into contact with seawater includes the above-mentioned essential components a) and b), as well as optional components c) and/or Besides d) other auxiliary additives can be contained. Such additives include fillers, dispersants,
Colorants, thickeners, antifoaming agents, anti-settling agents, etc. can be mentioned. Specific examples thereof include inorganic or organic powdery or fibrous fillers such as talc, kaolin, calcium carbonate, asbestos, pulp, etc., titanium oxide, chromium oxide, cobalt oxide, white lead, litharge, red iron, Coloring agents such as inorganic pigments such as ultramarine and molybdenum red, and water-dispersible organic pigments such as sodium hexametaphosphate, polyoxyethylene alkyl phenyl ether, naphthalene sulfonic acid condensate, sodium polyacrylate, ammonium polyacrylate, hydroxyethyl cellulose, etc. Examples include thickeners such as polymethylsiloxane, antifoaming agents such as sorbit derivatives, antisettling agents such as bentonite, mica, silica gel, etc. The amount of these additives to be used can be selected as appropriate, but an example of the amount used is about 85% by weight or less based on the weight of the antifouling coating composition. The composition used in the present invention can be formed by mixing the above-described essential components a) and b), optional components c) and/or d), and/or additives. There are no special restrictions on the mixing means, but for example, it is easiest to use a high-speed rotating stirrer for liquid substances, and for powder substances, it is easiest to use a suitable mixer such as a static mixer, ribbon blender, etc. Can be mixed. Using such an antifouling composition, it is possible to provide a method for antifouling a structure that comes into contact with seawater or has the possibility of coming into contact with seawater. Examples of the above-mentioned structures include bays, port facility structures, leisure structures, fishery facility structures, and coastal structures as already exemplified. Examples of base materials constituting the above-mentioned contact portions of structures that come into contact with seawater include concrete, stone, various types of slate, boards made of calcium silicate, inorganic base materials such as pillars and pipes, and aluminum. ,
Examples include metal plates such as iron and stainless steel, metal inorganic base materials such as columns, pipes, and the like. The above-mentioned coating treatment can be performed using any method capable of coating the above-mentioned structure with the composition used in the present invention. For example, spray coating, roller coating, brush coating, or any other known coating method may be utilized. Since the antifouling composition used in the present invention is self-curing at room temperature, it cannot be stored for a long time after being formed into a composition. Therefore, at least the essential components a) and b), as well as c) and/or d), are preferably mixed prior to application at or near the coating site. After coating, you can wait for it to self-cure, but if desired, hot air,
It is also possible to further improve the physical properties and shorten the curing period by heating with infrared rays or other suitable heating means. The coating thickness can be selected as desired, and may be, for example, about 20 μm to about 1 mm. The method of the present invention exhibits an excellent prevention effect in preventing the adhesion of adherent marine organisms that cause pollution. In particular, it can exhibit a remarkable effect in controlling sessile marine organisms belonging to the family Mussel, such as the mussel. Although the antifouling coating composition used in the present invention does not contain any components that correspond to so-called antifouling agents, it exhibits an excellent antifouling effect against adherent marine organisms that cause pollution, and furthermore, it Unlike organic antifouling coating compositions containing leachable antifouling agents consisting of film-forming components, the present invention is a substantially inorganic coating composition and has many advantages. For example, it exhibits an excellent antifouling effect without the trouble of secondary contamination caused by antifouling agents, and exhibits excellent sustainability of this effect. The composition is substantially inorganic, water-soluble and odorless before application and hardening, and has the advantage that dilution, cleaning of painting tools, etc. can be carried out using water, and furthermore, it can be used, for example, under closed conditions. There is no risk of unpleasant odors or generation of flammable or combustible gases even when painting with the paint, and it has excellent work safety and sanitary safety during handling and construction. It has extremely strong adhesion to cement-based substrates such as concrete walls, and maintains sufficient adhesion strength even on wet surfaces without any problems in painting. With ordinary organic paints, it is necessary to sufficiently dry the surface to be painted, and considerable effort is required for surface treatment before painting, but the paint used in the present invention does not require such surface treatment. In this way, the drying operation of the surface to be coated can be omitted, and the application of a primer is also no longer necessary, so that the number of coating operations and the number of times can be reduced, and the construction is extremely easy and the construction period can be shortened. The composition is self-curing at room temperature, and can be easily coated at the construction site to form a cured coating without requiring any particular heat treatment. can be omitted. EXAMPLES Several embodiments of the present invention will be explained in more detail below using Examples along with Comparative Examples. In addition, the test method and evaluation in the following examples are as follows. (1) Water resistance: - The test coating composition was coated on a glass-reinforced cement board (5
×75×150mm), painted to a thickness of approximately 200μm.
Samples cured for 24 hours at ℃ and 60% RH (relative humidity) are tested. After immersing the same sample in water for 720 hours, the surface condition of the paint film was observed with the naked eye.
Assess for blistering and peeling. 1 Chalking Using a chalking tester specified in 5, 17, and 4 of JISK5516, the degree of detached powder adhering to the painted surface of photographic paper is expressed as a score by comparing it with a standard judgment photograph. Score 10 when there is no chalking. The larger the value, the better the stiffening resistance. 2. Blisters Items with no blisters are given 10 points, and graded according to the table below based on the combination of the total area of the blisters and the size of the blisters (average diameter).

【表】 3 はがれ はがれのないものを10点とし、はがれた部
分の総合面積により等級判定する。
[Table] 3 Peeling Items with no peeling are given 10 points, and the grade is determined based on the total area of the peeled parts.

【表】 (2) 耐海水性:― 上記(1)耐水性に記載したと同様にして調整し
た試料について試験する。試料をJISK2510に
定める人工海水中に720時間浸清した後、取り
出して塗膜の表面状態を肉眼で観察し、上記(1)
と同じ日本塗料検査協会の塗膜の評価基準にし
たがつて評価する。 (3) 密着性:―供試被覆組成物を、含水率5%お
よび含水率80%のコンンクリート板25×75×75
mmの夫々に、厚み約200μmに塗装し、20℃、
60%RHの条件で24時間養生した試料について
試験する。試料を上記(2)と同様な人工海水中に
240時間浸漬した後、取り出して、JISA6909に
定める平面引張り試験法に従つて、付着強度
(Kg/cm2)を測定し、その数値で示す。数値の
大きいほど密着性が大であることを示す。 (4) 可使時間(コーテイング作業性):― 被覆組成物を形成するための成分を、20℃の
恒温室内で混合した後、30分毎にJISK5402の
塗料用フオードカツプによる流出時間の測定を
行う。カツプにより流出しなくなるまでの時間
の可使時間(hrs)とする。この時間が短かす
ぎるとコーテイング作業が不満足である。望ま
しい可使時間は約1時間以上である。 (5) 防汚性(付着性海棲生物に対する付着防止能
力):― 供試被覆組成物を、ガラス強化セメント板
(5×1000×1000mm)に、厚み約200μmに塗装
し、20℃、60%RHの条件下で24時間養生した
試料について試験する。付着性海棲生物(主と
してイガイ類に属する付着性海棲生物たとえば
ムラサキイガイなど)の生息する天然海水域の
海面下約1mに上記試料を2年間浸漬しイガイ
類に属する付着性海棲生物の単位面積当りの付
着重量を測定し、3カ所の測定値の算術平均値
(g/m2)で表わす。 以下の実施例および比較例の試験は大阪湾、松
山沖、倉敷沖の3カ所における試験で示した。 実施例1〜6および比較例、対照例 第1表に示した各被覆組成物を調整した。これ
ら被覆組成物について、上述した各種の試験を行
つた結果を第1表に示した。 第1表中、使用したMgOにカツコで付記した
数値はヨウ素吸着量の値を示す数値である。また
使用したケイ酸ソーダはSiO230重量%、Na2O10
重量%、固形分40重量%であり、ケイ酸カリは
SiO227重量%、K2Oは13重量%、固形分40重量%
である。 さらに第1表中、安全性を示す数値は、マウス
の経口投与急性毒性試験LD50値である。 または第1表中、(b)および(b)〓はケイ酸アル
カリの硬化剤として公知の他の硬化剤Na2SiF6
よびAl3P5O10である。
[Table] (2) Seawater resistance: - Test samples prepared in the same manner as described in (1) Water resistance above. After immersing the sample in artificial seawater specified in JISK2510 for 720 hours, it was taken out and the surface condition of the coating film was observed with the naked eye.
Evaluated according to the same coating film evaluation standards of the Japan Paint Inspection Association. (3) Adhesion: - The test coating composition was applied to a 25 x 75 x 75 concrete board with a moisture content of 5% and a moisture content of 80%.
Coat each mm to a thickness of approximately 200μm, and heat at 20℃.
Test samples cured for 24 hours at 60% RH. Place the sample in artificial seawater similar to (2) above.
After being immersed for 240 hours, it was taken out and the adhesive strength (Kg/cm 2 ) was measured according to the plane tensile test method specified in JISA6909, and the value is shown. The larger the value, the greater the adhesion. (4) Pot life (coating workability): - After mixing the ingredients to form the coating composition in a constant temperature room at 20℃, measure the runoff time using a JISK5402 paint food cup every 30 minutes. . The pot life (hrs) is the time until it no longer flows out due to the cup. If this time is too short, the coating operation will be unsatisfactory. A desirable pot life is about 1 hour or more. (5) Antifouling property (ability to prevent adhesion to adherent marine organisms): - The test coating composition was applied to a glass reinforced cement board (5 x 1000 x 1000 mm) to a thickness of approximately 200 μm, and the coating was heated at 20°C and 60°C. Test samples cured for 24 hours under %RH conditions. The above sample was immersed for two years approximately 1 m below the sea surface in a natural sea area inhabited by sessile marine organisms (mainly sessile marine organisms belonging to the mussel class, such as mussels), and the unit of sessile marine organisms belonging to the mussel class was determined. The adhered weight per area was measured and expressed as the arithmetic mean value (g/m 2 ) of the measured values at three locations. The following tests in Examples and Comparative Examples were conducted at three locations: Osaka Bay, off the coast of Matsuyama, and off the coast of Kurashiki. Examples 1 to 6 and comparative and control examples Each coating composition shown in Table 1 was prepared. The various tests described above were conducted on these coating compositions, and the results are shown in Table 1. In Table 1, the numbers added in brackets to the MgO used indicate the amount of iodine adsorbed. The sodium silicate used was 30% by weight of SiO 2 and 10% of Na 2 O.
weight%, solid content is 40% by weight, and potassium silicate is
SiO 2 27% by weight, K 2 O 13% by weight, solid content 40% by weight
It is. Further, in Table 1, the numerical value indicating safety is the LD 50 value of the oral administration acute toxicity test in mice. In Table 1, (b) and (b)〓 are other hardeners Na 2 SiF 6 and Al 3 P 5 O 10 , which are known as hardeners for alkali silicate.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 海水に接触する構造物の少くとも該接触表面
に a バインダーとしてのケイ酸アルカリ b ヨウ素吸着量が30〜300mg・/g・MgOで
ある活性酸化マグネシウムを上記a)中の
SiO2量に基づいて15〜400重量% c 亜硫酸カルシウムを上記b)との合計量b)
+c)に基づいて0〜15重量%未満 d 金属亜鉛および無機亜鉛化合物よりなる群か
ら選ばれた少くとも1種を上記合計量b)+
c)に基づいて0〜900重量% 以上a),b),c),d)を含む被覆組成物を
塗布し、該塗布面に付着性海棲生物が付着するこ
とを防止することを特徴とする海水接触物の防汚
方法。
[Scope of Claims] 1. On at least the contact surface of a structure that comes into contact with seawater, a. an alkali silicate as a binder, b. activated magnesium oxide having an iodine adsorption amount of 30 to 300 mg/g.MgO in the above a). of
15-400% by weight based on the amount of SiO 2 c Total amount of calcium sulfite with b) above b)
+0 to less than 15% by weight based on c) d at least one selected from the group consisting of metallic zinc and inorganic zinc compounds in the above total amount b) +
A coating composition containing 0 to 900% by weight or more of a), b), c), and d) is applied based on c) to prevent adherent marine organisms from adhering to the applied surface. An antifouling method for objects that come in contact with seawater.
JP14346783A 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water Granted JPS6035065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14346783A JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14346783A JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Publications (2)

Publication Number Publication Date
JPS6035065A JPS6035065A (en) 1985-02-22
JPS6241985B2 true JPS6241985B2 (en) 1987-09-05

Family

ID=15339379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14346783A Granted JPS6035065A (en) 1983-08-04 1983-08-04 Antifouling method for material in contact with sea water

Country Status (1)

Country Link
JP (1) JPS6035065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577915B2 (en) * 1989-02-02 1993-10-27 Teleflex Inc
JPH0680978U (en) * 1993-04-27 1994-11-15 ニチアス株式会社 Insulation hose for fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060197C (en) * 1997-11-28 2001-01-03 化学工业部海洋化工研究院 Non-toxic silicate antifoulant and its preparing method
CN1101841C (en) * 1998-09-23 2003-02-19 化学工业部海洋化工研究院 Silicate compound anti-fouling paint
CN100349660C (en) 1998-10-19 2007-11-21 Toto株式会社 Stainproof material and method for manufacturing the same, and coating composition and apparatus therefor
JP2002301378A (en) * 2001-04-04 2002-10-15 Mitsui Eng & Shipbuild Co Ltd Photocatalyst module, method for producing the same and photocatalytic reactor
JP5730140B2 (en) * 2011-01-26 2015-06-03 株式会社神戸製鋼所 Surface-treated metal material, method for producing surface-treated metal material, heat exchanger, heat exchange method, and offshore structure
JP5916968B2 (en) * 2014-04-11 2016-05-11 新日鐵住金株式会社 Anticorrosion steel material and its manufacturing method, steel material anticorrosion method and ballast tank
CN104535743B (en) * 2015-01-21 2016-06-15 中国海洋石油总公司 A kind of subterranean minerals evaluating apparatus to scale preventative dynamic adsorption

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577915B2 (en) * 1989-02-02 1993-10-27 Teleflex Inc
JPH0680978U (en) * 1993-04-27 1994-11-15 ニチアス株式会社 Insulation hose for fuel cell

Also Published As

Publication number Publication date
JPS6035065A (en) 1985-02-22

Similar Documents

Publication Publication Date Title
US4513029A (en) Sea water antifouling method
US5919689A (en) Marine antifouling methods and compositions
KR100530968B1 (en) Coating composition
JP3874486B2 (en) Paint composition
KR100235093B1 (en) Antifouling paint compositions
CN101287805A (en) Marine antifouling coating compositions
US6342386B1 (en) Methods for removing undesired growth from a surface
JP6909894B2 (en) Antifouling paint composition, antifouling coating film, antifouling base material and its manufacturing method
GB1586395A (en) Biocidal glass additive for marine paints
US6001157A (en) Additive for antifouling paint
JPS6241985B2 (en)
JP2006291085A (en) Additive for anti-fouling coating
JPH08277372A (en) Coating composition
JPS626863B2 (en)
JP2006183059A (en) Coating composition
KR101051210B1 (en) Antifouling coating composition comprising zinc acrylate binder
JPS6241632B2 (en)
JPS60215076A (en) Antifouling paint composition
JP3650484B2 (en) Antifouling paint composition containing trialkylgermyl ester copolymer and use thereof
CN116903254B (en) Anti-biological adhesion functional glass ceramic material and preparation method and application thereof
JP4943178B2 (en) Antifouling coating composition, coating film formed from the antifouling coating composition, antifouling method using the antifouling coating composition, and hull or underwater structure coated with the coating
JP4573337B2 (en) Method for producing coating composition
JPS60148907A (en) Prevention of adhesion of marine organism
JP2000264804A (en) Antifouling agent composition, antifouling coating containing the same, antifouling coating film and antifouling treated matter using them and antifouling method
KR101051221B1 (en) Antifouling coating composition comprising zinc acrylate binder